On variants of the extended bicyclic semigroup

Oleg Gutik, Kateryna Maksymyk

Анотація


In the paper we describe the group AutC of automorphisms of the extended bicyclic semigroup C and study the variants Cm,n of the extended bicycle semigroup C, where m,n. In particular, we prove that AutC is isomorphic to the additive group of integers, the extended bicyclic semigroup C and every its variant are not finitely generated,  and  describe the subset of idempotents ECm,n and Green's relations on the semigroup Cm,n. Also we show that ECm,n is an ω-chain  and any two variants  of the extended bicyclic semigroup C are isomorphic. At the end we discuss shift-continuous Hausdorff topologies on the variant C0,0. In particular, we prove that if τ is a Hausdorff shift-continuous topology on C0,0 then each of inequalities a>0 or b>0 implies that a,b is an isolated point of C0,0,τ and construct an example of a Hausdorff semigroup topology τ* on the semigroup C0,0 such that all its points with ab0 and a+b0 are not isolated in C0,0,τ*.


Повний текст:

PDF

Посилання


O. Andersen, Ein Bericht uber die Struktur abstrakter Halbgruppen, PhD Thesis, Hamburg, 1952.

L. W. Anderson, R. P. Hunter, and R. J. Koch, Some results on stability in semigroups. Trans. Amer. Math. Soc. 117 (1965), 521-529.

T. Banakh, S. Dimitrova, and O. Gutik, The Rees-Suschkiewitsch Theorem for simple topological semigroups, Mat. Stud. 31 (2009), no. 2, 211-218.

T. Banakh, S. Dimitrova, and O. Gutik, Embedding the bicyclic semigroup into countably compact topological semigroups, Topology Appl. 157 (2010), no. 18, 2803-2814.

M. O. Bertman and T. T. West, Conditionally compact bicyclic semitopological semigroups, Proc. Roy. Irish Acad. A76 (1976), no. 21?23, 219-226.

S. J. Boyd, M. Gould, and A. Nelson, Interassociativity of semigroups, Misra, P. R. (ed.) et al., Proceedings of the Tennessee Topology Conference, Nashville, TN, USA, June 10-11, 1996. Singapore, World Scienti?c, (1997), pp. 33-51.

J. H. Carruth, J. A. Hildebrant, and R. J. Koch, The theory of topological semigroups, Vol. I, Marcel Dekker, Inc., New York and Basel, 1983; Vol. II, Marcel Dekker, Inc., New York and Basel, 1986.

K. Chase, Sandwich semigroups of binary relations, Discrete Math. 28 (1979), no. 3, 231-236.

K. Chase, New semigroups of binary relations, Semigroup Forum 18 (1979), no. 1, 79-82.

K. Chase, Maximal groups in sandwich semigroups of binary relations, Pac. J. Math. 100 (1982), no. 1, 42-59.

A. H. Cli?ord and G. B. Preston, The algebraic theory of semigroups, Vols. I and II, Amer. Math. Soc. Surveys 7, Providence, R.I., 1961 and 1967.

O. O. Desiateryk, Variants of commutative bands with zero, Visn., Ser. Fiz.-Mat. Nauky, Kyiv. Univ. Im. Tarasa Shevchenka (2015), no. 4, 15-20.

I. Dolinka, I. Durdev, and J. East, Sandwich semigroups in diagram categories, Preprint, in preparation.

I. Dolinka, I. Durdev, J. East, P. Honyam, K. Sangkhanan, J. Sanwong, and W. Sommanee, Sandwich semigroups in locally small categories I: Foundations, Preprint, 2017, arXiv:1710.01890.

I. Dolinka, I. Durdev, J. East, P. Honyam, K. Sangkhanan, J. Sanwong, and W. W. Sommanee, Sandwich semigroups in locally small categories II: Transformations, Preprint, 2017, arXiv:1710.01891.

I. Dolinka and J. East, Variants of ?nite full transformation semigroups, Int. J. Algebra Comput. 25 (2015), no. 8, 1187-1222.

I. Dolinka and J. East, Semigroups of rectangular matrices under a sandwich operation, Semigroup Forum 96 (2018), no. 2, 253-300.

J. East, Transformation representations of sandwich semigroups, Exp. Math. (2018) (doi: 10.1080/10586458.2018.1459963, to appear).

C. Eberhart and J. Selden, On the closure of the bicyclic semigroup, Trans. Amer. Math. Soc. 144 (1969), 115-126.

R. Engelking, General topology, 2nd ed., Heldermann, Berlin, 1989.

I. R. Fihel and O. V. Gutik, On the closure of the extended bicyclic semigroup, Carpathian Math. Publ. 3 (2011), no. 2, 131-157.

O. G. Ganyushkin and O. O. Desiateryk, Variants of a semilattice, Visn., Ser. Fiz.-Mat. Nauky, Kyiv. Univ. Im. Tarasa Shevchenka (2013), no. 4, 12-16.

O. Ganyushkin and V. Mazorchuk, Classical ?nite transformation semigroups, an introduction, 9 of Algebra and Appl., Springer, London, 2009.

B. N. Givens, A. Rosin, and K. Linton, Interassociates of the bicyclic semigroup, Semigroup Forum 94 (2017), no. 1, 104-122.

O. Gutik, On the dichotomy of a locally compact semitopological bicyclic monoid with adjoined zero, Visn. Lviv. Univ., Ser. Mekh.-Mat. 80 (2015), 33-41.

O. Gutik and K. Maksymyk, On semitopological interassociates of the bicyclic monoid, Visn. Lviv. Univ., Ser. Mekh.-Mat. 82 (2016), 98-108.

O. Gutik and D. Repovs, On countably compact 0-simple topological inverse semigroups, Semigroup Forum 75 (2007), no. 2, 464-469.

J. B. Hickey, Semigroups under a sandwich operation, Proc. Edinb. Math. Soc., II. Ser. 26 (1983), no. 3, 371-382.

J. B. Hickey. On variants of a semigroup. Bull. Austral. Math. Soc. 34 (1986), no. 3, 447-459.

J. A. Hildebrant and R. J. Koch, Swelling actions of Γ-compact semigroups, Semigroup Forum 33 (1986), 65-85.

W. Huang, Matrices which belong to an idempotent in a sandwich semigroup of circulant Boolean matrices, Linear Algebra Appl. 249 (1996), no. 1?3, 157-167.

T. Khan and M. Lawson, Variants of regular semigroups, Semigroup Forum 62 (2001), no. 3, 358-374.

R. J. Koch and A. D. Wallace, Stability in semigroups, Duke Math. J. 24 (1957), 193-195.

M. Lawson, Inverse semigroups. The theory of partial symmetries, World Scienti?c, Singapore, 1998.

M. Petrich, Inverse semigroups, John Wiley & Sons, New York, 1984.

V. Mazorchuk and G. Tsyaputa, Isolated subsemigroups in the variants of T n , Acta Math. Univ. Comen., New Ser. 77 (2008), no. 1, 63-84

W. Ruppert, Compact semitopological semigroups: an intrinsic theory, Lect. Notes Math., 1079, Springer, Berlin, 1984.

R. J. Warne, I-bisimple semigroups, Trans. Amer. Math. Soc. 130 (1968), 367-386.


Посилання

  • Поки немає зовнішніх посилань.