ВИДАЛЕННЯ Cr(VI) ІЗ ВОДНИХ РОЗЧИНІВ ЗРАЗКАМИ ПОЛІАНІЛІНУ, ДОПОВАНОГО ФОСФАТНОЮ КИСЛОТОЮ
Анотація
Окиснювальною поліконденсацією аніліну амоній пероксиди сульфатом (АПС) синтезовано зразки поліаніліну (ПАн) у водних розчинах фосфатної кислоти (ФК) різних концентрацій (0,16 чи 0,80 або 1,65 чи 3,30 М). Поліанілін у зразках ПАн перебував у стані емеральдинової солі фосфатної кислоти (ПАн-ФК). Приготовлені зразки використовували для дослідження адсорбційних властивостей стосовно Cr(VI) із водних розчинів різних концентрацій, а саме 50, 100, 150, 200 та 300 мг/л. З’ясовано, що сорбційна ємність зразків ПАн–ФК зростає зі збільшенням концентрації фосфатної кислоти, використовуваної для синтезу зразків. Унаслідок досліджень визначено можливість використання зразків ПАн–ФК, у яких поліанілін допований фосфатною кислотою в процесі синтезу, для сорбції Cr(VI) із водних розчинів без додаткового їхнього підкиснення.
Ключові слова: поліанілін, адсорбція Cr(VI), кінетика.
Повний текст:
PDFПосилання
Xia S., Song Z., Jeyakumar P. et al. A critical review on bioremediation technologies for Cr(VI)-contaminated soils and wastewater // Crit. Rev. Environ. Sci. Technol. 2019. Vol. 49, Is. 12. P. 1027–1078. DOI: https://doi.org/10.1080/10643389.2018.1564526
Gorny J., Billon G., Noiriel C. et al. Chromium behavior in aquatic environments: a review // Environ. Rev. 2016. Vol. 24, Is. 4. P. 503–516. DOI: https://doi.org/10.1139/er-2016-0012
Renu B., Agarwal M. Singh K. Heavy metal removal from wastewater using various adsorbents: a review // J. Water Reuse Desal. 2016. Vol. 7, Is. 4. P. 387–419. DOI: https://doi.org/10.2166/wrd.2016.104
Qasem N. A. A., Ramy H. M., Lawal D. U. Removal of heavy metal ions from wastewater: a comprehensive and critical review // npj Clean Water. 2021. Vol. 4. P. 1–15. DOI: https://doi.org/10.1038/s41545-021-00127-0
Passivation of metal products, means of anticorrosive // https://metallchemie.kiev.ua
Xu Y., Zhao D. Reductive immobilization of chromate in water and soil using stabilized iron Nanoparticles // Water Res. 2007. Vol. 41, Is. 10. P. 2101-2108. DOI: https://doi.org/10.1016/j.watres.2007.02.037
DSanPiN 2.2.4–171–10 Hygienic requirements for drinking water intended for human consumption. [Valid from 2010-05-12]. Kharkiv: Fort Publishing House. 2010. 62 р.
Tseng C.-H., Lee I.-H., Chen Y.-C. Evaluation of hexavalent chromium concentration in water and its health risk with a system dynamics model // Sci. Total Environ. 2019. Vol. 669. P. 103–111. DOI: https://doi.org/10.1016/j.scitotenv.2019.03.103
WHO Guidelines for Drinking-Water Quality, fourth edition, World Health Organization. Ch. 12. Chemical fact sheets // Geneva. 2011. P. 340.
