CИНТЕЗ І АНТИПРОЛІФЕРАТИВНА АКТИВНІСТЬ 3-АРИЛ-5-{[(1- АРИЛ-1Н-ТЕТРАЗОЛ-5-ІЛ)ТІО]МЕТИЛ}-1,2,4-ОКСАДІАЗОЛІВ

M. Tupychak, N. Pokhodylo

Анотація


Синтезовано чимало нових 3-арил-5-{[(1-арил-1Н-тетразол-5-іл)тіо]метил}-1,2,4-оксадіазолів та досліджено їх антипроліферативну активність на 60 лініях ракових клітин. Вибрані сполуки проявили невисоку активність, що свідчить про необхідність їх значної хімічної модифікації задля відкриття активних агентів.

 

Ключові слова: тетразоли, 1,2,4-оксадіазоли, антипроліферативна активність, рак.


Повний текст:

PDF

Посилання


Agents Chemother. 1974. Vol. 6, No. 2. P. 177–182. DOI: https://doi.org/10.1128/AAC.6.2.177

Kaiser G. V., Marvin G., Webber J. A. Cefamandole: A Review of Chemistry and Microbiology // J. Infect. Dis. 1978. Vol. 137. P. 10–16. http://www.jstor.org/stable/30108949

Kucers' The Use of Antibiotics Sixth Edition: A Clinical Review of Antibacterial, Antifungal and Antiviral Drugs / M Lindsay Grayson, Suzanne M Crowe, James S McCarthy, John Mills, Johan W Mouton, S Ragnar Norrby, David L Paterson, Michael A Pfaller. CRC Press, 2010. 3223 p.

Park G. H., Kim S., Kim M. S. et al. The Association Between Cephalosporin and Hypoprothrombinemia: A Systematic Review and Meta-Analysis // Int. J. Environ. Res. Public Health. 2019. Vol. 16, No. 20. P. 3937. DOI: https://doi.org/10.3390/ijerph16203937

Thotla K., Noole V.G., Kedika B. et al. Synthesis of 5-{[(1-Aryl-1H-1,2,3-triazol-4-yl)methyl]sulfanyl}-1-phenyl-1H-tetrazoles // Russ. J. Org. Chem. 2020. Vol. 56. P.1077–1081. DOI: https://doi.org/10.1134/S1070428020060172

Chaban T. I., Foliush V. T., Ogurtsov V. V. et al. Synthesis, Anti-Inflammatory Properties and Molecular Docking of 2-(5-Aryltetrazol-2-yl)-and 2-(1H-Tetrazol-5-ylsulphanyl)-N-Thiazol-2-ylacetamides // Russ. J. Bioorg. Chem. 2021. Vol. 47. P. 889–895. DOI: https://doi.org/10.1134/S1068162021040051

He Y. W., Cao L. H., Zhang J. B. et al. Synthesis and bioactivity of 5-(1-aryl-1H-tetrazol-5-ylsulfanylmethyl)-N-xylopyranosyl-1,3,4-oxa(thia)diazol-2-amines // Carbohydr. Res. 2011. Vol. 346, No. 5. P.551–559. DOI: https://doi.org/10.1016/j.carres.2011.01.010

Rosocha Gr., Rosocha, Y., Batey Gr. еt al. New process to make nonnucleosidal reverse transcriptase inhibitors (NNRTI) for the treatment of HIV. WO 2015015240.

Slyvka Yu. I. Pokhodylo N. T., Myskiv M. G. Copper(I) π-complexes with allyl substituted 1-aryl-1H-tetrazole-5-thiols: synthesis and their structural features // Vopr. Khimii Khimicheskoi Tekhnologii. 2019. No. 2. P. 30–38. DOI: https://doi.org/10.32434/0321-4095-2019-123-2-30-38

Slyvka Y. Goreshnik E., Veryasov G. et al. The novel copper(I) π,σ-complexes with 1-(aryl)-5-(allylthio)-1H-tetrazoles: Synthesis, structure characterization, DFT-calculation and third-order nonlinear optics // J. Coord. Chem. 2019. Vol. 72, No. 5–7. P. 1049–1063. DOI: https://doi.org/10.1080/00958972.2019.1580699

