СОРБЦІЯ Yb(III) З ВОДНИХ РОЗЧИНІВ НА Na-ФОРМІ КЛИНОПТИЛОЛІТУ
Анотація
Вивчено сорбційні властивості Na-форми закарпатського клиноптилоліту стосовно слідових кількостей Yb(III) у динамічних умовах. Визначено оптимальні умови сорбції Yb(III) залежно від рН та концентрації розчину, термічної обробки сорбенту, впливу поширених іонів вод. Сорбційна ємність Na-форми клиноптилоліту щодо Yb(III) становить 8 100 мкг/г. Найкращим десорбентом Yb(III) є 1 М KCl, підкислений розчином HCl до рН 4,0, який забезпечує практично повне вилучення Ітербію. Розроблено методику концентрування слідових кількостей Yb(III) з водних розчинів у режимі твердофазової екстракції з наступним їх визначенням спектрофотометричним методом, який ґрунтується на взаємодії з арсеназо ІІІ.
Ключові слова: сорбція, твердофазова екстракція, ітербій, Na-клиноптилоліт.
Повний текст:
PDFПосилання
Yao N. Y., Potter A. C., Potirniche I.-D., Vishwanath A. Discrete Time Crystals: Rigidity, Criticality and Realizations // Phys. Rev. Lett. 2017. Vol. 118 (3), 030401. DOI: https://doi.org/10.1103/PhysRevLett.118.030401
Hu B., He M., Chen B., Jiang Z. Separation Preconcentration techniques for rare earth elements analysis // Physical Sciences Reviews. 2016. Vol. 1, No. 10:56. DOI: https://doi.org/10.1515/psr-2016-0056
Tan X., Ren X., Chen C., Wang X. Analytical approaches to the speciation of lanthanides at solid-water interfaces // Trend. Anal. Chem. 2014. Vol. 61. P. 107–132. DOI: https://doi.org/10.1016/j.trac.2014.06.010
Fisher A., Kara D. Determination of rare earth elements in natural water samples-A review of sample separation, preconcentration and direct methodologies // Anal. Chim. Acta. 2016. Vol. 935. P. 1–9. DOI: https://doi.org/10.1016/j.aca.2016.05.052
Hassan J., Zari N., Tabar-Heydar K. Determination of Rare Earth Elements in Environmental Samples by Solid Phase Extraction ICP OES // J. Anal. Chem. 2016. Vol. 71. P. 365–371. DOI: https://doi.org/10.1134/S1061934816020052
Kavosi A., Faridbod F., Ganjali M. R. Solid phase extraction of some lanthanide ions by functionalized SBA-15 from environmental samples // Int. J. Environ. Res. 2015. Vol. 9. P. 247–254. DOI: https://doi.org/10.22059/IJER.2015.894
Cho J., Chung K. W., Choi M. S., Kim H. J. Analysis of rare earth elements in seawater by inductively coupled plasma mass spectrometry after pre-concentration using TSK™-HD-MW-CNTs (highly dispersive multi-walled carbon nanotubes) // Talanta. 2012. Vol. 99. P. 369–374. DOI: https://doi.org/10.1016/j.talanta.2012.05.066
Yan P., He M., Chen B., Hu B. Fast preconcentration of trace rare earth elements from environmental samples by di(2-ethylhexyl)phosphoric acid grafted magnetic nanoparticles followed by inductively coupled plasma mass spectrometry detection // Spectrochim. Acta, Part B. 2017. Vol. 136. P. 73–80. DOI: https://doi.org/10.1016/j.sab.2017.08.011
Manousi N., Gomez-Gomez B., Madrid Y. et al. Determination of rare earth elements by inductively coupled plasma – mass spectrometry after dispersive solid phase extraction with novel oxidized graphene oxide and optimization with response surface methodology and central composite design // Microchem. J. 2020. Vol. 152. P. 428–437. DOI: https://doi.org/10.1016/j.microc.2019.104428