Wikipedia. https://uk.wikipedia.org/wiki/%D0%A5%D1%80%D0%BE%D0%BC
Cronin, J. R. The Chromium Controversy // Altern. Compl. Ther. 2004. Vol. 10, Is. 1. P. 39–42. DOI: https://doi.org/10.1089/107628004772830393
Rosales-Landeros C., Barrera-Díaz C. E., Bilyeu B. et al. A Review on Cr(VI) Adsorption Using Inorganic Materials // Am. J. Anal. Chem. 2013. Vol. 4, No. 7A. P. 8–16. DOI: https://doi.org/10.4236/ajac.2013.47A002
Taghizadeh A., Taghizadeh M., Jouyandeh M. et al. Conductive polymers in water treatment: A review // J. Mol. Liq. 2020. Vol. 312. P. 113447.DOI: https://doi.org/10.1016/j.molliq.2020.113447
Miretzky P., Cirelli A. F. Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: a review // J. Hazard Mater. 2010. Vol. 180. P. 1–19. DOI: https://doi.org/10.1016/j.jhazmat.2010.04.060
Mohan D., Pittman Jr. C. U. Review: activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water // J. Hazard. Mater. 2006. Vol. 137, Is. 2. P. 762–811. DOI: https://doi.org/10.1016/j.jhazmat.2006.06.060
Owlad M., Aroua M. K., Wan Daud W. A., Baroutian S. Removal of Hexavalent Chromium-Contaminated Water and Wastewater: A Review // Water Air Soil Pollut. 2009. Vol. 200. P. 59–77. DOI: https://doi.org/10.1007/s11270-008-9893-7
Barrera-Díaz C. E., Lugo-Lugo V., Bilyeu B. A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction // J. Hazard. Mater. 2012. Vol. 223–224. P. 1–12. DOI: https://doi.org/10.1016/j.jhazmat.2012.04.054
Samiey B., Cheng C.-H., Wu J. Organic-Inorganic Hybrid Polymers as Adsorbents for Removal of Heavy Metal Ions from Solutions: A Review // Mater. 2014. Vol. 7, Is. 2. P. 673–726. DOI: https://doi.org/10.3390/ma7020673
Kalidhasan S., Kumar A. S. K., Rajesh V., Rajesh N. The journey traversed in the remediation of hexavalent chromium and the road ahead toward greener alternatives – A perspective // Coordinat. Chem. Rev. 2016. Vol. 317. P. 157–166. DOI: https://doi.org/10.1016/j.ccr.2016.03.004
Pradhan D., Sukla L. B., Sawyer M., Rahman P. K. S. M. Recent bioreduction of hexavalent chromium in wastewater treatment: a review // J. Ind. Eng. Chem. 2017. Vol. 55. P. 1–20. DOI: https://doi.org/10.1016/j.jiec.2017.06.040
Kimbrough D. E., Cohen Y., Winer A. M. et al. Critical assessment of chromium in the environment // Crit. Rev. Environ. Sci. Technol. 1999. Vol. 29, Is. 1. P. 1–46. DOI: https://doi.org/10.1080/10643389991259164
Kaprara E., Kazakis N., Simeonidis K. et al. Occurrence of Cr(VI) in drinking water of Greece and relation to the geological background // J. Hazard. Mater. 2015. Vol. 281. P. 2–11. DOI: https://doi.org/10.1016/j.jhazmat.2014.06.084
Panagiotakis I., Dermatas, D., Vatseris C. et al. Forensic investigation of a chromium(VI) groundwater plume in Thiva, Greece // J. Hazard. Mater. 2015. Vol. 281. P. 27–34. DOI: https://doi.org/10.1016/j.jhazmat.2014.09.048
Covelo E. F., Vega F. A., Andrade M. L. Competitive sorption and desorption of heavy metals by individual soil components // J. Hazard. Mater. 2007. Vol. 140, Is. 1–2. P. 308–315. DOI: https://doi.org/10.1016/j.jhazmat.2006.09.018
Potgieter J. H., Potgieter-Vermaak S. S., Kalibantonga P. D. Heavy metals removal from solution by palygorskite clay // Miner. Engineer. 2006. Vol. 19, Is. 5. P. 463–470. DOI: https://doi.org/10.1016/j.mineng.2005.07.004
Qiu J., Wang Z., Li H. et al. Adsorption of Cr(VI) using silica-based adsorbent prepared by radiation-induced grafting // J. Hazard. Mater. 2009. Vol. 166, Is. 1. P. 270–276. DOI: https://doi.org/10.1016/j.jhazmat.2008.11.053
Akar S. T., Yetimoglu Y. Gedikbey T. Removal of chromium (VI) ions from aqueous solutions by using Turkish montmorillonite clay: effect of activation and modification // Desalination. 2009. Vol. 244, Is. 1–3. P. 97–108. DOI: https://doi.org/10.1016/j.desal.2008.04.040
Rosales-Landeros C., Barrera-Díaz C. E., Bilyeu B. et al. A Review on Cr(VI) Adsorption Using Inorganic Materials // Am. J. Anal. Chem. 2013. Vol. 4, No. 7A. Р. 33866. DOI: https://doi.org/10.4236/ajac.2013.47A002
Huang D., Han X., Zhang F. et al. Reduction mechanism of hexavalent chromium in aqueous solution by sulfidated granular activated carbon // J. Clean. Product. 2021. Vol. 316. P. 128273. DOI: https://doi.org/10.1016/j.jclepro.2021.128273
