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ABSTRACT  

Background. Today, software is a critically important component of any information 
system. Its development requires significant resources and complex technical solutions, 
and the development of technologies is so rapid that not all concepts and definitions in 
the field of software are clearly formalized. This is especially true for the software 
functional state (SFS) throughout the software development life cycle (SDLC), as 
predicting all possible states is virtually impossible due to the dynamic nature of 
environments, changing requirements, component interactions, and the behavior of 
project participants. This creates a challenge for formalizing, analyzing, forecasting, 
monitoring, and managing these states. 

Materials and Methods. The definition and formalization of SFSs encompass concepts 
from state theory in computer science, as well as quality models from international standards 
ISO/IEC 25010:2011 and the State Standard of Ukraine ISO/IEC 9126-1:2005. The defined 
concepts of SFS and SFS during SDLC are formalized mathematically, which allows building 
dynamic models of state evolution during SDLC based on the stochastic transition function. 
To build models, attributes such as functional compliance, reliability, vulnerability, testability, 
and others have been developed in combination with event-driven, finite-state machine, and 
state-driven models. Also presented are different types of SFS and their relationship with 
SDLC. 

Results and Discussion. The research results include the formalization of SFS, the 
development of evaluation metrics, and practical recommendations for SFS analytics at all 
stages of SDLC, which enable proactive control of the quality, reliability, security, and 
compliance of software systems. 

Conclusion. The formalization of the concept of SFSs, including their types, properties, 
and parameters, allowed for a reasonable connection to the SDLC phases. The proposed 
metrics and recommendations contribute to the development of SFS analytics, ensuring 
both the theoretical integrity of the approach and its practical applicability in the tasks of 
monitoring, analysis and predicting SFS. This methodology creates a new foundation for 
self-learning SDLC-oriented ecosystems in which SFSs are predicted, assessed and 
managed automatically in real-time. 

Keywords: software development life cycle, software functional state, functional 
suitability, software state prediction, software functional state analytics, 
software state characteristics 
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INTRODUCTION 

The SDLC is a system model that describes the sequence of processes for creating, 
implementing, and maintaining a software product [1]. Each phase [2] has its own goals, 
artefacts, and typical risks. The structure of SDLC phases may vary depending on the 
software development methodology and may include some stages [2]. An advanced 
comparison of the software development methodologies represented in [3].  

However, modern practice proves that these phases are not isolated: they are 
interconnected by data and knowledge flows. That is why analysis, forecasting, or 
continuous monitoring of SFS becomes a key condition for ensuring quality and security 
throughout the SDLC. The methodology determines not only the sequence of phases but 
also the transition mechanisms between them. It defines the methods of SFS monitoring, 
types of possible defects, and risk criteria. As a result, monitoring, analysis, and prediction 
of SFS become key mechanisms for ensuring quality, reliability, security, and providing 
context throughout the entire SDLC. 

Due to the demand for extension to the formal SFS definition, it is difficult to establish 
a universal model for assessment, diagnostics, prediction, quality management, and other 
analytics. In most standards [4-5], especially ISO/IEC 25010:2011 [6], quality is considered 
as a set of characteristics such as reliability, safety, functional suitability, efficiency and 
others, but no mechanism for transitioning between system states is defined, which leads 
to a gap between the process level and the functional level and its context of the SDLC 
model. 

Commonly, the SFS is understood as a set of parameters that describe the current 
behavior, performance and quality of the system relative to its objectives, resources, and 
environment at a given point in time [1]. This concept is key in building intelligent process 
monitoring systems, multi-agent SDLC control systems, and LLM-oriented systems, and its 
importance suggests that modern methodology must shift from a static understanding of 
processes to dynamic modelling of software states. However, modern quality standards, 
such as ISO/IEC 25010:2011, focus primarily on quality characteristics such as functional 
suitability, effectiveness, compatibility, reliability, security, availability, maintainability, and 
portability [6]. These models lack a formal definition of the system state and therefore 
cannot establish a general mechanism for assessing the current SFS or predicting its 
changes. 

