On the semigroup which is generated by the family of atomic subsets of
Анотація
Повний текст:
PDF (English)Посилання
R. W. Bagley, E. H. Connell, and J. D. McKnight, Jr., On properties characterizing pseudo-compact spaces, Proc. Amer. Math. Soc. 9 (1958), no. 3, 500-506. DOI: 10.1090/S0002-9939-1958-0097043-2
J. H. Carruth, J. A. Hildebrant and R. J. Koch, The theory of topological semigroups, Vol. I, Marcel Dekker, Inc., New York and Basel, 1983.
A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. I., Amer. Math. Soc. Surveys 7, Providence, R.I., 1961.
A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. II., Amer. Math. Soc. Surveys 7, Providence, R.I., 1967.
R. Engelking, General topology, 2nd ed., Heldermann, Berlin, 1989.
O. V. Gutik, On Howie semigroup, Mat. Metody Fiz.-Mekh. Polya 42 (1999), no. 4, 127-132 (in Ukrainian).
O. Gutik, On the group of automorphisms of the Brandt -extension of a monoid with zero, Proceedings of the 16th ITAT Conference Information Technologies - Applications and Theory (ITAT 2016), Tatranske Matliare, Slovakia, September 15-19, 2016. CEUR-WS, Bratislava, 2016, pp. 237-240.
O. Gutik, J. Lawson, and D. Repovs, Semigroup closures of finite rank symmetric inverse semigroups, Semigroup Forum 78 (2009), no. 2, 326-336. DOI: 10.1007/s00233-008-9112-2
O. Gutik and M. Mykhalenych, On some generalization of the bicyclic monoid, Visnyk Lviv. Univ. Ser. Mech.-Mat. 90 (2020), 5-19 (in Ukrainian). DOI: 10.30970/vmm.2020.90.005-019
O. V. Gutik and K. P. Pavlyk, On Brandt -extensions of semigroups with zero, Mat. Metody Fiz.-Mekh. Polya 49 (2006), no. 3, 26-40.
O. Gutik, K. Pavlyk, and A. Reiter, Topological semigroups of matrix units and countably compact Brandt -extensions, Mat. Stud. 32 (2009), no. 2, 115-131.
O. Gutik and D. Repovs, On Brandt -extensions of monoids with zero, Semigroup Forum 80 (2010), no. 1, 8-32. DOI: 10.1007/s00233-009-9191-8
O. Gutik and A. Savchuk, On the semigroup , Visn. Lviv. Univ., Ser. Mekh.-Mat. 83 (2017), 5-19 (in Ukrainian).
O. V. Gutik and O. Yu. Sobol, On feebly compact semitopological semilattice , Mat. Metody Fiz.-Mekh. Polya 61 (2018), no. 3, 16-23; reprinted version: J. Math. Sc. 254 (2021), no. 1, 3-20. DOI: 10.1007/s10958-021-05284-8
D. W. Hajek and A. R. Todd, Lightly compact spaces and infra H-closed spaces, Proc. Amer. Math. Soc. 48 (1975), no. 2, 479-482. DOI: 10.1090/S0002-9939-1975-0370499-3
J. A. Hildebrant and R. J. Koch, Swelling actions of -compact semigroups, Semigroup Forum 33 (1986), no. 1, 65-85. DOI: 10.1007/BF02573183
M. Matveev, A survey of star covering properties, Topology Atlas preprint, April 15, 1998.
M. Petrich, Inverse semigroups, John Wiley & Sons, New York, 1984.
W. Ruppert, Compact semitopological semigroups: an intrinsic theory, Lect. Notes Math., 1079, Springer, Berlin, 1984. DOI: 10.1007/BFb0073675
J. W. Stepp, A note on maximal locally compact semigroups, Proc. Amer. Math. Soc. 20 (1969), no. 1, 251-253. DOI: 10.1090/S0002-9939-1969-0232883-5
J. W. Stepp, Algebraic maximal semilattices, Pacific J. Math. 58 (1975), no. 1, 243-248. DOI: 10.2140/pjm.1975.58.243
V. V. Wagner, Generalized groups, Dokl. Akad. Nauk SSSR 84 (1952), 1119-1122 (in Russian).
DOI: http://dx.doi.org/10.30970/vmm.2021.92.034-050
Посилання
- Поки немає зовнішніх посилань.