On feebly compact semitopological symmetric inverse semigroups of a bounded finite rank

Oleg Gutik

Анотація


We study feebly compact shift-continuous T1-topologies on the symmetric inverse semigroup Iλn of finite transformations of the rank n. For any positive integer n2 and any infinite cardinal λ a Hausdorff countably pracompact non-compact shift-continuous topology on Iλn is constructed. We show that for an arbitrary positive integer n and an arbitrary infinite cardinal λ for a T1-topology τ on Iλn the following conditions are equivalent: (i) τ is countably pracompact; (ii) τ is feebly compact; (iii) τ is d-feebly compact; (iv) (Iλn,τ) is H-closed; (v) (Iλn,τ) is d-compact for the discrete countable space d; (vi) (Iλn,τ) is -compact; (vii) (Iλn,τ) is  infra H-closed. Also we prove that for an arbitrary positive integer n and an arbitrary infinite cardinal λ  every shift-continuous semiregular feebly compact T1-topology τ on Iλn is compact.

Повний текст:

PDF (English)

Посилання


J. W. Alexander,

Ordered sets, complexes and the problem of compactification,

Proc. Natl. Acad. Sci. USA 25 (1939), 296-298.

A. V. Arhangel'skii, On spaces with point-countable base, Topological spaces and their

mappings, Riga, 1985, P. 3-7 (in Russian).

A. V. Arkhangel'skii, Topological function spaces, Kluwer Publ., Dordrecht, 1992.

R. W. Bagley, E. H. Connell, and J. D. McKnight, Jr., On properties characterizing pseudocompact spaces, Proc. Amer. Math. Soc. 9 (1958), no. 3, 500-506.

S. Bardyla and O. Gutik, On a semitopological polycyclic monoid, Algebra Discrete Math. 21 (2016), no. 2, 163-183.

J. H. Carruth, J. A. Hildebrant, and R. J. Koch, The theory of topological semigroups, Vols. I and II, Marcell Dekker, Inc., New York and Basel, 1983 and 1986.

A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vols. I and II, Amer. Math. Soc. Surveys 7, Providence, R.I., 1961 and 1967.

R. Engelking, General topology, 2nd ed., Heldermann, Berlin, 1989.

G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove, and D. S. Scott, Continuous lattices and domains, Cambridge Univ. Press, Cambridge, 2003.

O. Gutik, On closures in semitopological inverse semigroups with continuous inversion,

Algebra Discrete Math. 18 (2014), no. 1, 59-85.

O. Gutik, J. Lawson, and D. Repovs, Semigroup closures of ?nite rank symmetric inverse

semigroups, Semigroup Forum 78 (2009), no. 2, 326-336.

O. V. Gutik and K. P. Pavlyk, On topological semigroups of matrix units, Semigroup Forum 71 (2005), no. 3, 389-400.

O. V. Gutik and K. P. Pavlyk, Topological semigroups of matrix units, Algebra Discrete Math. (2005), no. 3, 1-17.

O. Gutik, K. Pavlyk, and A. Reiter, Topological semigroups of matrix units and countably compact Brandt λ_0 -extensions, Mat. Stud. 32 (2009), no. 2, 115-131.

O. V. Gutik and O. V. Ravsky, Pseudocompactness, products and topological Brandt λ_0-extensions of semitopological monoids, Math. Methods and Phys.-Mech. Fields 58 (2015),

no. 2, 20-37; reprinted version: J. Math. Sc. 223 (2017), no. 1, 18-38.

O. V. Gutik and A. R. Reiter, Symmetric inverse topological semigroups of fnite rank ge n, Math. Methods and Phys.-Mech. Fields 52 (2009), no. 3, 7-14; reprinted version: J. Math.

Sc. 171 (2010), no. 4, 425-432.

O. Gutik and A. Reiter, On semitopological symmetric inverse semigroups of a bounded finite rank, Visnyk Lviv Univ. Ser. Mech. Math. 72 (2010), 94-106 (in Ukrainian).

O. Gutik and O. Sobol, On feebly compact topologies on the semilattice exp^n_λ, Mat. Stud. 46 (2016), no. 1, 29-43.

O. Gutik and O. Sobol, On feebly compact shift-continuous topologies on the semilattice exp^n_λ, Visnyk Lviv Univ. Ser. Mech. Math. 82 (2016), 128-136.

D. W. Hajek and A. R. Todd, Compact spaces and infra H-closed spaces, Proc. Amer. Math. Soc. 48 (1975), no. 2, 479-482.

H. Herrlich, Wann sind alle stetigen Abbildungen in Y konstant?, Math. Z. 90 (1965), 152-154.

M. Katetov, Uber H-abgeschlossene und bikompakte Raume,

Cas. Mat. Fys. 69 (1940), no. 2, 36-49.

M. V. Lawson, Inverse semigroups. The theory of partial symmetries, World Scientific, Singapore, 1998.

M. Matveev, A survey of star covering properties, Topology Atlas preprint, April 15, 1998.

R. A. McCoy, A ?lter characterization of regular Baire spaces, Proc. Amer. Math. Soc. 40 (1973), 268-270.

M. Petrich, Inverse semigroups, John Wiley & Sons, New York, 1984.

W. Ruppert, Compact semitopological semigroups: an intrinsic theory, Lect. Notes Math., 1079, Springer, Berlin, 1984.

J. E. Vaughan, Countably compact and sequentially compact spaces, Handbook of set-theoretic topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, Amsterdam, 1984,

pp. 569-602.

V. V. Wagner, Generalized groups, Dokl. Akad. Nauk SSSR 84 (1952), 1119-1122 (in Russian).


Посилання

  • Поки немає зовнішніх посилань.