On the dichotomy of a locally compact semitopological monoid of order isomorphisms between principal filters of n with adjoined zero

Taras Mokrytskyi

Анотація


Let n be any positive integer and IPFn be the semigroup of all order isomorphisms between principal filters of the n-th power of the set of positive integers with the product order.  We prove that a Hausdorff locally compact semitopological semigroup IPFn with an adjoined zero is either compact or discrete.

Повний текст:

PDF (English)

Посилання


O. Andersen, Ein Bericht uber die Struktur abstrakter Halbgruppen, PhD Thesis, Hamburg, 1952.

L. W. Anderson, R. P. Hunter, and R. J. Koch, Some results on stability in semigroups. Trans. Amer. Math. Soc. 117 (1965), 521-529. DOI: 10.2307/1994222

T. Banakh, S. Dimitrova, and O. Gutik, The Rees-Suschkiewitsch Theorem for simple topological semigroups, Mat. Stud. 31 (2009), no. 2, 211-218.

T. Banakh, S. Dimitrova, and O. Gutik, Embedding the bicyclic semigroup into countably compact topological semigroups, Topology Appl. 157:18 (2010), 2803-2814. DOI: 10.1016/j.topol.2010.08.020

S. Bardyla, Classifying locally compact semitopological polycyclic monoids, Math. Bull. Shevchenko Sci. Soc. 13 (2016), 21-28.

S. Bardyla, On locally compact semitopological graph inverse semigroups, Mat. Stud. 49 (2018), no. 1, 19-28. DOI: 10.15330/ms.49.1.19-28

S. Bardyla and O. Gutik, On the lattice of weak topologies on the bicyclic monoid with adjoined zero, Preprint (arXiv:1908.04566).

S. Bardyla and A. Ravsky, Closed subsets of compact-like topological spaces, Preprint (arXiv:1907.12129).

M. O. Bertman and T. T. West, Conditionally compact bicyclic semitopological semigroups, Proc. Roy. Irish Acad. Sec. A 76 (1976), no. 21?23, 219-226.

J. H. Carruth, J. A. Hildebrant, and R. J. Koch, The theory of topological semigroups, Vol. I, Marcel Dekker, Inc., New York and Basel, 1983; Vol. II, Marcel Dekker, Inc., New York and Basel, 1986.

A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vols. I and II, Amer. Math. Soc. Surveys 7, Providence, R.I., 1961 and 1967.

R. Engelking, General Topology, 2nd ed., Heldermann, Berlin, 1989.

O. Gutik, On the dichotomy of a locally compact semitopological bicyclic monoid with adjoined zero, Visn. L'viv. Univ., Ser. Mekh.-Mat. 80 (2015), 33-41.

O. Gutik, On locally compact semitopological 0-bisimple inverse ω-semigroups, Topol. Algebra Appl. 6 (2018), 77?101. DOI: 10.1515/taa-2018-0008

O. Gutik and K. Maksymyk, On semitopological interassociates of the bicyclic monoid, Visn. L'viv. Univ., Ser. Mekh.-Mat. 82 (2016), 98-108.

O. Gutik and T. Mokrytskyi, The monoid of order isomorphisms between principal filters of n, Eur. J. Math. (to appear). DOI: 10.1007/s40879-019-00328-5

O. Gutik and D. Repos, On countably compact 0-simple topological inverse semigroups, Semigroup Forum 75 (2007), no. 2, 464-469. DOI: 10.1007/s00233-007-0706-x

J. A. Hildebrant and R. J. Koch, Swelling actions of Γ-compact semigroups, Semigroup Forum 33 (1986), no. 1, 65-85. DOI: 10.1007/BF02573183

M. Petrich, Inverse semigroups, John Wiley & Sons, New York, 1984.

W. Ruppert, Compact semitopological semigroups: An intrinsic theory, Lect. Notes Math., 1079, Springer, Berlin, 1984.




DOI: http://dx.doi.org/10.30970/vmm.2019.87.037-045

Посилання

  • Поки немає зовнішніх посилань.