КОНЦЕНТРУВАННЯ КОБАЛЬТУ З ВИКОРИСТАННЯМ МОДИФІКОВАНИХ ФОРМ ЗАКАРПАТСЬКОГО КЛИНОПТИЛОЛІТУ

H. Sak, V. Vasylechko, G. Gryshchouk, Ya. Kalychak, Ya. Lomnytska

Анотація


Вивчено сорбційні властивості Na- та Н-форм закарпатського клиноптилоліту стосовно слідових кількостей іонів Со(ІІ) у динамічних умовах. Найефективнішою кислотою-модифікатором виявилась 0,5 МHNO3. В оптимальних умовах сорбційна ємність Na- та Н- клиноптилоліту становить 3,25 і 2,85 мг/г, відповідно. Досліджено вплив рН розчину та температури попередньої обробки зразків сорбентів на сорбційну ємність модифікованих форм клиноптилоліту. Найкращими десорбентами Со(ІІ) є 4,5 М HNO3 та1 М NaCl, підкислений розчином НCl до рН 4, які забезпечують практично повне вилучення Кобальту з Na- та Н-клиноптилоліту. Розроблено методики концентрування слідових кількостей Со з водних розчинів у режимі твердофазової екстракції з подальшим визначенням цього важкого металу атомно-абсорбційним методом.

 

Ключові слова: сорбція, твердофазова екстракція, Кобальт, Na-клиноптилоліт, Н-клиноптилоліт.


Повний текст:

PDF

Посилання


Nabivanets B. Y., Osadchyi V. I., Osadcha N. M., Nabivanets Yu. B. Analytical chemistry of surface water. Kyiv: Naukova Dumka, 2007 (in Ukrainian).

Perepelytsia O. P. Ecochemistry and endoecology of elements: Environmental protection guide. Кyiv: NUHТ, Ecohim, 2004 (in Ukrainian).

State sanitary rules and rules “Hygienic requirements for the driver of drinking, recognize-czech for housing”. MOH of Ukraine. Order of May 12. 2010. No. 400 (in Ukrainian).

Tabenska T. V., Zaporozhets O. A., Boryak A. K., Voznenko I. V., Zhukova K. M. Sorption of cobalt (III) by silica gel modified with 1-nitroso-2-naphthol and its analytical application // Ukr. Chem J. 2000. Vol. 66, No. 1. P. 41–44 (in Ukrainian).

Pilipenko A. T., Matsibura G. S., Ryabushko V. O., Prishchep N. N. Sorption preconcentration of heavy metal ions from waters on modified silicas with their following determination by atomic absorption and photometric methods // Chemistry and Technology of Water. 1992. Vol. 14, No. 11. P. 813–818 (in Ukrainian).

Doroshenko D. V., Pylypenko I. V., Kornilovych B. Y. Sorption of cobalt and methylene blue ions by montmorillonite-silica nanocomposites // Research Bulletin of the National Technical University of Ukraine “Kyiv Polytechnic Institute”. Chemical Technology. 2018. Vol. 3. P. 99–105 (in Ukrainian). DOI: https://doi.org/10.20535/1810-0546.2018.3.126410

Lysenko E. N., Nabivanets B. I., Sukhan V. V., Gorlach V. F. Sorption photometric determination of cobalt in the form of thiocyanate complexes using polyurethane foam // Chemistry and Technology of Water. 1997. Vol. 19, No. P. 254–258 (in Ukrainian).

Al-Shahrani H., Alakhras F., Al-Abbad E. et al. Sorption of Cobalt (II) Ions from Aqueous Solutions Using Chemically Modified Chitosan // Global NEST Journal. 2018. Vol. 20, No. 3. P. 182–189. DOI: https://doi.org/10.30955/gnj.002804

Lakiza N. V., Neudachina L. K., Yatluk Yu. G. et al. New silicoorganic sorbents for the sorbtion of the metals cations // Analytics and control. 2005. Vol. 9, No. 4. P. 391–398 (in Russian).