The architecture of modern systems is becoming increasingly complex, ranging from 
microservices and multi-agent systems to distributed solutions running in the cloud or 
hybrid environments. Such systems typically involve continuous component changes, 
version updates, scaling, and load balancing, thus creating a dynamic state space [7]. Also, 
in modern development methodologies, especially DataOps or DevSecOps, continuous 
monitoring and security are based on automated metrics and predictive models [8]. Without 
a clear state formalization, it is difficult to build systems for degradation detection, fault 
prediction, or adaptive recovery. 

In the context of artificial intelligence and LLMs, a new type of software is emerging 
where a system's behavior is determined by dynamic knowledge, context, and learning 
outcomes. This requires describing the state not only at the code or process level, but also 
at the interaction level between knowledge, model, and context [9]. 

In recent years, scientific publications have been actively researching methods for 
modelling the behavior of software systems through SFS [10].  Model-based multi-objective 
optimization helps address complex trade-offs in software architecture quality attributes, 
guiding refactoring decisions and highlighting key research challenges and future directions 
[11].  

Existing quality models, stochastic SDLC frameworks [12], and performance 
monitoring methods are mainly designed for manually developed software systems, or at 
most, for development processes supported by partial code generation tools such as code 
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completion assistants or systems like Copilot. In such an environment, the behavior, 
architecture, and quality attributes of the software or other uncertainties [13] are largely 
determined by human-installed solutions, while automation tools play a supporting role. 
Therefore, the concept of software state in these models is often simplified to a set of 
observable technical characteristics or performance metrics, without explicitly including a 
generation environment for creating software artifacts. 

Modern development paradigms increasingly rely on partially or fully automated code 
generation, including LLMs, agent-based development pipelines, and adaptive DevSecOps 
workflows. In this environment, the behavior and quality of a software system are not 
merely the result of static design artifacts or performance metrics, but rather the result of 
dynamic interactions between generating models, clues, learned knowledge, configuration 
strategies, and the ever-changing SDLC environment. Existing stochastic SDLC models 
[12] and degradation or risk prediction methods do not explicitly model this context 
dependency and therefore lack the ability to represent software state as a function of the 
technical execution and generation context.  

Thus, there is a methodological gap between traditional state-based quality or risk 
models and the requirements of generative and agent-oriented software development. 
Existing methods cannot provide a single state representation that can simultaneously 
capture execution attributes, quality and risk characteristics, contextual dependencies, and 
semantics of SDLC stages, while supporting probabilistic predictive modeling, interstage 
thinking, and state transitions.  

Bridging this gap requires extending the concept of software state from static 
functions to context-dependent, multidimensional functional representations. Without 
such state representations, some important practical problems cannot be systematically 
solved. Especially in the early stages of the SDLC (such as requirements analysis or 
architecture design), when software artifacts are still partially or fully generated, it 
becomes impossible to reliably predict the transition from an unstable state to a failu re 
state. Similarly, it remains inappropriate to compare different SDLC strategies or 
generative development processes based on expected state trajectories rather than 
isolated metrics. Ultimately, because recovery, regeneration, and mitigation measures 
depend not only on technical metrics but also on the underlying build and execution 
environment, it is impossible to effectively reconcile DevSecOps with stateful or intelligent 
development processes. 

To address these issues, this paper proposes a unified abstraction of software 
functional states that covers the software development lifecycle phases and runtime 
execution, while explicitly considering context and generation dimensions. Furthermore, 
a probabilistic model of SFS evolution is proposed, which allows for prediction and inter-
stage reasoning, as well as a state classification framework validated through Monte 
Carlo simulations, demonstrating the separability and robustness of SFS under 
uncertainty. 

Therefore, the extended formalization of the SFS concept is a prerequisite for 
constructing the theoretical and applied foundation of software intelligent analysis and 
monitoring. It integrates methods such as systems analysis, artificial intelligence, ontology 
modelling, knowledge engineering, and other analytics. This concept lays the foundation 
for developing new SDLC models that ensure quality and security not only at the process 
level but also at the operational status level of software products with its context. 

MATERIALS AND METHODS 

It is important to emphasize that the proposed formal approach is not intended to 
replace the traditional SDLC or quality models for manually developing software systems. 
Instead, it extends them to modern development environments, where software artifacts 
are generated, in whole or in part, by automated agents, large language models (LLMs), 
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or hybrid human-machine workflows. In this environment, SFS cannot be fully 
characterized by artifact integrity or execution time metrics alone, because the 
fundamental determinants of system behavior are embedded in the knowledge that 
generates prompts and searches, configuration strategies, and the ever-changing SDLC 
context. 

