On semitopological  α-bicyclic monoid

Serhii Bardyla

Анотація


We consider a semitopological α-bicyclic monoid Bα and prove that it is algebraically isomorphic to the semigroup of all order isomorphisms between the principal upper sets of ordinal ωα. We prove that for every ordinal α and every (a,b)Bα if a or b is a non-limit ordinal, then (a,b) is an isolated point in Bα. We show that for every ordinal α<ω+1 every  locally compact semigroup topology on Bα is discrete. On the other hand, we construct an example of a non-discrete locally compact topology τlc on Bω+1 such that Bω+1,τlc is a topological inverse semigroup. This example shows that there is a gap in the proof of Theorem 2.9 [16]  stating that for every ordinal α the semigroup Bα does not admit non-discrete locally compact inverse semigroup topologies.

Повний текст:

PDF

Посилання


Andersen O. Ein Bericht "{u}ber die Struktur abstrakter Halbgruppen, PhD Thesis, Hamburg, - 1952.

Banakh T., Dimitrova S., Gutik O. Embedding the bicyclic semigroup into countably compact topological semigroups,

Topology Appl. - 157:18. - 2010. - P. 2803-2814.

Banakh T., Dimitrova S. and Gutik O. The Rees-Suschkiewitsch Theorem for simple topological semigroups, Mat. Stud. - 31:2. - 2009. - P. 211-218.

Bardyla S. and Gutik O. On a semitopological polycyclic monoid. Algebra Discr. Math. - 21, no. 2. - 2016. - P. 163-183.

Bardyla S. and Gutik O. On a complete topological inverse polycyclic monoid. Carpathian Math. Publ. (submitted), arXiv:1603.08147.

Bertman M. O. and West T.T. Conditionally compact bicyclic semitopological semigroups, Proc. Roy. Irish Acad. --- A76:21-23. - 1976. - P. 219-226.

Chuchman I. and Gutik O. Topological monoids of almost monotone injective co-finite partial selfmaps of positive integers, Carpathian Math. Publ. - 2:1. --- 2011. --- P. 119-132.

Clifford A. H. and Preston G. B. The Algebraic Theory of Semigroups, Vols. I and II, Amer. Math. Soc. Surveys 7, Providence, R.I., 1961 and 1967.

Eberhart C. and Selden J. On the closure of the bicyclic semigroup, Trans. Amer. Math. Soc. - 144. - 1969. - P. 115-126.

Fihel I. R. and Gutik O.V. On the closure of the extended bicyclic semigroup. Carpathian Math. Publ. - 3:2. - 2011. - P. 131-157.

Gutik O. On the dichotomy of the locally compact semitopological bicyclic monoid with adjoined zero. Visn. L'viv. Univ., Ser. Mekh.-Mat. - 80. - 2015. - P. 33-41.

Gutik O. and Repovv{s} D. On countably compact 0-simple topological inverse semigroups. Semigroup Forum. - 75:2. - 2007. - P. 464-469.

Gutik O. and Repovv{s} D. Topological monoids of monotone, injective partial selfmaps of $mathbb{N}$ having cofinite domain and image, Stud. Sci. Math. Hungar. - 48:3. - 2011. - P. 342-353.

Gutik O. and Repovv{s} D. On monoids of injective partial selfmaps of integers with cofinite domains and images, Georgian Math. J. - 19:3. - 2012. - P. 511-532.

Hogan J. W. Hausdorff topologies on the $alpha$-bicyclic semigroup, Semigroup forum. - 36:1. - 1987. - P. 189-209.

Hogan J. W. The $alpha$-bicyclic semigroup as a topological semigroup, Semigroup forum. - 28. - 1984. - P. 265-271.

Hogan J. W. Bisimple semigroup with idempotents well-ordered, Semigroup forum. - 6. - 1973. - P. 296-316.

Jones D.G. Polycyclic monoids and their generalizations. - PhD Thesis, Heriot-Watt University, 2011.

Jones D. G. and Lawson M. V. Graph inverse semigroups: Their characterization and completion, J. Algebra. - 409. - 2014. - P. 444-473.

Kunen K. Set Theory, Mathematical Logic and Foundations. - Vol. 34. - 2013.

Lawson M. Inverse Semigroups. The Theory of Partial Symmetries, Singapore: World Scientific, 1998.

Mesyan Z., Mitchell J.D., Morayne M. and P'{e}resse Y. H. Topological graph inverse semigroups, Topology Appl. - 208. - 2016. - P. 106-126.

Nivat M. and Perrot J.-F. Une g'{e}n'{e}ralisation du monoide bicyclique, C. R. Acad. Sci., Paris, S'{e}r. A. - 271. - 1970. - P. 824-827.

Selden A. A. A nonlocally compact nondiscrete topology for the $alpha$-bicyclic semigroup, Semigroup forum. - 31. - 1985. - P. 372-374.

Sierpinski W. Cardinal and Ordinal Numbers, Second Ed. Revised, PWN, Warszava, 1965.

Weiss W. An introduction to set theory, www.math.toronto.edu/weiss/SetTheory.pdf, 2014.


Посилання

  • Поки немає зовнішніх посилань.