Brendle's proof of the consistency of b<a, without ranks, games, and Cohen reals

Lyubomyr Zdomskyy

Анотація


We present a  simplified version of the proof of one of the main results of [J. Brendle, Mob families and mad families, Arch. Math. Logic  37  (1998), no. 3,  183-197. DOI: 10.1007/s001530050091]

Повний текст:

PDF (English)

Посилання


T. Bartoszynski and H. Judah, Set theory: On the structure of the real line, A. K. Peters, Massachusetts, 1995.

A. Blass, Combinatorial cardinal characteristics of the continuum, in: Handbook of Set Theory (M. Foreman, A. Kanamori, and M. Magidor, eds.), Springer, 2010, pp. 395-491. DOI: 10.1007/978-1-4020-5764-9_7

J. Brendle, Mob families and mad families, Arch. Math. Logic 37 (1998), no. 3, 183-197. DOI: 10.1007/s001530050091

J. Brendle and A. D. Brooke-Taylor, A variant proof of Con(b<a), Proceedings of the 2014 RIMS meeting on Reflection principles and set theory of large cardinals, Kyoto, 2014, pp. 16-25.

D. Chodounsky, D. Repovs, and L. Zdomskyy, Mathias forcing and combinatorial covering properties of filters, J. Symb. Log. 80 (2015), no. 4, 1398-1410. DOI: 10.1017/jsl.2014.73

O. Guzman, M. Hrusak, and A. A. Martinez, Canjar filters II, Proceedings of the 2014 RIMS meeting on Reflection principles and set theory of large cardinals, Kyoto, 2014, pp. 59-67.

O. Guzman and D. Kalajdzievski, The ultrafilter and almost disjointness numbers, arXiv: 2012.02306, 2012, preprint.

C. Laflamme, Forcing with filters and complete combinatorics, Ann. Pure Appl. Logic 42 (1989), no. 2, 125-163. DOI: 10.1016/0168-0072(89)90052-3

C. Laflamme and C. C. Leary, Filter games on ω and the dual ideal, Fund. Math. 173 (2002), no. 2, 159-173. DOI: 10.4064/fm173-2-4

J. Vaughan, Small uncountable cardinals and topology, in: Open problems in topology (J. van Mill, G. M. Reed, Eds.), Elsevier Sci. Publ., Amsterdam, 1990, pp. 195-218.




DOI: http://dx.doi.org/10.30970/vmm.2020.89.005-010

Посилання

  • Поки немає зовнішніх посилань.