The problem of determining the SFSs is one of the key ones in theoretical computer 
science and software systems engineering. It is related to the fact that modern software 
systems are highly complex and are being characterised by high dynamics, distribution, 
adaptability, and context dependence. Unlike hardware systems, where the state of 
additional physical parameters is determined, in software, it is formed through a set of 
variables that describe behavior, internal resources, calculation logic, and interaction with 
the environment. Also, there is a lot of contextual information throughout the entire SDLC. 

Existing stochastic SDLC models and degradation or risk prediction systems can 
successfully explain uncertainties in process execution or operational behavior. They 
typically assume that software artifacts are fixed or implicitly controlled by humans. 
Therefore, uncertainty is mainly modeled at the level of defect frequency, failure rate, or 
process delay. Conversely, in generative development, uncertainty permeates multiple 
levels, including the variability of generated code, semantic drift in requirement 
interpretation, and context-aware decision-making by autonomous agents. These factors 
exceed the representativeness of classic stochastic models, thus necessitating the 
introduction of context-dependent state function abstractions. 

Historical approaches to “state” description 
The initial conceptions of the SFS emerged within the context of automata theory, 

where a system was viewed as a deterministic or non-deterministic finite automaton. This 

model defines a system as a finite set of states: 𝑆 =  { 𝑠1, 𝑠2, . . . , 𝑠𝑛}, between which 

discrete transitions occur under the influence of input signals or events from the input 

alphabet 𝑆. [14-15] Classic models, such as the Mealy machine and the Moore machine, 

became the fundamental mathematical basis for formally describing the behaviour of 
software systems as objects that react to external events and internal state changes. Harel 
(1987) extended this approach by proposing Statecharts, a hierarchical graphical notation 
for complex systems with parallelism and nested states [16]. This approach later became 
the basis for UML State Machine Diagrams, which are used today to model the behavior of 
software components [17]. 

In the 1990s, the problem of determining the state became practical in the V&V 
(verification and validation) model, where each design phase corresponds to a specific 
state of the system: from requirements to testing [18]. Spiral, represented in [19], viewed 
the state as the result of risk iteration with the advent of agile methods. The concept of 
state began to be seen as a dynamic context of tests, tasks, and requirements at a certain 
point in time [20]. 

The concept of “state” in computer science 
In the classic definition of computer science, state refers to the collection of all stored 

data and context relating to the current behavior of a system at a given point in time. 
Officially, in [21] stated: “In computer science, the state of a program or computational 
system is a complete description of its current condition, including all stored information 
that can affect future behavior”. Therefore, a state is a snapshot of all variables, structures, 
and contexts that determine how the system will respond to incoming events. 

For software, the “state” definition applies not only to data in memory or files, but also 
to the internal logical state of modules, the execution state of processes, active services, 
configuration settings, and component states. Therefore, SFS reflects the current state of 
an application, including its internal data, behavior, and readiness to perform functions. 
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“State” as an object of control and diagnostics 
In the theory of system reliability, the concept of SFS is interpreted as the result of the 

interaction between the system and the environment, which determines the system's 
performance [22]. 

In modern software engineering, state is defined through a set of variables that 
describe the following characteristics: 

 𝑆 =  { (𝑞𝑖, 𝑟𝑖,  𝑐𝑖, 𝑒𝑖, 𝑡𝑖)   |   𝑖 = 1. . . 𝑛},  (1) 

where 𝑞𝑖 – logical state of the process, 𝑟𝑖 – resource load, 𝑐𝑖 – configuration parameters, 

𝑒𝑖 – external influences, 𝑡𝑖 – time indicators. 

This representation enables monitoring and prediction using state estimation, time 
series forecasting, and anomaly detection methods [23]. In DevOps architecture, this  
is achieved through an Application Performance Monitoring (APM) system that  
collects metrics on CPU, memory, latency, errors, and creates an instantaneous state 
model [24]. 

