ВИДАЛЕННЯ Cr(VI) ІЗ ВОДНИХ РОЗЧИНІВ ЗРАЗКАМИ ПОЛІАНІЛІНУ, ДОПОВАНОГО ФОСФАТНОЮ КИСЛОТОЮ

S. Nesterivska, L. Virsta, M. Yatsyshyn, M. Sydorko, V. Makogon, R. Serkiz, N. Pandiak, O. Reshetnyak

Анотація


Окиснювальною поліконденсацією аніліну амоній пероксиди сульфатом (АПС) синтезовано зразки поліаніліну (ПАн) у водних розчинах фосфатної кислоти (ФК) різних концентрацій (0,16 чи 0,80 або 1,65 чи 3,30 М). Поліанілін у зразках ПАн перебував у стані емеральдинової солі фосфатної кислоти (ПАн-ФК). Приготовлені зразки використовували для дослідження адсорбційних властивостей стосовно Cr(VI) із водних розчинів різних концентрацій, а саме 50, 100, 150, 200 та 300 мг/л. З’ясовано, що сорбційна ємність зразків ПАн–ФК зростає зі збільшенням концентрації фосфатної кислоти, використовуваної для синтезу  зразків. Унаслідок досліджень визначено можливість використання зразків ПАн–ФК, у яких поліанілін допований фосфатною кислотою в процесі синтезу, для сорбції Cr(VI) із водних розчинів без додаткового їхнього підкиснення.

 

Ключові слова: поліанілін, адсорбція Cr(VI), кінетика.


Повний текст:

PDF

Посилання


Xia S., Song Z., Jeyakumar P. et al. A critical review on bioremediation technologies for Cr(VI)-contaminated soils and wastewater // Crit. Rev. Environ. Sci. Technol. 2019. Vol. 49, Is. 12. P. 1027–1078. DOI: https://doi.org/10.1080/10643389.2018.1564526

Gorny J., Billon G., Noiriel C. et al. Chromium behavior in aquatic environments: a review // Environ. Rev. 2016. Vol. 24, Is. 4. P. 503–516. DOI: https://doi.org/10.1139/er-2016-0012

Renu B., Agarwal M. Singh K. Heavy metal removal from wastewater using various adsorbents: a review // J. Water Reuse Desal. 2016. Vol. 7, Is. 4. P. 387–419. DOI: https://doi.org/10.2166/wrd.2016.104

Qasem N. A. A., Ramy H. M., Lawal D. U. Removal of heavy metal ions from wastewater: a comprehensive and critical review // npj Clean Water. 2021. Vol. 4. P. 1–15. DOI: https://doi.org/10.1038/s41545-021-00127-0

Passivation of metal products, means of anticorrosive // https://metallchemie.kiev.ua

Xu Y., Zhao D. Reductive immobilization of chromate in water and soil using stabilized iron Nanoparticles // Water Res. 2007. Vol. 41, Is. 10. P. 2101-2108. DOI: https://doi.org/10.1016/j.watres.2007.02.037

DSanPiN 2.2.4–171–10 Hygienic requirements for drinking water intended for human consumption. [Valid from 2010-05-12]. Kharkiv: Fort Publishing House. 2010. 62 р.

Tseng C.-H., Lee I.-H., Chen Y.-C. Evaluation of hexavalent chromium concentration in water and its health risk with a system dynamics model // Sci. Total Environ. 2019. Vol. 669. P. 103–111. DOI: https://doi.org/10.1016/j.scitotenv.2019.03.103

WHO Guidelines for Drinking-Water Quality, fourth edition, World Health Organization. Ch. 12. Chemical fact sheets // Geneva. 2011. P. 340.

Wikipedia. https://uk.wikipedia.org/wiki/%D0%A5%D1%80%D0%BE%D0%BC

Cronin, J. R. The Chromium Controversy // Altern. Compl. Ther. 2004. Vol. 10, Is. 1. P. 39–42. DOI: https://doi.org/10.1089/107628004772830393

Rosales-Landeros C., Barrera-Díaz C. E., Bilyeu B. et al. A Review on Cr(VI) Adsorption Using Inorganic Materials // Am. J. Anal. Chem. 2013. Vol. 4, No. 7A. P. 8–16. DOI: https://doi.org/10.4236/ajac.2013.47A002

Taghizadeh A., Taghizadeh M., Jouyandeh M. et al. Conductive polymers in water treatment: A review // J. Mol. Liq. 2020. Vol. 312. P. 113447.DOI: https://doi.org/10.1016/j.molliq.2020.113447

Miretzky P., Cirelli A. F. Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: a review // J. Hazard Mater. 2010. Vol. 180. P. 1–19. DOI: https://doi.org/10.1016/j.jhazmat.2010.04.060

Mohan D., Pittman Jr. C. U. Review: activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water // J. Hazard. Mater. 2006. Vol. 137, Is. 2. P. 762–811. DOI: https://doi.org/10.1016/j.jhazmat.2006.06.060

