On the monoid of monotone injective partial selfmaps of 2 with cofinite domains and images

Oleg Gutik, Inna Pozdniakova

Анотація


Let 2 be the set 2 with the partial order defined as the product of usual order on the set of positive integers . We study the semigroup PO2 of monotone injective partial selfmaps of 2 having cofinite domain and image. We describe properties of elements of the semigroup PO2 as monotone partial bijections of 2 and show that the group of units of PO2 is isomorphic to the cyclic group of order two. Also we describe the subsemigroup of idempotents of PO2 and the Green relations on PO2. In particular, we show that D=J in PO2.

Повний текст:

PDF

Посилання


Clifford A. H., Preston G.B. The Algebraic Theory of Semigroups, Vol. I., Amer. Math. Soc. Surveys 7, Providence, R.I., 1961; Vol. II., Amer. Math. Soc. Surveys 7, Providence, R.I., 1967.

Green J.A. On the structure of semigroups, Ann. Math. (2) 54 (1951), 163-172.

Grillet P. A. Semigroups. An Introduction to the Structure Theory, Marcel Dekker, New York, 1995.

Gutik O., Pozdniakova I. Congruences on the monoid of monotone injective partial selfmaps of $L_ntimes_{operatorname{lex}}mathbb{Z}$ with co-finite domains and images, Mat. Metody Fiz.-Mekh. Polya 57:2 (2014), 7-15; reprinted version: J. Math. Sci. 217:2 (2016), 139-148.

Gutik O., Pozdnyakova I. On monoids of monotone injective partial selfmaps of $L_ntimes_{operatorname{lex}}mathbb{Z}$ with co-finite domains and images, Algebra Discr. Math. 17:2 (2014), 256-279.

Gutik O., Repovv{s} D. Topological monoids of monotone, injective partial selfmaps of $mathbb{N}$ having cofinite domain and image, Stud. Sci. Math. Hungar. 48:3 (2011), 342-353.

Gutik O., Repovv{s} D. On monoids of injective partial selfmaps of integers with cofinite domains and images, Georgian Math. J. 19:3 (2012), 511-532.

Gutik O., Repovv{s} D. On monoids of injective partial cofinite selfmaps, Math. Slovaca 65:5 (2015), 981-992.

Howie J. M. Fundamentals of Semigroup Theory, London Math. Monographs, New Ser. 12, Clarendon Press, Oxford, 1995.

Shelah S., Stepr={a}ns J. Non-trivial homeomorphisms of $beta Nsetminus N$ without the Continuum Hypothesis, Fund. Math. 132 (1989), 135-141.

Shelah S., Stepr={a}ns J. Somewhere trivial autohomeomorphisms, J. London Math. Soc. (2), 49 (1994), 569-580.

Shelah S., Stepr={a}ns J. Martin's axiom is consistent with the existence of nowhere trivial automorphisms, Proc. Amer. Math. Soc. 130 (2002), 2097-2106.

Veliv{c}kovi'{c} B. Definable automorphisms of $mathscr{P}(omega)/operatorname{fin}$, Proc. Amer. Math. Soc. 96 (1986), 130-135.

Veliv{c}kovi'{c} B. Applications of the Open Coloring Axiom, In Set Theory of the Continuum, H. Judah, W. Just et H. Woodin, eds., Pap. Math. Sci. Res. Inst. Workshop, Berkeley, 1989, MSRI Publications. Springer-Verlag. Vol. textbf{26}, Berlin, (1992), pp. 137-154.

Veliv{c}kovi'{c} B. OCA and automorphisms of $mathscr{P}(omega)/operatorname{fin}$, Topology Appl. 49 (1993), 1-13.

Vagner V. V. Generalized groups, Dokl. Akad. Nauk SSSR 84 (1952), 1119--1122 (in Russian).

Weaver N. Forcing for Mathematicians, World Sc. Publ. Co., 2014.


Посилання

  • Поки немає зовнішніх посилань.