Slyvka Yu. I., Fedorchuk A. A., Pokhodylo N. T. et al. A novel copper(I) sulfamate p-complex based on the 5-(allylthio)-1-(3,5-dimethylphenyl)-1H-tetrazole ligand: Alternating-current electrochemical crystallization, DFT calculations, structural and NLO properties studies // Polyhedron. 2018. Vol. 147. P. 86–93. DOI: https://doi.org/10.1016/j.poly.2018.03.015

Slyvka Y., Goreshnik E., Pokhodylo N. et al. Two Related Copper(I) π-Complexes Based on 2-Allyl-5-(2-pyridyl)-2H-tetrazole Ligand: Synthesis and Structure of [Cu(2-apyt)NO3] and [Cu(2-apyt)(H2O)](BF4) Compounds // Acta Chim. Slov. 2016. Vol. 63, No 2. P. 399–405. DOI: http://dx.doi.org/10.17344/acsi.2016.2486

Slyvka Y., Pavlyuk O., Pokhodylo N. et al. First Silver(I) p-Complexes with tetrazole allyl derivatives. Synthesis and Crystal Structure of [Ag2(C10H10N4S)2(H2O)2](BF4)2 and [Ag(C10H9ClN4S)(NO3)] p-Compounds (C10H10N4S and C10H9ClN4S – 5-(Allylthio)-1-phenyl- and 5-(Allylthio)-1-(4-chlorophenyl)-1H-tetrazole) // Acta Chim. Slov. 2011. Vol. 58, No. 1. P. 134–138.

Pokhodylo N. T., Savka R. D., Shyyka O. Y. et al. One pot CuAAC synthesis of (1H-1,2,3-triazol-1-yl)methyl-1,3,4/1,2,4-oxadiazoles starting from available chloromethyl-1,3,4/1,2,4-oxadiazoles // J. Heterocycl. Chem. 2020. Vol. 57, No. 7. P. 2969–2976. DOI: https://doi.org/10.1002/jhet.4008

Durust Y., Karakus H., Kaiser M., et al., Synthesis and anti-protozoal activity of novel dihydropyrrolo[3,4-d][1,2,3]triazoles // Eur. J. Med. Chem. 2012. Vol. 48. P. 296–304. DOI: https://doi.org/10.1016/j.ejmech.2011.12.028

Boyd M. R., Paull K. D. Some practical considerations and applications of the National Cancer Institute in vitro anticancer drug discovery screen. Drug Dev. Res. 1995. Vol. 34. P. 91–109.

Askerov R. K., Maharramov A. M., Khalilov A. N. et al. Crystal structure and Hirshfeld surface analysis of 1-(2-fluorophenyl)-1H-tetrazole-5 (4H)-thione // Acta Crystallogr. E: Crystallogr. Commun. 2020. Vol. 76, No. 7. P. 1007–1011. DOI: https://doi.org/10.1107/S2056989020007033

Melnikova Y. V., Myznikov L. V., Dogadina A. V. et al. Reactions of dimethyl 2-chloroethynylphosphonate with 1-substituted 5-oxo-1 H-1, 2, 3, 4-tetrazoles // Russ. J. Gen. Chem. 2014. Vol. 84, No. 11. P. 2160–2166. DOI: http://dx.doi.org/10.1134/S107036321411019X

Mohammadi M. K., Khoshnavazi R., Geravand S. et al. Synthesis, crystal structure and Hirshfeld surface analysis of a new 0D nanostructured [{Ar-Cl) tetra-azo-S} 2Hg] coordination supramolecular compound derived from phenyl isothiocyanate ligand // J. Coord. Chem. 2019. Vol. 72, No. 10. P. 1671–1682. DOI: https://doi.org/10.1080/00958972.2019.1613531

Shaw-Reid C. A., Miller M. D., Hazuda D. J. et al. Preparation of tetrazolyl derivatives as HIV reverse transcriptase inhibitors. WO 2005115147 A2 20051208.




DOI: http://dx.doi.org/10.30970/vch.6301.245

Посилання

  • Поки немає зовнішніх посилань.