Kakaei S., Khameneh E. S., Hosseini M. H., Moharreri M. M. A modified ionic liquid clay to remove heavy metals from water: investigating its catalytic activity // Int. J. Environ Sci. Technol. 2019. DOI: https://doi.org/10.1007/s13762-019-02527-9

Zhdanyuk N. V., Kovalchuk I. A., Kornilovych B. Yu. Sorption of uranium (VI) and cobalt (II) ions by iron-containing nanocomposites based an palygorskite // Chemistry, physics and technology of surface. 2019. Vol. 10, No. 1. P 48–58
(in Ukrainian). DOI: https://doi.org/10.15407/hftp10.01.048

Yaroshenko K., Bartnik E., Kuzenko S. et al. Features of cobalt-60 and manganese-54 sorption kinetics on natural and modified sorbents from multicomponent solutions // Collected scientific paperes institute of environmental geochemistry. 2016. Vol. 25. P. 64–73 (in Ukrainian).

Tran H.-L., Kuo M.-S., Yang W-D., Huang Y-C. Study on Modification of NaX Zeolites: The Cobalt (II)-Exchange Kinetics and Surface Property Changes under Thermal Treatment // Journal of Chemistry. 2016. ID 1789680. 7 p. DOI: http://dx.doi.org/10.1155/2016/1789680

Tarasevich Yu. I., Krysenko D. A., Polyakov V. E., Aksenenko E. V. Heats of ion exchange of transition metals on the Na-form of clinoptilolite // Journal of Physical Chemistry. 2008. Vol. 82, No. 9. P. 1692–1699.

Raritskaya T. L., Raskola L. A., Kiose T. A. et al. Adsorption of 3d metal ions by natural and acid-modified clinoptilolite // Visnyk ONU. 2010. Vol. 15, No. 3. P. 85–91 (in Russian).

Starosta V. I., Bobonich F. M., Balog I. S. Effect of Change in Sign of the Selectivity in the Ion-Exchange Adsorption of Cobalt by Mordenite and Clinoptilolite // Theoretical and Experimental Chemistry. 2001. Vol. 37, No. 5. P. 324–328.

Foldesova M., Hudec P., Dillinger P. Chemically modified zeolites: Surfaces and interaction with Cs and Co // Petroleum & Coal. 2007. Vol. 49, No. 2. P. 60–63.

Godelitsas Ath., Armbruster Th. HEU-type zeolites modified by transition elements and lead // Microporous and Mesoporous Materials. 2013. Vol. 61. P. 3–24. DOI: https://doi.org/10.1016/S1387-1811(03)00352-4

Erdem E., Karapinar N., Donat R. The removal of heavy metal cations by natural zeolites // Journal of Colloid and Interface Science. 2004. Vol. 280. P. 309–31. DOI: https://doi.org/10.1016/j.jcis.2004.08.028

Belova T. P., Ratchina T. I., Gavrilenko Yu. S. Sorption of copper, nickel and cobalt by natural zeolite from aqueous solutions // Mountain Information and Analytical Bulletin (Scientific and Technical Journal). 2014. No. 12. P. 76–80 (in Russian).

Fosso-Kankeu E., Mulaba-Bafubiandi A. F., Modipe J. T., Maroga E. S. Regeneration and Reuse of Clinoptilolite for Recovery of Copper and Cobalt from Aqueous Solutions // International Conference on Mining, Mineral Processing and Metallurgical Engineering. 2013 Johannesburg (South Africa). P. 150–153.

Vatin N. I., Chechevichkin V. N., Chechevichkin A. V., Shilova Y. S. Possible applications of clinoptilolites for natural water purification // Magazine of Civil Engineering. 2013. Vol. 37, No. 2. P. 81–88 (in Russian). DOI: https://doi.org/10.5862/MCE.37.12

Purnomo C. W., Lenora B., Budhijanto W., Hinode H. Sorption and Ion Exchange Behaviour of Natural Zeolite Packing // Makara J. Technol. 2017. Vol. 21, No. 1. P. 33–36. DOI: https://doi.org/10.7454/mst.v21i1.3077

Mamba B. B., Nyembe D. W., Mulaba-Bafubiandi A. F. Removal of copper and cobalt from aqueous solutions using natural clinoptilolite // Water SA. 2009. Vol. 35, No. 3. P. 307–314.

Mamba B. B., Nyembe, D. W., Mulaba-Bafubiandi A. F. The effect of conditioning with NaCl, KCl and HCl on the performance of natural clinoptilolite's removal efficiency of Cu2+ and Co2+ from Co/Cu synthetic solutions // Water SA. 2010. Vol. 36, No. 4. P. 437–444.