The relationship between “state” and the qualitative software characteristics 
The standard [6] defines a set of software quality characteristics, describing the state 

of software in terms of functionality, efficiency, reliability, security, compatibility, availability, 
maintainability, and portability. A key characteristic previously associated with the concept 
of functional status is “Functional Suitability”. This characteristic represents the degree to 
which a product or system provides functions that meet stated and implied needs when 
used under specified conditions. This characteristic is composed of the following 
components [6]: 

• Functional completeness – the degree to which the set of functions covers all the 
specified tasks and intended users’ objectives. 

• Functional correctness – the degree to which a product or system provides 
accurate results when used by intended users. 

• Functional appropriateness – the degree to which the functions facilitate the 
accomplishment of specified tasks and objectives. 

Therefore, the SFS within the ISO/IEC 25010 standard is a dynamic representation of 
these three components at a given point in time. A product is a good product if it can 
perform all the necessary functions correctly and efficiently. If some functions work partially 
or incorrectly, or if some functions are missing, then the product is abnormal or defective. 
Obviously, the quality standards assume that software quality assessment systems are 
static, and they capture properties at a certain point in time, but do not allow modelling the 
evolution of states. 

Definitions in international and national standards 
Functional suitability is defined as the main characteristics that describe the functional 

efficiency of a system under given conditions [4]. This approach permits assessment of the 
functional implementation degree, accuracy, and relevance, namely the parameters which 
make up the SFS.  

In the previous version of the quality model, functional suitability was interpreted as: 
“The capability of the software product to provide functions which meet stated and implied 
needs when the software is used under specified conditions”. In [5], the emphasis is on 
“capability,” that is, the potential SFS in relation to its purpose. 

This standard [25] introduces metrics for evaluating the characteristics of functionality, 
reliability, and maintainability. It effectively transforms the concept of SFS into a quantitative 
model through indicators, such as: “percentage of functions that perform correctly”, 
“number of failed operations per function”, “execution completeness ratio”. That is, SFS 
can be measured numerically. 
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Regarding the SFSs or states when the software performs or does not perform its 
functions, the latest national standard [26] explains the functional suitability, which refers 
to the extent to which the software provides functions that meet stated and implied needs 
under given conditions of use. 

“State” in the context of adaptive and intelligent systems 
The development of adaptive systems and autonomous agents has given rise to the 

concept of runtime models, which describe the current state of a system and can be 
observed and modified during execution [27]. 

Kephart and Chess, in their paper [28], defined the state in the concept of autonomous 
computation as a set of controllable properties of a system that can be measured, 
compared to a reference value, and adjusted without human intervention.  

In adaptive and multi-agent systems, SFSs are viewed as information projections of 
an agent’s behavior in space, such as environment, objectives, actions, and resources [29]. 
This allows states to be formalized through ontology, logical predicates, or vector 
representations. 

In the context of LLMs and generative AI systems, SFSs include not only technical 
parameters but also cognitive parameters such as current context, query history, word 
segmentation parameters, weights of inner layers, state cache, etc. [30]  Bubeck et al. 
(2023) pointed out that the behavior of LLM is a stochastic function of current knowledge 
and context state, and therefore can be modeled as a stateful system [9]. 

In retrieval augmented generation systems and multi-agent LLM environments, 
“states” determine action readiness, response reliability, and contextual consistency. This 
allows us to view not only SFSs technically but also semantic states, thereby determining 
the level of cognitive consistency among agents [31]. 

Ukrainian scientific approaches 
In the Ukrainian scientific space, the concept of SFS transcends classical automata 

theory and has been applied to practical problems such as risk assessment, energy 
modeling, ontology-based diagnostics, and context-aware monitoring in decision support 
systems. Furthermore, the authors of reference [12] demonstrate that the probabilistic 
GERT-based integration model can integrate artificial intelligence intervention into the 
hybrid SDLC, transforming continuous integration/continuous delivery (CI/CD) telemetry 
data into interpretable schedule risk predictions, thereby reducing rework cycles, 
shortening delivery time distribution, and supporting scenario-driven optimization under 
cognitive uncertainty. 

In article [32], a fuzzy model of risk assessment as a function of software product state 
change has been formed. In that model, the concept of software state is used in its fuzzy 
risk assessment model. SFS is treated as a variable, and the risk level of the software 
product depends on this variable as a function of state changes. 

