Neighborhoods of Dirichlet series absolutely convergent in a half-plane

Myroslav Sheremeta

Анотація


For an absolutely convergent in the half-plane Π0=s: Re s<0 Dirichlet series F(s)=es+k=1fkexp{sλk} the set Oj,δ(F) of Dirichlet series G(s)=es+k=1gk exp{sλk} such that k=1λkjgk-fkδ  is called a neighborhood of the function F. It is proved that each function G from the neighborhood O1,1(E) of the function  E(s)=es is a pseudostarlike function in Π0, and if G is pseudostarlike in Π0 and gk0 for all k1 then GO1,1(E). A similar connection exists between O2,1(E) and pseudoconvex functions in Π0. The neighborhoods O1,δ(F) and O2,δ(F) are investigated also in the cases when F is either pseudostarlike or pseudoconvex of the order α[0,1) and the type β(0,1). Assuming that 0α<1, 0<β<β11, the coefficients fk and gk are negative and the function F is pseudostarlike of the order α and the type β it is proved, in particular, that if GO1,δ(F) with δ=2(1-α)(β1-Aβ)1+β1, where A=(1+β1)λ1-2αβ1-(1-β1)(1+β)λ1-2αβ-(1-β), then G is pseudostarlike of the order α and the type β1. On the contrary, if G is pseudostarlike of the order α and the type β1 then GO1,δ(F) with

δ=2λ1(1-α)β1λ1(1+β1)-2αβ1-(1-β1)+βλ1(1+β)-2αβ-(1-β).


Повний текст:

PDF (English)

Посилання


A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc. 8 (1957), 598-601. DOI: 10.1090/S0002-9939-1957-0086879-9

S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81 (1981), no. 4, 521-527. DOI: 10.1090/S0002-9939-1981-0601721-6

R. Fournier, A note on neighborhoods of univalent functions, Proc. Amer. Math. Soc. 87 (1983), no. 1, 117-121. DOI: 10.1090/S0002-9939-1983-0677245-9

H. Silverman, Neighborhoods of a class of analytic functions, Far East J. Math. Sci. 3 (1995), no. 2, 165-169.

O. Altintas, Neighborhoods of certain analytic functions with negative coefficients, Int. J. Math. Math. Sci. 19 (1996), no. 4, 797-800. DOI: 10.1155/S016117129600110X

O. Altintas, O. Ozkan, and H. M. Srivastava, Neighborhoods of a class of analytic functions with negative coefficients, Applied Math. Lett. 13 (2000), no. 3, 63--67. DOI: 10.1016/S0893-9659(99)00187-1

B. A. Frasin and M. Daras, Integral means and neighborhoods for analytic functions with negative coefficients, Soochow J. Math. 30 (2004), no. 2, 217-223.

G. Murugusundaramoorthy and H. M. Srivastava, Neighborhoods of certain classes of analytic functions of complex order, J. Inequal. Pure Appl. Math. 5 (2004), no. 2, Article 24.

M. N. Pascu and N. R. Pascu, Neighborhoods of univalent functions, Bull. Aust. Math. Soc. 83 (2011), no. 2, 210-219. DOI: 10.1017/S0004972710000468

О. М. Головата, О. М. Мулява, М. М. Шеремета, Псевдозіркові, псевдоопуклі та близькі до псевдоопуклих ряди Діріхле, які задовольняють дифе­ренціальні рівняння з експонен­ці­аль­ни­ми коефіцієнтами, Мат. методи фіз.-мех. поля 61 (2018), no. 1, 57-70; English version: O. M. Holovata, O. M. Mulyava, and M. M. Sheremeta, Pseudostarlike, pseudoconvex and close-to-pseudoconvex Dirichlet series satisfying differential equations with exponential coefficients, J. Math. Sci. 249 (2020), no. 3, 369-388. DOI: 10.1007/s10958-020-04948-1

M. M. Sheremeta, Geometric properties of analytic solution of differential equations, Publisher I. E. Chyzhykov, Lviv, 2019.

M. M. Sheremeta, Pseudostarlike and pseudoconvex Dirichlet series of the order $alpha$ and the type β, Mat. Stud. 54 (2020), no. 1, 23-31. DOI: 10.30970/ms.54.1.23-31




DOI: http://dx.doi.org/10.30970/vmm.2021.91.063-071

Посилання

  • Поки немає зовнішніх посилань.