Zare E., N. Motahari A., Sillanpää M. Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: A review // Environ. Res. 2018. Vol. 162. Р. 173–195. DOI: https://doi.org/10.1016/j.envres.2017.12.025
Pakade V. E., Tavengwa N. T., Madikizela L. M. Recent advances in hexavalent chromium removal from aqueous solutions by adsorptive methods // RSC Adv. 2019. Vol. 9, Is. 45. P. 26142–26164. DOI: https://doi.org/10.1039/C9RA05188K
Eskandari E., Kosari M., Farahani D. A. et al. A Review on Polyaniline-Based Materials Applications in Heavy Metals Removal and Catalytic Processes // Sep. Purif. Technol. 2020. Vol. 231. P. 115901. DOI: https://doi.org/10.1016/j.seppur.2019.115901
Younas F., Mustafa A., Farooqi Z. U. R. et al. Current and Emerging Adsorbent Technologies for Wastewater Treatment: Trends, Limitations, and Environmental Implications // Water. 2021. Vol. 13, Is. 2. P. 215.DOI: https://doi.org/10.3390/w13020215
Rashid R., Shafiq I., Akhter P. et al. A state-of-the-art review on wastewater treatment techniques: the effectiveness of adsorption method // Environ. Sci. Pollut. R. 2021. Vol. 28, Is. 8. P.1-17. DOI: https://doi.org/10.1007/s11356-021-12395-x
Carolin C. F., Kumar P. S., Saravanan A. et al. Efficient Techniques for the Removal of Toxic Heavy Metals from Aquatic Environment: A Review // J. Environ. Chem. Engineer. 2017. Vol. 5, Is. 3. P. 2782-2799. DOI: https://doi.org/10.1016/j.jece.2017.05.029
Hajjaoui H., Soufi A., Boumya W. et al. Polyaniline/Nanomaterial Composites for the Removal of Heavy Metals by Adsorption: A Review // J. Compos. Sci. 2021. Vol. 5, Is. 9. P. 233–251. DOI: https://doi.org/10.3390/jcs5090233
Ansari R. Application of Polyaniline and its Composites for Adsorption/Recovery of Chromium (VI) from Aqueous Solutions // Acta Chim. Slov. 2006. Vol. 53. P.88–94
Chowdhury P., Roy K., Mondal P. HCl doped polyaniline: an adsorbent for the treatment of Cr(VI)-contaminated wastewater // J. Polym. Mater. 2008. Vol. 25.P. 589–600.
Xiao G., Tao F. G., Hao S., Li D. Z. High-Performance and Reproducible Polyaniline Nanowire/Tubes for Removal of Cr(VI) in Aqueous Solution // J. Phys. Chem. C. 2011. Vol. 115, Is. 5. P. 1608–1613. DOI: https://doi.org/10.1021/jp1091653
Wang J., Zhang K., Zhao L. Sono-assisted synthesis of nanostructured polyaniline for adsorption of aqueous Cr(VI): Effect of protonic acids // Chem. Engineer. J. 2014. Vol. 239. Р. 123–131. DOI: https://doi.org/10.1016/j.cej.2013.11.006
Baruah P., Mahanta D. Adsorption and reduction: combined effect of polyaniline emeraldine salt for removal of Cr(VI) from aqueous medium // Bull. Mater. Sci. 2016. Vol. 39, No. 3. P. 875–882. DOI: https://doi.org/10.1007/s12034-016-1204-0
Jiang Y., Liu Z., Zeng G. et al. Polyaniline-based adsorbents for removal of hexavalent chromium from aqueous solution: a mini review // Environ. Sci. Pollut. R. 2018. Vol. 25, Is. 7. P. 6158–6174. DOI: https://doi.org/10.1007/s11356-017-1188-3
Samadi A., Xie M., Li J. et al. Polyaniline-based adsorbents for aqueous pollutants removal: A review // Chem. Engineer. J. 2021. Vol. 418. P. 129425. DOI: https://doi.org/10.1016/j.cej.2021.129425
Makogon V., Nesterivs’ka S., German N., М. Yatsyshyn М. Synthesis of composites glauconite/polyaniline doped phosphatic acid and their properties // Visnyk Lviv Univ. Ser. Chem. 2019. Iss. 61 (2). P. 363‒372. DOI: https://doi.org/10.30970/vch.6002.363
Salem M. A. The role of polyaniline salts in the removal of direct blue from aqueous solution: A kinetic study // React. Funct. Polym. 2010. Vol. 70, Is.10. P. 707–714. DOI: https://doi.org/10.1016/j.reactfunctpolym.2010.07.001
Karthikeyan T., Rajgopal S., Miranda L. R. Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon // J. Hazard. Mater. 2005. Vol. 124, Is. 1-3. P. 192–199. DOI: https://doi.org/10.1016/j.jhazmat.2005.05.003
Sukhara A., Vereshchagin O., Yatsyshyn М. Synthesis and properties of the composites cellulose/polyaniline, citric acid doped // Visnyk Lviv Univ. Ser. Chem. 2018. Iss. 59 (2). P. 414–424. DOI: https://doi.org/10.1016/j.progpolymsci.2011.04.001
Nesterivs’ka S., Makogon V., Yatsyshyn М. et al.Adsorption properties of glauconite/polyaniline-phosphate acid composites with regard to Cr(VI) acid // Visnyk Lviv Univ. Ser. Chem. 2020. Iss. 61 (2). P. 363‒372. DOI: http://dx.doi.org/10.30970/vch.6102.363
DOI: http://dx.doi.org/10.30970/vch.6301.289
Посилання
- Поки немає зовнішніх посилань.