The analysis of scientific publications shows that existing methods fail in providing a 
complete formal description of the SFS, whether process-based, behavioral, standard or 
cognitive ones. In most models, software state is treated as a set of internal variables or 
performance levels, but the factors below are not considered: 

• External context of the runtime environment as infrastructure, users and security 
events. 

• Ontological relationships between states, such as hierarchical relationships, 
compatibility, and transitivity. 

• Evolutionary dynamics of states, such as development, degradation, and 
adaptation. 

• Intelligent decision-making processes that influence states. 
Therefore, a new formal model is required to describe the SFS as a multidimensional 

entity in a space of technical, behavioral, cognitive, and semantic features. Such a model 
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will provide a unified state representation for monitoring tasks, quality assessment, risk 
management, and the real-time adaptation of software systems. Thus, the SFS will 
represent a “snapshot” of all characteristics that determine how the system reacts to inputs, 
performs its functions, and maintains quality in accordance with the ISO/IEC 25010 quality 
characteristics such as functional suitability, reliability, efficiency, security, and 
maintainability. 

RESULTS AND DISCUSSION 

Existing stochastic software development lifecycle models mainly adopt a process-
centric perspective, modeling the transitions between lifecycle stages or activities, but do 
not explicitly represent the internal functional states of the software system. Quality models 
(such as those conforming to ISO/IEC 25010) provide a static snapshot of software 
characteristics but do not model state evolution or contextual dependencies. Runtime 
monitoring and performance degradation prediction methods focus on the runtime phase 
and treat the Software Development Lifecycle (SDLC) environment as exogenous or fixed. 
In contrast, the SFS model proposed in this paper adopts a state-centric perspective, 
covering the SDLC phase and runtime execution, integrating quality, risk, and contextual 
information, and explicitly supporting prediction and probabilistic reasoning. This 
positioning makes the model particularly suitable for environments involving some or all of 
the code generation, where software behavior stems from both execution dynamics and 
the generation context. 

Formalisation of definitions 
The SFS is not only a technical execution property but a dynamic multidimensional 

construction combining: 

• System properties such as performance, stability, reliability, and others. 

• Requirement compliance, such as functional and non-functional requirements. 

• Current suitability, quality, risk, and security profile. 

• Operational and contextual conditions such as environment, workload, 
configuration, knowledge context, etc. 

Software functional state is a set of parameters that reflect the current quality, 
operability, security, integrity, and contextual compliance of a software system at a given 
moment in time, relative to its functional requirements, architectural constraints, resources, 
and operating environment. 

The SFS of the system at time t is defined as: 

 𝑆(𝑡) = ⟨𝜙(𝑡), 𝜇(𝑡), 𝜎(𝑡), 𝜌(𝑡), 𝜅(𝑡), 𝜏(𝑡)⟩,  (2) 

where: 𝜙(𝑡) – level of functional adequacy or requirement fulfillment; 𝜇(𝑡) – performance 

indicators such as response time, resource utilization; 𝜎(𝑡) – stability indicators such as 

failure rate, MTBF; 𝜌(𝑡) – risk and security indicators such as vulnerabilities, threat 

probability; 𝜅(𝑡) – contextual and cognitive coherence for intelligent or LLM-based 

systems; 𝜏(𝑡) – SDLC phase context such as project initiation and planning, requirement 

analysis, architectural design, development, testing, deployment, maintenance and 
operations, team and management. 

Although the components of the SFS vector may appear heterogeneous—combining 
performance metrics, quality metrics, risk metrics, contextual consistency, and SDLC stage 
information – this heterogeneity reflects the fundamental nature of software states in 
generative and adaptive systems. From the point of view of systems theory and state 
assessment, the state of a system is determined not by the homogeneity of its parameters, 
but by the completeness of the information necessary to predict future behavior. In 
generative software systems, this predictive completeness cannot be achieved without 
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explicitly modeling the context and lifecycle dimensions. Therefore, the SFS vector is 
constructed as a multi-layered representation of states, including core execution states, 
derived quality and risk states, and contextual SDLC embeddings, which together define 
the evolution of the system. 

The integral quality of the state is defined as: 

 𝑄(𝑆) = 𝑤𝜙𝜙 + 𝑤𝜇𝜇 + 𝑤𝜎𝜎 + 𝑤𝜅𝜅 − 𝑤𝜌𝜌, (3) 

where 𝑤𝑖 are the weighting coefficients correspond to a specific system class. 

