Extensions of semigroups by symmetric inverse semigroups of a bounded finite rank

Oleg Gutik, Oleksandra Sobol

Анотація


We study the semigroup extension Iλn(S) of a semigroup S by symmetric inverse semigroup of a bounded finite rank n.  We describe  idempotents and regular elements of the semigroup Iλn(S) and show that the semigroup Iλn(S)  is regular, orthodox, inverse or stable if and only if so is S. Green's relations are described on the semigroup Iλn(S) for an arbitrary monoid S. We introduce the conception of a semigroup with strongly tight ideal series, and  prove that for any infinite cardinal λ and any positive integer n the semigroup Iλn(S) has a  strongly tight ideal series provided so has S. Finally, we show that for every compact Hausdorff semitopological monoid S,τS there exists  its unique compact topological extension Iλn(S),τIc in the class of Hausdorff semitopological semigroups.

Повний текст:

PDF (English)

Посилання


T. Banakh and S. Bardyla, Characterizing chain-compact and chain-finite topological semilattices, Semigroup Forum 98 (2019), no. 2, 234-250. DOI: 10.1007/s00233-018-9921-x

T. Banakh and S. Bardyla, Completeness and absolute H-closedness of topological semilattices, Topology Appl. 260 (2019), 189-202. DOI: 10.1016/j.topol.2019.04.001

T. Banakh and S. Bardyla, On images of complete topologized subsemilattices in sequential semitopological semilattices, Preprint (arXiv:1806.02864).

T. Banakh and S. Bardyla, Complete topologized posets and semilattices, Preprint (arXiv: 1806.02869).

T. Banakh, S. Bardyla, and A. Ravsky, The closedness of complete subsemilattices in functionally Hausdorff semitopological semilattices, Preprint (arXiv:1806.02868).

S. Bardyla and O. Gutik, On H-complete topological semilattices, Mat. Stud. 38 (2012), no. 2, 118-123.

S. Bardyla and O. Gutik, On a complete topological inverse polycyclic monoid, Carpathian Math. Publ. 8 (2016), no. 2, 183-194. DOI: 10.15330/cmp.8.2.183-194

S. Bardyla, O. Gutik, and A. Ravsky, H-closed quasitopological groups, Topology Appl. 217 (2017), 51-58. DOI: 10.1016/j.topol.2016.12.003

T. Berezovski, O. Gutik, and K. Pavlyk, Brandt extensions and primitive topological inverse semigroups, Int. J. Math. Math. Sci. 2010 (2010) Article ID 671401, 13 pages. DOI: 10.1155/2010/671401

I. Chuchman and O. Gutik, On H-closed topological semigroups and semilattices, Algebra Discr. Math. (2007), no. 1, 13-23.

A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. I., Amer. Math. Soc. Surveys 7, Providence, R.I., 1961; Vol. II., Amer. Math. Soc. Surveys 7, Providence, R.I., 1967.

R. Engelking, General topology, 2nd ed., Heldermann, Berlin, 1989.

J. A. Green, On the structure of semigroups, Ann. Math. (2) 54 (1951), no. 1, 163-172. DOI: 10.2307/1969317

P. A. Grillet, Semigroups. An introduction to the structure theory, Marcel Dekker, New York, 1995.

O. V. Gutik, On Howie semigroup, Mat. Metody Phis.-Mech. Polya. 42 (1999), no. 4, 127-132 (in Ukrainian).

O. Gutik, On closures in semitopological inverse semigroups with continuous inversion, Algebra Discrete Math. 18 (2014), no. 1, 59-85.

O. Gutik, Topological properties of Taimanov semigroups, Mat. Visn. Nauk. Tov. Im. Shevchenka 13 (2016), 29-34.

O. Gutik, J. Lawson, and D. Repovs, Semigroup closures of finite rank symmetric inverse semigroups, Semigroup Forum 78 (2009), no. 2, 326-336. DOI: 10.1007/s00233-008-9112-2

O. V. Gutik and K. P. Pavlyk, H-closed topological semigroups and topological Brandt λ-extensions, Mat. Metody Fiz.-Mekh. Polya 44 (2001), no. 3, 20-28 (in Ukrainian).

O. Gutik and K. Pavlyk, Topological Brandt λ-extensions of absolutely H-closed topological inverse semigroups. Visnyk Lviv. Univ. Ser. Mekh.-Mat. 61 (2003), 98-105.

O. V. Gutik and K. P. Pavlyk, On topological semigroups of matrix units, Semigroup Forum 71 (2005), no. 3, 389-400. DOI: 10.1007/s00233-005-0530-0

O. V. Gutik and K. P. Pavlyk, On Brandt λ0-extensions of semigroups with zero, Mat. Metody Phis.-Mech. Polya 49 (2006), no. 3, 26-40.

O. Gutik and K. Pavlyk, On pseudocompact topological Brandt λ0-extensions of semitopological monoids, Topol. Algebra Appl. 1 (2013), 60-79. DOI: 10.2478/taa-2013-0007

O. V. Gutik and A. R. Reiter, Symmetric inverse topological semigroups of finite rank n, Mat. Metody Fiz.-Mekh. Polya 52 (2009), no. 3, 7-14; reprinted version: J. Math. Sc. 171 (2010), no. 4, 425-432. DOI: 10.1007/s10958-010-0147-z

O. Gutik and A. Reiter, On semitopological symmetric inverse semigroups of a bounded finite rank, Visnyk Lviv Univ. Ser. Mech. Math. 72 (2010), 94-106 (in Ukrainian).

O. Gutik and D. Repovs, On linearly ordered H-closed topological semilattices, Semigroup Forum 77 (2008), no. 3, 474-481. DOI: 10.1007/s00233-008-9102-4

O. Gutik and D. Repovs, On Brandt λ0-extensions of monoids with zero, Semigroup Forum 80 (2010), no. 1, 8-32. DOI: 10.1007/s00233-009-9191-8

R. J. Koch and A. D. Wallace, Stability in semigroups, Duke Math. J. 24 (1957), no. 2, 193-195. DOI: 10.1215/S0012-7094-57-02425-0

J. C. Meakin, Congruences on orthodox semigroups, J. Austral. Math. Soc. 12 (1971), no. 3, 323-341. DOI: 10.1017/S1446788700009794

L. O'Carroll, Counterexamples in stable semigroups, Trans. Amer. Math. Soc. 146 (1969), 377-386. DOI: 10.2307/1995178

M. Petrich, Inverse semigroups, John Wiley & Sons, New York, 1984.

J. W. Stepp, A note on maximal locally compact semigroups, Proc. Amer. Math. Soc. 20 (1969), no. 1, 251-253. DOI: 10.2307/2036002

V. V. Wagner, Generalized groups, Dokl. Akad. Nauk SSSR 84 (1952), no. 6, 1119-1122 (in Russian).




DOI: http://dx.doi.org/10.30970/vmm.2019.87.005-036

Посилання

  • Поки немає зовнішніх посилань.