On the semigroup of injective monoid endomorphisms of the monoid Bω3 with a three element family ℱ3 of inductive nonempty subsets of ω

Oleg Gutik, Marko Serivka

Анотація


We describe injective monoid endomorphisms of the semigroup Bω3 with a three element family ℱ3 of inductive nonempty subsets of ω. Also, we show that the monoid End1*(Bω3) of all injective endomorphisms of the semigroup Bω3 is isomorphic to the multiplicative semigroup of positive integers.

Повний текст:

PDF (English)

Посилання


A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. I., Amer. Math. Soc. Surveys 7, Providence, R.I., 1961.

A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. II., Amer. Math. Soc. Surveys 7, Providence, R.I., 1967.

O. Gutik and O. Lysetska, On the semigroup Bω which is generated by the family of atomic subsets of ω, Visn. L'viv. Univ., Ser. Mekh.-Mat. 92 (2021) 34-50. DOI: 10.30970/vmm.2021.92.034-050

O. Gutik and M. Mykhalenych, On some generalization of the bicyclic monoid, Visnyk Lviv. Univ. Ser. Mech.-Mat. 90 (2020), 5-19 (in Ukrainian). DOI: 10.30970/vmm.2020.90.005-019

O. Gutik and M. Mykhalenych, On group congruences on the semigroup Bω and its homomorphic retracts in the case when the family ℱ consists of inductive non-empty subsets of ω, Visnyk Lviv. Univ. Ser. Mech.-Mat. 91 (2021), 5-27 (in Ukrainian). DOI: 10.30970/vmm.2021.91.005-027

O. Gutik and M. Mykhalenych, On automorphisms of the semigroup Bωin the case when the family ℱ consists of nonempty inductive subsets of ω, Visnyk Lviv. Univ. Ser. Mech.-Mat. 93 (2022), 54-65 (in Ukrainian). DOI: 10.30970/vmm.2022.93.054-065

O. V. Gutik and O. B. Popadiuk, On the semigroup of injective endomorphisms of the semigroup Bωn which is generated by the family ℱn of initial finite intervals of ω, Mat. Metody Fiz.-Mekh. Polya 65 (2022), no. 1-2, 42-57. DOI: 10.15407/mmpmf2022.65.1-2.42-57

O. V. Gutik and O. B. Popadiuk, On the semigroup Bωn, which is generated by the family ℱn of finite bounded intervals of ω, Carpathian Math. Publ. 15 (2023), no. 2, 331-355. DOI: 0.15330/cmp.15.2.331-355

O. Gutik and I. Pozdniakova, On the semigroup of injective monoid endomorphisms of the monoid Bω with the two-elements family ℱ of inductive nonempty subsets of ω, Visnyk Lviv. Univ. Ser. Mech.-Mat. 94 (2022), 32-55. DOI: 10.30970/vmm.2022.94.032-055

O. Gutik and I. Pozdniakova, On the semigroup of non-injective monoid endomorphisms of the semigroup Bω with the two-element family ℱ of inductive nonempty subsets of ω, Visnyk Lviv. Univ. Ser. Mech.-Mat. 95 (2023), 14-27. DOI: 10.30970/vmm.2023.95.014-027

O. Gutik and I. Pozdniakova, On the semigroup of endomorphisms of the monoid Bω with the two-elements family ℱ of inductive nonempty subsets of ω, Preprint (in preparation).

O. Gutik, O. Prokhorenkova, and D. Sekh, On endomorphisms of the bicyclic semigroup and the extended bicyclic semigroup, Visn. L'viv. Univ., Ser. Mekh.-Mat. 92 (2021) 5-16 (in Ukrainian). DOI: 10.30970/vmm.2021.92.005-016

M. Lawson, Inverse semigroups. The theory of partial symmetries, World Scientific, Singapore, 1998.

O. Lysetska, On feebly compact topologies on the semigroup Bω1, Visnyk Lviv. Univ. Ser. Mech.-Mat. 90 (2020), 48-56. DOI: 10.30970/vmm.2020.90.048-056

M. Petrich, Inverse semigroups, John Wiley & Sons, New York, 1984.

O. Popadiuk, On endomorphisms of the inverse semigroup of convex order isomorphisms of the set ω of a bounded rank which are generated by Rees congruences, Visn. L'viv. Univ., Ser. Mekh.-Mat. 93 (2022), 34-41. DOI: 10.30970/vmm.2022.93.034-041

V. V. Wagner, Generalized groups, Dokl. Akad. Nauk SSSR 84 (1952), 1119-1122 (in Russian).




DOI: http://dx.doi.org/10.30970/vmm.2023.95.028-045

Посилання

  • Поки немає зовнішніх посилань.