A software functional state during the software development life cycle is the predicted 
or actual configuration of suitability, quality, risk, security, and operability parameters of a 
software system formed at each SDLC phase under the influence of development 
methodology and artefacts, team decisions, and environmental factors. 

This state has a dual nature: 

• Predictive (forecastive) – derived from software requirements and architectural 

analysis with prior distribution 𝜋0(𝑆). 

• Empirical (consequential) – refined by real observations during development, 

testing, and other stages with posterior distribution 𝜋𝑘(𝑆). 

It is not enough to simply know the types of SFS (Table 1) during SDLC and their 
relationships (Table 2).  

Table 1. Types of SFS 

SFS name Description Typical indicators Formal conditions 

Operational 

(Normal), 𝑆𝑁 
System functionality 
meets requirements 

SLA met, no critical 
bugs, vulnerabilities 

𝑄(𝑆) ≥ 0.9,   𝜌 < 0.1 

Degraded, 𝑆𝐷 
Partial loss of 

performance or 
efficiency 

Higher latency, 
resource saturation, 
non-critical delays 

0.7 ≤ 𝑄(𝑆) < 0.9 

Vulnerable, 𝑆𝑉 
Functionality with 

security weaknesses 
CVEs, authentication 
flaws, data exposure 

0.6 ≤  𝑄(𝑆) 

𝑄(𝑆) < 0.8, 𝜌 > 0.3 

Anomalous, 𝑆𝐴 
System behavior 

deviates from 
expected norms 

Unusual requests, 
unstable metrics 

𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
> 3𝜎 

Defective 
(Buggy), 𝑆𝐵 

Logical or functional 
faults without a 

crash 

Incorrect output, UI 
errors 

𝑡𝑒𝑠𝑡 𝑓𝑎𝑖𝑙𝑢𝑟𝑒, 

𝑏𝑢𝑡 𝑠𝑦𝑠𝑡𝑒𝑚 𝑜𝑝𝑒𝑟𝑎𝑏𝑙𝑒 

Critical  
(Failure), 𝑆𝐹 

System crash or 
total loss of 
functionality 

Downtime, data loss, 
fatal exceptions 

𝑄(𝑆) < 0.4, 𝜎 < 0.5 

Recovering, 𝑆𝑅 
Recovery after 

failure or 
degradation 

Rollback, restart, 
autoscaling 

𝑆𝐹 →𝑟𝑒𝑐𝑜𝑣𝑒𝑟 𝑆𝑅  

Transitional 
(Testing), 𝑆𝑇 

Temporary unstable 
state during update 

or deployment 

Active deployment or 
migration 

𝑑𝑢𝑟𝑖𝑛𝑔 𝐶𝐼/𝐶𝐷 𝑜𝑟 

𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑐ℎ𝑎𝑛𝑔𝑒 

Uncertain, 𝑆𝑈 
A scope doesn’t fit 

expectations 
Timelines mismatch, 

employee attrition 

𝑆𝑐ℎ𝑒𝑑. 𝑝𝑒𝑟𝑓. 𝑖𝑛𝑑. < 1: 

𝑏𝑒ℎ𝑖𝑛𝑑 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 
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Table 2. Relation between SDLC phases and SFS 

SDLC phase Possible states Typical transition causes 

Project initiation and 
planning 

𝑆𝑈 , 𝑆𝐴 , 𝑆𝑁  
Scope definition, agreement with 

stakeholders 

Requirement 
analysis 

𝑆𝑁 , 𝑆𝐵  , 𝑆𝑉  
Ambiguity, inconsistency, and missing 

requirements 

Architectural design 𝑆𝑁 , 𝑆𝐷  , 𝑆𝑉  Architectural anti-patterns, design errors 

Development 𝑆𝑁 , 𝑆𝐵  , 𝑆𝐷 Coding errors, dependency issues 

Testing 𝑆𝐵  , 𝑆𝐹  , 𝑆𝑅  Test instability, coverage gaps 

Deployment 𝑆𝑇 , 𝑆𝑅  , 𝑆𝑁 CI/CD misconfiguration, misallocation 

Maintenance and 
operations 

𝑆𝑁 , 𝑆𝐷 , 𝑆𝐴 , 𝑆𝑉  , 𝑆𝐹  Load spikes, attacks, degradation, failure 

Team, management 𝑆𝑈  , 𝑆𝑁 Team composition with required skills 

 
The model must take into account the fact that with each development phase and its 

