Midconvex sets in Abelian groups

Iryna Banakh, Taras Banakh, Maria Kolinko, Alex Ravsky

Анотація


A subset X of an Abelian group G is called midconvex, if for every x,y∈X the set (x+y)/2={z∈ G:2z=x+y} is a subset of X. We prove that a subset X of an Abelian group G is midconvex if and only if for every g∈G and x∈X, the set {n∈ℤ:x+ng∈X} is equal to C∩H for some order-convex set C⊆ℤ and some subgroup H⊆ℤ such that the quotient group ℤ/H has no elements of even order. This characterization implies that a subset X of a periodic Abelian group G is midconvex if and only if for every x∈X the set X-x is a subgroup of G such that every element of the quotient group G/(X-x) has odd order. Also we prove that a nonempty set X in a subgroup G⊆ℚ is midconvex if and only if X=C∩(H+x) for some order-convex set C⊆ℚ, some x∈X and some subgroup H of G such that the quotient group G/H contains no elements of even order.

Повний текст:

PDF (English)

Посилання


I. Banakh, T. Banakh, M. Kolinko, and A. Ravsky, Semiaffine sets in Abelian groups, Visn. L'viv. Univ., Ser. Mekh.-Mat. 93 (2022), 5-13. DOI: 10.30970/vmm.2022.93.005-013

T. Banakh and E. Jablonska, Null-finite sets in topological groups and their applications, Israel J. Math. 230 (2019), no. 1, 361-386. DOI: 10.1007/s11856-018-1826-6

N. Bingham and A. Ostaszewski, Normed versus topological groups: dichotomy and duality, Dissert. Math. 472 (2010), 138p. DOI: 10.4064/dm472-0-1

N. Bingham and A. Ostaszewski, Category-measure duality: convexity, midpoint convexity and Berz sublinearity, Aequationes Math. 91 (2017), no. 5, 801-836. DOI: 10.1007/s00010-017-0486-7

M. Kuczma, An introduction to the theory of functional equations and inequalities, PWN, Uniwersytet Slaski, 1985.

V. Salo, Cutting corners, J. Comput. Syst. Sci. 128 (2022), 35-70. DOI: 10.1016/j.jcss.2022.03.001




DOI: http://dx.doi.org/10.30970/vmm.2022.94.024-031

Посилання

  • Поки немає зовнішніх посилань.