Zhang Y., Zhong C., Zhang Q. et al. Graphene oxide – TiO2 composite as novel adsorbent for preconcentration of heavy metals and rare earth element in environmental samples followed by on inductively coupled plasma optical emission spectrometry detection // RSC Adv. 2015. Vol. 5. P. 5996–6005. DOI: https://doi.org/10.1039/c4ra13333a
Karadaş C., Kara D. Preconcentration of rare earth elements using Amberlite XAD-4 modified with 2,6-Pyridinedicarboxaldehyde and their determination by inductively coupled plasma optical emission spectrometry // Water Air Soil Pollut. 2014. Vol. 225. Article 1972. DOI: https://doi.org/10.1007/s11270-014-1972-3
Zhao F., Repo E., Meng Y. et al. An EDTA-b-cyclodextrin material for the adsorption of rare earth elements and its application in preconcentration of rare earth elements in seawater // J. Colloid Interf. Sci. 2016. Vol. 465. P. 215–224. DOI: https://doi.org/10.1016/j.jcis.2015.11.069
Moshoeshoe M., Nadiye-Tabbiruka M. S., Obuseng V. A review of the chemistry, structure, properties and applications of zeolites // Am. J. Mater. Sci. 2017. Vol. 7, No. 5. P. 196–221. DOI: https://doi.org/10.5923/j.materials.20170705.12
Ezzeddine Z., Batonneau-Gener I., Pouilloux Y. et al. Synthetic NaX zeolite as a very efficient heavy metals sorbent in bath and dynamic conditions // Colloids Interfaces. 2018. Vol. 2, No. 22. DOI: https://doi.org/10.3390/colloids2020022
Davis M. E. Ordered porous materials for emerging applications // Nature. 2002. Vol. 417. P. 813–821. DOI: https://doi.org/10.1038/nature00785
Baile P., Fernández E., Vidal L., Canals A. Zeolites and zeolite-based materials in extraction and microextraction techniques // Analyst. 2019. Vol.144. P. 366–387. DOI: https://doi.org/10.1039/С8AN01194J
Stashkiv O. D., Vasylechko V. O., Patsay I. O. et al. Preconcentration of the Gd(III) on Transcarpathian clinoptilolite // Visnyk Lviv Univ. Ser. Chem. 2018. Vol. 59. Pt. 1. P. 196–209 (in Ukrainian). DOI: https://doi.org/10.30970/vch.5901.196
Vasylechko V. O., Gryshchouk G. V., Zakordonskiy V. P. et al. A solid-phase extraction method using Transcarpathian clinoptilolite for preconcentration of trace amounts of terbium in water samples // Chem. Central J. 2015. Vol. 9, No. 1:45. 7 p. DOI: https://doi.org/10.1186/s13065-015-0118-z
Vasylechko V. O., Gryshchouk G. V., Zakordonskiy V. P. et al. Sorption of terbium on Transcarpathian clinoptilolite // Micropor. Mesopor. Mat. 2013. Vol. 167. P.155–161. DOI: https://doi.org/10.1016/j.micromeso.2012.08.021
Vasylechko V. O., Stechynska E. T., Stashkiv O. D. et al. Sorption of Neodymium and Gadolinium on Transcarpathian Clinoptilolite // Acta Physica Polonica A. 2018. Vol. 133, No. 4. P. 794–797. DOI: https://doi.org/10.12693/APhysPolA.133.794
Stashkiv O., Vasylechko V., Patsay I., Gryshchouk G. Preconcentration and determination of the Yb(III) using Transcarpathian clinoptilolite // Visnyk Lviv Univ. Ser. Chem. 2019. Vol. 60, Pt. 1. P. 179–190 (in Ukrainian). DOI: https://doi.org/10.30970/vch.6001.179
Stashkiv O., Vasylechko V., Gryshchouk G., Patsay I. Solid Phase Extraction of Trace Amounts of Praseodymium Using Transcarpathian Clinoptilolite // Colloids and Interfaces. 2019. Vol. 3, Iss. 1:27. DOI: https://doi.org/10.3390/colloids3010027