corresponding stage, we are getting closer to expectations. That is, at each step of the 
requirements analysis, architectural design, planning, or testing, we are increasingly 
excluding undesirable states. The proposed SFS abstraction can be understood as a 
unified layer between classical quality assessment, risk modeling, and generative software 
engineering. In the traditional model, these aspects are analyzed independently: quality 
models assess consistency, risk models estimate failure probabilities, and generative 
mechanisms are treated as implementation tools. In contrast, SFS views quality 
degradation, risk escalation, and inconsistency as different manifestations of the same 
underlying state evolution process. This perspective enables us to reason about software 
behavior at various stages of the SDLC, including stages where executable artifacts are 
incomplete or continuously regenerated. 

Dynamic state evolution models are important for modelling, analyzing, and predicting 
the behavior and evolution of complex systems over time. These models capture the 
interactions between components and the influence of external factors, thus supporting 
informed decision-making and effective management. Simple models do not perform both 
prediction and simulation, allowing researchers to predict system behavior under different 
conditions. By revealing internal mechanisms and feedback loops, dynamic models can 
enhance our understanding of complex adaptive systems.  

In engineering and applied sciences, dynamic models are crucial for system design 
and control, ensuring system efficiency and safety. They also facilitate hypothesis testing, 
providing a structured approach to evaluating system responses. In fields such as 
economics, biology, and urban planning, dynamic models are being used as decision 
support tools, guiding policy or strategy development. 

State transitions, in the dynamic state evolution model, during the SDLC are 
determined by a stochastic process: 

 𝑆𝑡+1 = 𝛿(𝑆𝑡,  𝐴𝑡 ,  𝐸𝑡),  (4) 

where:  𝐴𝑡 – set of actions within SDLC phases and their stages;  𝐸𝑡 – external factors such 

as requirement changes, load variations, or environment. 
Transition probability is being calculated: 
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 𝑃(𝑆𝑡+1 = 𝑆𝑗  ∣  𝑆𝑡 = 𝑆𝑖, 𝐴𝑡 = 𝑎) = 𝑝𝑖𝑗(𝑎),  (5) 

Hence, the SDLC can be represented as a graph of state transitions, forming an 
appropriate digital model of the development process. 

As discussed above, the SFS is a complex function which has some characteristics. 
The target set of characteristics depends on the specific software, chosen methodology, 
technology stack, etc. The core characteristics of SFS with typical metrics for estimation 
are shown in Table 3. 

Table 3. Core characteristics of SFS 

Characteristic Definition Typical Metric 

Availability 
The time system remains 

operational 
𝑀𝑇𝐵𝐹 / (𝑀𝑇𝐵𝐹 +  𝑀𝑇𝑇𝑅) 

Stability 
Sensitivity to changes and 

faults 
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝜎 

Reliability 
Probability of fault-free 

execution 
𝑅(𝑡) = 𝑒−𝜆𝑡 

Security 
Probability of absence of 
exploitable vulnerabilities 

1 − 𝐶𝑉𝑆𝑆𝑛𝑜𝑟𝑚 

Code Quality 
Structural and logical 

correctness 
𝐶𝑦𝑐𝑙𝑜𝑚𝑎𝑡𝑖𝑐 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦, 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 

Contextual 
Coherence 

Consistency with the 
environment and the 

knowledge base 
𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝐼𝑛𝑑𝑒𝑥 

Risk Probability–impact product 𝑅𝑖 = 𝑃𝑖  ⋅  𝐼𝑖 

Viability 
Time share in healthy 

states 
𝐿(𝑆) = (𝑇𝑆𝑁

+ 𝑇𝑆𝐷
) / 𝑇𝑡𝑜𝑡𝑎𝑙 

 
The proposed set of indicators may be refined in the future depending on the 

objectives of the SFS study. 

General formalization 
SFS creates a hierarchy of system viability: 

 𝑆𝑁 > 𝑆𝐷 > 𝑆𝑉 > 𝑆𝐴 > 𝑆𝐵 > 𝑆𝐹 ,  (6) 

where “>” indicates higher operational integrity. 

