FINITE ELEMENT ANALYSIS OF LORD-SHULMAN THERMOELASTICITY TIME-DEPENDENT PROBLEM
Анотація
Повний текст:
PDF (English)Посилання
1.Bathe K.J. Finite Element Procedures. 2nd ed. / K. J. Bathe. – Watertown: K.J. Bathe,
2014. –1043p.
2. Eshkofti K. A gradient-enhanced physics-informed neural network (gPINN) scheme for
the coupled non-fickian/non-fourierian diffusion-thermoelasticity analysis: A novel gPINN
structure/K. Eshkofti, S. M. Hosseini// Engineering Applications of Artificial Intelligence.
–2023. –Vol.126. –P.106908.
3. Eslami M.R. Theory of Elasticity and Thermal Stresses: Explanations, Problems and
Solutions, vol. 197. in Solid Mechanics and Its Applications. / M. R. Eslami, R. B. Hetnarki,
J. Ignaczak, N. Noda, N. Sumi, and Y. Tanigawa . – Dordrecht: Springer Netherlands, 2013.
–789p.
4. Hetnarski R.B. Thermal Stresses—Advanced Theory and Applications, vol. 158. in Solid
Mechanics and Its Applications. 2nd ed. / R. B. Hetnarki, M. R. Eslami. – Cham: Springer
International Publishing, 2019. –636p.
5. Hughes T. J. R. The Finite Element Method. Linear Static and Dynamic Finite Element
Analysis / T. J. R. Hughes //Dover Publications, 2000. –704p.
6. Jani S. M. H. Generalized thermo-electro-elasticity of a piezoelectric disk using Lord-
Shulman theory/S. M. H. Jani, Y. Kiani// Journal of Thermal Stresses. –2020. –Vol.43.
–P.473–488.
7. Jani S. M. H. Generalized piezothermoelasticity of hollow spheres under thermal shock using
Lord–Shulman theory/S. M. H. Jani, Y. Kiani, Y. Tadi Beni// Journal of Thermal Stresses.
–2024. –Vol.47. –P.347–362.
8. Kapuria S. Thermoelectroelastic shock waves in piezoelastic media: An enriched finite element
solution based on generalized piezothermoelasticity/S. Kapuria, A. Kumar// Mechanics
of Advanced Materials and Structures. –2021. –Vol.48. –P.2267–2279.
9. Kiani Y. Nonlinear generalized thermoelasticity of an isotropic layer based on Lord-Shulman
theory /Y. Kiani, M. R. Eslami // European Journal of Mechanics - A/Solids. –2017. –
Vol.61. –P.245-253.
10. Kumar A. Wave packet enriched finite element for generalized thermoelasticity theories for
thermal shock wave problems /A. Kumar, S. Kapuria // Journal of Thermal Stresses. –2018.
–Vol.41. –P.1080-1099.
11. Lord H. W. A generalized dynamical theory of thermoelasticity /H. W. Lord, Y. Shulman
// Journal of the Mechanics and Physics of Solids. –1967. –Vol.15. –P.299-309.
12. Stelmashchuk V. Numerical solution of Lord-Shulman thermopiezoelectricity dynamical
problem / V. Stelmashchuk, H. Shynkarenko // AIP Conf. Proc. – 2018. – Vol. 1922. –
040006. – P. 1-10.
13. Stelmashchuk V.V. Well-posedness of the Lord–Shulman variational problem of thermopiezoelectricity
/V. V. Stelmashchuk, H. A. Shynkarenko // Journal of Mathematical
Sciences. –2019. –Vol.238. –P.139-153.
14. Stelmashchuk V. Stability of hybrid time integration scheme for Lord–Shulman thermopiezoelectricity
/V. Stelmashchuk, H. Shynkarenko // Results in Applied Mathematics.
–2024. –Vol.23. –P.100467.
15. Sumi N. Solution for thermal and mechanical waves in a piezoelectric plate by the method
of characteristics /N. Sumi, F. Ashida // J. Thermal Stresses. –2003. –Vol.26. –P.1113-1123.
16. Wang Y.-Z. A unified generalized thermoelasticity solution for the transient thermal shock
problem /Y.-Z.Wang, X.-B. Zhang, X.-N. Song, // Acta Mech. –2012. –Vol.223. –P.735-743.
17. Zhao J. Thermoelastic wave propagation damping in a hollow FG-GPLRC cylinder with the
spinning motion / J. Zhao, P. Liang, R. Yang, Y. Zhang, M. A. Khadimallah, A. Ebtekar
// Thin-Walled Structures. –2022. –Vol.177. –P.109367.
DOI: http://dx.doi.org/10.30970/vam.2024.33.12374
Посилання
- Поки немає зовнішніх посилань.
