INTELLIGENT MONITORING FOR DISTRIBUTED SYSTEMS: LEVERAGING MACHINE LEARNING TO DETECT AND ADAPT TO EVOLVING CYBER THREATS
Анотація
Повний текст:
PDF (English)Посилання
Chen K., Huang C., He J. Fault detection, classification and location for transmission lines and distribution systems: a review on the methods. – High Voltage, 2016. – URL: https://doi.org/10.1049/hve.2016.0005. 4 Karpiuk R. 2. Verdier G., Ferreira A. Adaptive Mahalanobis Distance and k-Nearest Neighbor Rule for Fault Detection in Semiconductor Manufacturing. – IEEE Transactions on Semiconductor Manufacturing, 2010. – URL: https://doi.org/10.1109/TSM.2010.2096538. 3. Tian J., Morillo C., Azarian M.H., Pecht M. Motor Bearing Fault Detection Using Spectral Kurtosis-Based Feature Extraction Coupled With K-Nearest Neighbor Distance Analysis. – IEEE Transactions on Industrial Electronics, 2015. – URL: https://doi.org/10.1109/TIE.2015.2478397. 4. Safizadeh M.S., Latifi S.K. Using multi-sensor data fusion for vibration fault diagnosis of rolling element bearings by accelerometer and load cell. – Information Fusion, 2013. – URL: https://doi.org/10.1016/j.inffus.2013.10.002.
DOI: http://dx.doi.org/10.30970/vam.2024.33.12791
Посилання
- Поки немає зовнішніх посилань.