Owlad M., Aroua M. K., Wan Daud W. A., Baroutian S. Removal of Hexavalent Chromium-Contaminated Water and Wastewater: A Review // Water Air Soil Pollut. 2009. Vol. 200. P. 59–77. DOI: https://doi.org/10.1007/s11270-008-9893-7

Barrera-Díaz C. E., Lugo-Lugo V., Bilyeu B. A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction // J. Hazard. Mater. 2012. Vol. 223–224. P. 1–12. DOI: https://doi.org/10.1016/j.jhazmat.2012.04.054

Samiey B., Cheng C.-H., Wu J. Organic-Inorganic Hybrid Polymers as Adsorbents for Removal of Heavy Metal Ions from Solutions: A Review // Mater. 2014. Vol. 7, Is. 2. P. 673–726. DOI: https://doi.org/10.3390/ma7020673

Kalidhasan S., Kumar A. S. K., Rajesh V., Rajesh N. The journey traversed in the remediation of hexavalent chromium and the road ahead toward greener alternatives – A perspective // Coordinat. Chem. Rev. 2016. Vol. 317. P. 157–166. DOI: https://doi.org/10.1016/j.ccr.2016.03.004

Pradhan D., Sukla L. B., Sawyer M., Rahman P. K. S. M. Recent bioreduction of hexavalent chromium in wastewater treatment: a review // J. Ind. Eng. Chem. 2017. Vol. 55. P. 1–20. DOI: https://doi.org/10.1016/j.jiec.2017.06.040

Kimbrough D. E., Cohen Y., Winer A. M. et al. Critical assessment of chromium in the environment // Crit. Rev. Environ. Sci. Technol. 1999. Vol. 29, Is. 1. P. 1–46. DOI: https://doi.org/10.1080/10643389991259164

Kaprara E., Kazakis N., Simeonidis K. et al. Occurrence of Cr(VI) in drinking water of Greece and relation to the geological background // J. Hazard. Mater. 2015. Vol. 281. P. 2–11. DOI: https://doi.org/10.1016/j.jhazmat.2014.06.084

Panagiotakis I., Dermatas, D., Vatseris C. et al. Forensic investigation of a chromium(VI) groundwater plume in Thiva, Greece // J. Hazard. Mater. 2015. Vol. 281. P. 27–34. DOI: https://doi.org/10.1016/j.jhazmat.2014.09.048

Covelo E. F., Vega F. A., Andrade M. L. Competitive sorption and desorption of heavy metals by individual soil components // J. Hazard. Mater. 2007. Vol. 140, Is. 1–2. P. 308–315. DOI: https://doi.org/10.1016/j.jhazmat.2006.09.018

Potgieter J. H., Potgieter-Vermaak S. S., Kalibantonga P. D. Heavy metals removal from solution by palygorskite clay // Miner. Engineer. 2006. Vol. 19, Is. 5. P. 463–470. DOI: https://doi.org/10.1016/j.mineng.2005.07.004

Qiu J., Wang Z., Li H. et al. Adsorption of Cr(VI) using silica-based adsorbent prepared by radiation-induced grafting // J. Hazard. Mater. 2009. Vol. 166, Is. 1. P. 270–276. DOI: https://doi.org/10.1016/j.jhazmat.2008.11.053

Akar S. T., Yetimoglu Y. Gedikbey T. Removal of chromium (VI) ions from aqueous solutions by using Turkish montmorillonite clay: effect of activation and modification // Desalination. 2009. Vol. 244, Is. 1–3. P. 97–108. DOI: https://doi.org/10.1016/j.desal.2008.04.040

Rosales-Landeros C., Barrera-Díaz C. E., Bilyeu B. et al. A Review on Cr(VI) Adsorption Using Inorganic Materials // Am. J. Anal. Chem. 2013. Vol. 4, No. 7A. Р. 33866. DOI: https://doi.org/10.4236/ajac.2013.47A002

Huang D., Han X., Zhang F. et al. Reduction mechanism of hexavalent chromium in aqueous solution by sulfidated granular activated carbon // J. Clean. Product. 2021. Vol. 316. P. 128273. DOI: https://doi.org/10.1016/j.jclepro.2021.128273

Zare E., N. Motahari A., Sillanpää M. Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: A review // Environ. Res. 2018. Vol. 162. Р. 173–195. DOI: https://doi.org/10.1016/j.envres.2017.12.025

Pakade V. E., Tavengwa N. T., Madikizela L. M. Recent advances in hexavalent chromium removal from aqueous solutions by adsorptive methods // RSC Adv. 2019. Vol. 9, Is. 45. P. 26142–26164. DOI: https://doi.org/10.1039/C9RA05188K

Eskandari E., Kosari M., Farahani D. A. et al. A Review on Polyaniline-Based Materials Applications in Heavy Metals Removal and Catalytic Processes // Sep. Purif. Technol. 2020. Vol. 231. P. 115901. DOI: https://doi.org/10.1016/j.seppur.2019.115901