Stechynska E. T., Vasylechko V., Gryshchouk G., Patsay I. Preconcentration of Lutetium from Aqueous Solution by Transcarpathian Clinoptilolite // Acta Chim. Slov. 2020. Vol. 67. P. 105–112. DOI: http://dx.doi.org/10.17344/acsi.2019.5233
Vasylechko V. O., Gryshchouk G. V., Zakordonskiy V. P. et al. Sorption-luminescence method for determination of terbium using Transcarpathian clinoptilolite // Talanta. 2017. Vol. 174. P. 486–492. DOI: https://doi.org/10.1016/j.talanta.2017.06.052
Vasylechko V. O., Gryshchouk G. V., Kalychak Ya. M., Vasylechko L. O. et al. Sorption-luminescence method for determination of europium using acid-modified clinoptilolite // Appl. Nanosci. 2019. Vol. 9. P. 1145–1153. DOI: https://doi.org/10.1007/s13204-018-0878-6
Stashkiv O. D., Volodymyr O. Vasylechko V. O., Gamernyk R. V. et al. Luminescence-based determination of ytterbium(III) and morin in solution using sorption by transcarpathian clinoptilolite // Mol. Cryst. Liq. Cryst. 2021. Vol. 719, No. 1. P. 124–139. DOI: https://doi.org/10.1080/15421406.2020.1862468
Stashkiv O., Vasylechko V., Gryshchouk G. Sorption of gadolinium on acid-modified clinoptilolite // Voprosy khimii i khimicheskoi tekhnologii. 2019. No. 6. P. 197–204. DOI: https://doi.org/10.32434/0321-4095-2019-127-6-197-204
Vyviurska O., Vasylechko V., Gryshchouk G., Kalychak Ya. et al. Use of Na-modified clinoptilolite for the removal of terbium ions // Chem. Met. Alloys. 2012. Vol. 5. P. 136–141.
Vasylechko V. O., Gryshchouk G. V., Lebedynets L. O. et al. Adsorption of cadmium on acid-modified Transcarpathian clinoptilolite // Micropor. Mesopor. Mat. 2003. Vol. 60. P. 183–196. DOI: https://doi.org/10.1016/s1387-1811(03)00376-7
Vasylechko V. O., Korpalo Ch. B., Gryshchouk G. V. Acid – Modified Clinoptilolite – Effective Sorbent of Sc(III) from Aqueous Solutions // Solid State Phenom. 2015. Vol. 230. P. 8–13. DOI: https://doi.org/10.4028/www.scientific.net/ssp.230.8 23
Vasylechko V. O., Cryshchouk G. V., Lebedynets L. O. et al. Adsorption of Copper on Transcarpathian Сlinoptilolite // Adsorp. Sci. Technol. 1999. Vol. 17, No. 2. P. 125–134.
Tarasevich Y. I., Polyakov V. E. Penchov V. Z. et al. Ion-exchange qualities and structural features of clinoptilolites of various deposits. Khim Technol Vody. 1991. Vol. 13, No. 2. P. 132–140 (in Russian).
Tarasevich Y. I., Polyakova I. G., Polyakov V. E. Microcalorimetric Study of the Interaction between Water and Cation-Substituted Clinoptilolites // Colloids J. 2003. Vol. 65. P. 493–499. DOI: https://doi.org/10.1023/A:1025133221812
Zakordonskiy V., Vasylechko V., Staszczuk P., Gryshchouk G. Water thermodesorbtion and adsorbtion properties of the Transcarpathian zeolites // Visnyk Lviv Univ. Ser. Chem. 2004. Iss. 44. P. 247–256 (in Ukrainian).
Tsytsyshvili G. V., Andronikashvili T. G., Kirov G. I. et al. Natural zeolites. Moscow: Himiia, 1985. 284 p. (in Russian).
Tomazović B., Ćeranić T., Sijarić G. The properties of the NH4-clinoptilolite. Part 1 // Zeolites. 1996. Vol. 16. P. 301–308.
DOI: http://dx.doi.org/10.30970/vch.6301.181
Посилання
- Поки немає зовнішніх посилань.