On the monoid of monotone injective partial selfmaps of 2 with cofinite domains and images, II

Oleg Gutik, Inna Pozdniakova

Анотація


Let 2 be the set 2 with the partial order defined as the product of usual order on the set of positive integers . We study the semigroup PO2 of monotone injective partial selfmaps of 2 having cofinite domain and image. We describe the natural partial order on the semigroup PO2 and show that it coincides with the natural partial order which is induced from symmetric inverse monoid I× over the set × onto the semigroup PO2. We proved that the semigroup PO2 is isomorphic to the semidirect product PO+2×2 of the monoid PO+2 of orientation-preserving monotone injective partial selfmaps of 2 with cofinite domains and images by the cyclic group 2 of the order two. Also we describe the congruence σ on the semigroup PO2 which is generated by the natural order on the semigroup PO2: ασβ if and only if α and β are comparable in PO2,. We prove that the quotient semigroup PO2/σ is isomorphic to the free commutative monoid AMω over an infinite countable set and show that the quotient semigroup PO2/σ is isomorphic to the semidirect product of the free commutative monoid AMω by the group 2.

Повний текст:

PDF (English)

Посилання


Bardyla S., Gutik O. On a semitopological polycyclic monoid // Algebra Discr. Math. - 2016. - 21, N2. - P. 163-183.

Clifford A. H., Preston G. B. The algebraic theory of semigroups. - Providence: Amer. Math. Soc., 1961. - Vol. 1. - xv+224 p.; 1967. - Vol. 2. - xv+350 p.

Eberhart C., Selden J. On the closure of the bicyclic semigroup // Trans. Amer. Math. Soc. - 1969. - 144. - P. 115-126.

Gutik O., Pozdniakova I. Congruences on the monoid of monotone injective partial selfmaps of $L_ntimes_{operatorname{lex}}mathbb{Z}$ with co-finite domains and images // J. Math. Sci. - 2016. - 217, N2. - P. 139-148.

Gutik O., Pozdniakova I. On the monoid of monotone injective partial selfmaps of $mathbb{N}^{2}_{leqslant}$ with cofinite domains and images // Visn. L'viv. Univ., Ser. Mekh.-Mat. - 2016. - 81. - P. 101-116.

Gutik O., Pozdnyakova I. On monoids of monotone injective partial selfmaps of $L_ntimes_{operatorname{lex}}mathbb{Z}$ with co-finite domains and images // Algebra Discr. Math. - 2014. - 17, N2. - P. 256-279.

Gutik O., Repovv{s} D. Topological monoids of monotone, injective partial selfmaps of $mathbb{N}$ having cofinite domain and image // Stud. Sci. Math. Hungar. - 2011. - 48, N3. - P. 342-353.

Gutik O., Repovv{s} D. On monoids of injective partial selfmaps of integers with cofinite domains and images // Georgian Math. J. - 2012. - 19, N3. - P. 511-532.

Gutik O., Repovv{s} D. On monoids of injective partial cofinite selfmaps // Math. Slovaca. - 2015. - 65, n5. - P. 981-992.

Howie J.M. Foundations of semigroup theory. - Oxford: Oxford Univ. Press, 1995. - x+356~p.

Mitsch H. A natural partial order for semigroups // Proc. Am. Math. Soc. - 1986. - 97, N3. - P. 384-388.

Shelah S., Steprans J. Non-trivial homeomorphisms of $beta N N$ without the Continuum Hypothesis // Fund. Math. - 1989. - 132. - P. 135-141.

Shelah S., Steprans J. Somewhere trivial autohomeomorphisms // J. London Math. Soc. Ser. 3. - 1994. - 49, N3. - P. 569-580.

Shelah S., Steprans J. Martin's axiom is consistent with the existence of nowhere trivial automorphisms // Proc. Amer. Math. Soc. - 2002. - 130, N7. - P. 2097-2106.

Veliv{c}kovi'{c} B. Definable automorphisms of $mathscr{P}(omega)/fin$ // Proc. Amer. Math. Soc. - 1986. - 96, N1. - P. 130-135.

Veliv{c}kovi'{c} B. Applications of the Open Coloring Axiom // Set Theory of the Continuum, H. Judah, W. Just et H. Woodin, eds., Pap. Math. Sci. Res. Inst. Workshop, Berkeley, 1989, - Berlin: MSRI Publications. Springer-Verlag. Vol. 26, 1992. - P. 137-154.

Veliv{c}kovi'{c} B. OCA and automorphisms of $mathscr{P}(omega)/fin$ // Topology Appl. - 1993. - 49, N1. - P. 1-13.

Vagner V.V. Generalized groups // Dokl. Akad. Nauk SSSR - 1952. - 84. - P. 1119-1122 (in Russian).


Посилання

  • Поки немає зовнішніх посилань.