Vasylechko V., Gryshchouk G., Rubay G. et al. Transcarpathian clinoptilolite as a sorbent for the removal of trace amounts of cobalt (II) by solid phase extraction method // Visnyk Lviv Univ. Ser. Chem. 2017. Vol. 58, Pt. 1. P. 198–208 (in Ukrainian).

Vasylechko V. O., Gryshchouk G. V., Lebedynets L. O. et al. Adsorption of Copper on Transcarpathian Сlinoptilolite // Adsorp. Sci. Technol. 1999. Vol. 17, No. 2. P. 125–134.

Tarasevich Y. I., Polyakov V. E., Penchov V. Z. et al. Ion-exchange qualities and structural features of clinoptilolites of various deposits. Khim Technol Vody. 1991. Vol. 13, No. 2. P. 132–140 (in Russian).

Vasylechko V. O., Gryshchouk G. V., Lebedynets L. O. et al. Adsorption of cadmium on acid-modified Transcarpathian clinoptilolite // Micropor. Mesopor. Mat. 2003. Vol. 60. P. 183–196. DOI: https://doi.org/10.1016/s1387-1811(03)00376-7

Tarasevich U. I., Polyakova I. G., Polyakov V. E. Microcalorimetric study of the interaction of water with cation-substituted forms of clinoptilolite // Journal of Colloid. 2003. Vol. 65, No. 4. P. 535–542 (in Russian).

Vyviurska O., Vasylechko V., Gryshchouk G. et al. Use of Na-modified clinoptilolite for the removal of terbium ions from aqueous solutions // Chemistry of metals and alloys. 2012. Vol. 5, No. 3–4. P. 136–141.

Vasylechko V. O., Gryshchouk G. V., Kuz’ma Yu. B. et al. Adsorption of Copper on Transcarpathian Modernite // Adsorp. Sci. Technol. 1996. Vol. 14, No. 5. P. 267–277.

Marchenko Z. Photometric determination of elements. Moskow: Miz, 1971 (in Russian).

SilvaM., Lecus A., Lin Y., Corrao J. Tailoring Natural Zeolites by Acid Treatments // Journal of Materials Science and Chemical Engineering. 2019. Vol. 7, No. 2. P. 26–37. DOI: https://doi.org/10.4236/msce.2019.72003

Vasylechko V., Gryshchouk G., Nyznyk O., Kalychak Ya. Acid-modified Transcarpathian clinoptilolite as a sorbent for the elimination of trace amounts of europium (III) // Visnyk Lviv Univ. Ser. Chem. 2015. Vol. 56, Pt. 1. P. 192–202 (in Ukrainian).

Korkuna O., Vrublevska T., Reschetilowski W. Study of Pd (II) Sorption from Aqueous Solutions on the Natural and Acid-Modified Transcarpathian Clinoptilolite // Polish journal of chemistry. 2008. Vol. 82, No. 1–2. P. 431–442.

Vasylechko V. O., Gryshchouk G. V., Kaminska M. I., Stel’makhovych B. M. A solid-phase extraction method using acid-modified Transcarpathian clinoptilolite for preconcentration of trace amounts of lead in water samples // Applied Nanoscience. 2019. Vol. 9. P. 1057–1065. DOI: https://doi.org/10.1007/s13204-018-0858-x

Tsitsishvili G. V., Andronikashvili T. G., Kirov G. I., Filizova L. D. Natural zeolites. Moscow : Chemistry, 1985 (in Russian).

Baes C. F., Mesmer R. S. The Hydrolysis of Cations. John Wiley & Sons. New York, London, Sydney, Toronto, 1976.

Zakordonskiy V., Vasylechko V., Stashchuk P., Gryshchouk G. Water thermo- desorbtion and adsorption properties of the Transcarpathian Zeolites // Visnyk Lviv Univ. Ser. Chem. 2004. Vol. 44. P. 247–256 (in Ukrainian).

Tomazovic B., Ceranic T., Sijaric G. The properties of the NH4-clinoptilolite. Part 1 // Zeolites. 1996. Vol. 16. P. 301–308.

Tomazovic B., Ceranic T., Sijaric G. The properties of the NH4-clinoptilolite. Part 2 // Zeolites. 1996. Vol. 16. P. 309–312.




DOI: http://dx.doi.org/10.30970/vch.6101.152

Посилання

  • Поки немає зовнішніх посилань.