ON THE DICHOTOMY OF A LOCALLY COMPACT SEMITOPOLOGICAL BICYCLIC MONOID WITH ADJOINED ZERO
Анотація
We prove that a Hausdorff locally compact semitopological bicyclic semigroup with adjoined zero is either compact or discrete. Also we show that the similar statement holds for a locally compact semitopological bicyclic semigroup with an adjoined compact ideal and construct an example which witnesses that a counterpart of the statements does not hold when is a ech-complete metrizable topological inverse semigroup.
Повний текст:
PDFПосилання
- Поки немає зовнішніх посилань.