On spaces of *-measures on ultrametric spaces

Khrystyna Sukhorukova, Mykhailo Zarichnyi

Анотація


The notion of *-measure on a compact Hausdorff space is introduced and investigated in a previous publication of the first named author. In the present note we consider the set of all  *-measures of compact support on an ultrametric space. An ultrametrization of this set is provided, which determines a functor in the category of ultrametric spaces and non-expanding maps. We prove that this functor is locally non-expanding and preserves the class of complete ultrametric spaces.

Повний текст:

PDF (English)

Посилання


A. Chigogidze, On extension of normal functors, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh. (1984), no. 6, 23-26 (Russian).

B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, and I.V. Volovich, On p-adic mathematical physics, p-Adic Numbers Ultrametric Anal. Appl. 1 (2009), no. 1, 1-17. DOI: 10.1134/S2070046609010014

O. Hubal and M. Zarichnyi, Idempotent probability measures on ultrametric spaces, J. Math. Anal. Appl. 343 (2008), no. 2, 1052-1060. DOI: 10.1016/j.jmaa.2008.01.095

E. P. Klement, R. Mesiar, and E. Pap, Triangular norms, Kluwer, Dordrecht, 2000.

C. Li and Zh. Yang, Fuzzy ultrametrics based on idempotent probability measures, J. Fuzzy Math. 22 (2014), no. 2, 463-476.

F. Murtagh, On ultrametricity, data coding, and computation, Journal of Classiffication 21 (2004), no. 2, 167-184. DOI: 10.1007/s00357-004-0015-y

D. Mihec, Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets Syst. 159 (2008), no. 6, 739-744. DOI: 10.1016/j.fss.2007.07.006

R. Rammal, G. Touluse, and M. A. Virasoro, Ultrametricity for physicists, Rev. Mod. Phys. 58 (1986), no. 4, 765-788. DOI: 10.1103/RevModPhys.58.765

S. Priess-Crampe and P. Ribenboim, Ultrametric spaces and logic programming, J. Log. Program. 42 (2000), no. 2, 59-70. DOI: 10.1016/S0743-1066(99)00002-3

M. D. Roberts, Ultrametric distance in syntax, Prague Bull. Math. Linguist. 103 (2015), 111-130. DOI: 10.1515/pralin-2015-0006

S. Romaguera, A. Sapena, and P. Tiradoi, The Banach fixed point theorem in fuzzy quasi-metric spaces with application to the domain of words, Topology Appl. 154 (2007), no. 10, 2196-2203. DOI: 10.1016/j.topol.2006.09.018

A. Savchenko and M. Zarichnyi, Probability measure monad on the category of fuzzy ultrametric spaces, Azerb. J. Math. 1 (2011), no. 1, 114-121.

Kh. Sukhorukova, Spaces of non-additive measures generated by triangular norms, Proc. Intern. Geometry Center, (submitted).

M. O. Vlad, Fractal time, ultrametric topology and fast relation, Phys. Lett., A 189 (1994), no. 4, 299-303. DOI: 10.1016/0375-9601(94)90099-X

J. I. den Hartog and E.P. de Vink, Building metric structures with the $Meas$-functor, Liber Amicorum Jaco de Bakker, CWI, Amsterdam, (2002), pp. 93-108.

N. Bourbaki, General topology, Chapters 5-10, Berlin, Springer, 1998.




DOI: http://dx.doi.org/10.30970/vmm.2020.90.076-083

Посилання

  • Поки немає зовнішніх посилань.