Younas F., Mustafa A., Farooqi Z. U. R. et al. Current and Emerging Adsorbent Technologies for Wastewater Treatment: Trends, Limitations, and Environmental Implications // Water. 2021. Vol. 13, Is. 2. P. 215.DOI: https://doi.org/10.3390/w13020215

Rashid R., Shafiq I., Akhter P. et al. A state-of-the-art review on wastewater treatment techniques: the effectiveness of adsorption method // Environ. Sci. Pollut. R. 2021. Vol. 28, Is. 8. P.1-17. DOI: https://doi.org/10.1007/s11356-021-12395-x

Carolin C. F., Kumar P. S., Saravanan A. et al. Efficient Techniques for the Removal of Toxic Heavy Metals from Aquatic Environment: A Review // J. Environ. Chem. Engineer. 2017. Vol. 5, Is. 3. P. 2782-2799. DOI: https://doi.org/10.1016/j.jece.2017.05.029

Hajjaoui H., Soufi A., Boumya W. et al. Polyaniline/Nanomaterial Composites for the Removal of Heavy Metals by Adsorption: A Review // J. Compos. Sci. 2021. Vol. 5, Is. 9. P. 233–251. DOI: https://doi.org/10.3390/jcs5090233

Ansari R. Application of Polyaniline and its Composites for Adsorption/Recovery of Chromium (VI) from Aqueous Solutions // Acta Chim. Slov. 2006. Vol. 53. P.88–94

Chowdhury P., Roy K., Mondal P. HCl doped polyaniline: an adsorbent for the treatment of Cr(VI)-contaminated wastewater // J. Polym. Mater. 2008. Vol. 25.P. 589–600.

Xiao G., Tao F. G., Hao S., Li D. Z. High-Performance and Reproducible Polyaniline Nanowire/Tubes for Removal of Cr(VI) in Aqueous Solution // J. Phys. Chem. C. 2011. Vol. 115, Is. 5. P. 1608–1613. DOI: https://doi.org/10.1021/jp1091653

Wang J., Zhang K., Zhao L. Sono-assisted synthesis of nanostructured polyaniline for adsorption of aqueous Cr(VI): Effect of protonic acids // Chem. Engineer. J. 2014. Vol. 239. Р. 123–131. DOI: https://doi.org/10.1016/j.cej.2013.11.006

Baruah P., Mahanta D. Adsorption and reduction: combined effect of polyaniline emeraldine salt for removal of Cr(VI) from aqueous medium // Bull. Mater. Sci. 2016. Vol. 39, No. 3. P. 875–882. DOI: https://doi.org/10.1007/s12034-016-1204-0

Jiang Y., Liu Z., Zeng G. et al. Polyaniline-based adsorbents for removal of hexavalent chromium from aqueous solution: a mini review // Environ. Sci. Pollut. R. 2018. Vol. 25, Is. 7. P. 6158–6174. DOI: https://doi.org/10.1007/s11356-017-1188-3

Samadi A., Xie M., Li J. et al. Polyaniline-based adsorbents for aqueous pollutants removal: A review // Chem. Engineer. J. 2021. Vol. 418. P. 129425. DOI: https://doi.org/10.1016/j.cej.2021.129425

Makogon V., Nesterivs’ka S., German N., М. Yatsyshyn М. Synthesis of composites glauconite/polyaniline doped phosphatic acid and their properties // Visnyk Lviv Univ. Ser. Chem. 2019. Iss. 61 (2). P. 363‒372. DOI: https://doi.org/10.30970/vch.6002.363

Salem M. A. The role of polyaniline salts in the removal of direct blue from aqueous solution: A kinetic study // React. Funct. Polym. 2010. Vol. 70, Is.10. P. 707–714. DOI: https://doi.org/10.1016/j.reactfunctpolym.2010.07.001

Karthikeyan T., Rajgopal S., Miranda L. R. Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon // J. Hazard. Mater. 2005. Vol. 124, Is. 1-3. P. 192–199. DOI: https://doi.org/10.1016/j.jhazmat.2005.05.003

Sukhara A., Vereshchagin O., Yatsyshyn М. Synthesis and properties of the composites cellulose/polyaniline, citric acid doped // Visnyk Lviv Univ. Ser. Chem. 2018. Iss. 59 (2). P. 414–424. DOI: https://doi.org/10.1016/j.progpolymsci.2011.04.001

Nesterivs’ka S., Makogon V., Yatsyshyn М. et al.Adsorption properties of glauconite/polyaniline-phosphate acid composites with regard to Cr(VI) acid // Visnyk Lviv Univ. Ser. Chem. 2020. Iss. 61 (2). P. 363‒372. DOI: http://dx.doi.org/10.30970/vch.6102.363




DOI: http://dx.doi.org/10.30970/vch.6301.289

Посилання

  • Поки немає зовнішніх посилань.