Neighborhoods of Dirichlet series absolutely convergent in a half-plane
Анотація
For an absolutely convergent in the half-plane Dirichlet series the set of Dirichlet series such that is called a neighborhood of the function . It is proved that each function from the neighborhood of the function is a pseudostarlike function in , and if is pseudostarlike in and for all then . A similar connection exists between and pseudoconvex functions in . The neighborhoods and are investigated also in the cases when is either pseudostarlike or pseudoconvex of the order and the type . Assuming that , , the coefficients and are negative and the function is pseudostarlike of the order and the type it is proved, in particular, that if with , where , then is pseudostarlike of the order and the type . On the contrary, if is pseudostarlike of the order and the type then with
.
Повний текст:
PDF (English)Посилання
A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc. 8 (1957), 598-601. DOI: 10.1090/S0002-9939-1957-0086879-9
S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81 (1981), no. 4, 521-527. DOI: 10.1090/S0002-9939-1981-0601721-6
R. Fournier, A note on neighborhoods of univalent functions, Proc. Amer. Math. Soc. 87 (1983), no. 1, 117-121. DOI: 10.1090/S0002-9939-1983-0677245-9
H. Silverman, Neighborhoods of a class of analytic functions, Far East J. Math. Sci. 3 (1995), no. 2, 165-169.
O. Altintas, Neighborhoods of certain analytic functions with negative coefficients, Int. J. Math. Math. Sci. 19 (1996), no. 4, 797-800. DOI: 10.1155/S016117129600110X
O. Altintas, O. Ozkan, and H. M. Srivastava, Neighborhoods of a class of analytic functions with negative coefficients, Applied Math. Lett. 13 (2000), no. 3, 63--67. DOI: 10.1016/S0893-9659(99)00187-1
B. A. Frasin and M. Daras, Integral means and neighborhoods for analytic functions with negative coefficients, Soochow J. Math. 30 (2004), no. 2, 217-223.
G. Murugusundaramoorthy and H. M. Srivastava, Neighborhoods of certain classes of analytic functions of complex order, J. Inequal. Pure Appl. Math. 5 (2004), no. 2, Article 24.
M. N. Pascu and N. R. Pascu, Neighborhoods of univalent functions, Bull. Aust. Math. Soc. 83 (2011), no. 2, 210-219. DOI: 10.1017/S0004972710000468
О. М. Головата, О. М. Мулява, М. М. Шеремета, Псевдозіркові, псевдоопуклі та близькі до псевдоопуклих ряди Діріхле, які задовольняють диференціальні рівняння з експоненціальними коефіцієнтами, Мат. методи фіз.-мех. поля 61 (2018), no. 1, 57-70; English version: O. M. Holovata, O. M. Mulyava, and M. M. Sheremeta, Pseudostarlike, pseudoconvex and close-to-pseudoconvex Dirichlet series satisfying differential equations with exponential coefficients, J. Math. Sci. 249 (2020), no. 3, 369-388. DOI: 10.1007/s10958-020-04948-1
M. M. Sheremeta, Geometric properties of analytic solution of differential equations, Publisher I. E. Chyzhykov, Lviv, 2019.
M. M. Sheremeta, Pseudostarlike and pseudoconvex Dirichlet series of the order $alpha$ and the type , Mat. Stud. 54 (2020), no. 1, 23-31. DOI: 10.30970/ms.54.1.23-31
DOI: http://dx.doi.org/10.30970/vmm.2021.91.063-071
Посилання
- Поки немає зовнішніх посилань.