Valid transitions form a stochastic graph of SDLC: 

 𝑆𝑁 → 𝑆𝐷 → 𝑆𝑉 → 𝑆𝐹 → 𝑆𝑅 → 𝑆𝑇 → 𝑆𝑁,  (7) 

Uncertain, anomalous, and defective states (𝑆𝑈 , 𝑆𝐴 , 𝑆𝐵) may emerge at any SDLC 

phase as early indicators of potential failures. 
Prior distributions of SFSs are various at different SDLC phases and their stages but 

can be estimated. For example, at the “Requirement analysis” phase, a prior distribution of 
SFS is estimated as: 
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 𝜋0(𝑆) = 𝑃(𝑆 ∣  𝑋(𝑟𝑒𝑞)),  (8) 

where 𝑋(𝑟𝑒𝑞) is a vector of requirement features such as completeness, security, 

consistency, ambiguity, etc.  
As the SDLC progresses, the posterior estimate is updated using new observations 

𝑂𝑘: 

 𝜋𝑘(𝑆)  ∝  𝑃(𝑂𝑘 ∣ 𝑆) ∑ 𝑃(𝑆′)𝜋𝑘−1(𝑆′)

𝑆′

.  (9) 

Hence, the SFS in SDLC evolves from a probabilistic forecast to an empirically 
measurable condition. State Function in SDLC: 

 𝑆𝑡+1 = 𝑓(𝑆𝑡, 𝑋(𝑟𝑒𝑞), 𝑂1:𝑡, 𝐴𝑡 , 𝐸𝑡),  (10) 

where 𝑓 describes the predictive-reactive evolution of the SFS. 

Optimization criterion: 

 𝑚𝑎𝑥𝜋𝐸 {∑ 𝛾𝑡[𝑄(𝑆𝑡) − 𝜌(𝑆𝑡) − 𝐶(𝐴𝑡)]

𝑡

},  (11) 

where policy 𝜋 determines actions to maintain viable states. 

SFS is a dynamic, multidimensional characteristic that describes the aggregate of 
quality, operability, stability, security, and contextual coherence parameters of a software 
system at a specific moment, formalized as a vector model 𝑆𝑡 that evolves under the 
influence of internal processes and external environmental factors. 

SFS in the SDLC is a stochastic function describing the sequence of transitions 
between SFS types: 

 𝛺 = (𝑆𝑁,  𝑆𝐷,  𝑆𝑉, 𝑆𝐴, 𝑆𝐵, 𝑆𝐹, 𝑆𝑅, 𝑆𝑇),  (12) 

The statement (11) is driven by SDLC activities and artefacts – from forecastive 
prediction at the requirement phase to empirically validated runtime observations during 
operations. 

Estimation of the proposed definitions 
The estimation metrics of the proposed SFS and SFS during SDLC definitions should 

be aligned with the formal model (3) and their stochastic evolution through SDLC phases. 
The estimation metrics aim to: 

• Quantify the current or predicted SFS. 

• Detect deviations, degradation, or transitions between states. 

• Support automated decision-making, diagnostics, and optimization within SDLC. 

• Correlate process-level artefacts, such as requirements, commits, tests, and 
metrics with state-level variables. 

• Detect component-level and state-level dependencies across all phases of the 
SDLC. 

• Other software and development methodologies specifics. 
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The estimation dimensions represent the key measurable components of a software’s 

functional state. They capture functional adequacy 𝜙(𝑡) through requirement compliance, 

performance 𝜇(𝑡) via runtime efficiency, and stability 𝜎(𝑡) through reliability under 

perturbations. Risk and security 𝜌(𝑡) quantify exposure to faults or threats, while contextual 

coherence 𝜅(𝑡) measures semantic and environmental consistency.  

Finally, the lifecycle phase 𝜏(𝑡) situates all parameters within the SDLC process 

context, ensuring temporal and methodological traceability. Each SFS parameter has its 

own measurable indicators and a normalised score in a range of [0, 1] (Table 4). 

Composite indices for SFS estimation integrate multiple quality, performance, risk, and 
stability metrics into a unified score. They provide a holistic view of software health, simplify 
complex multidimensional assessments, enable trend detection, support automated 
decision-making, and allow early prediction of degradation across the SDLC. 

SFS quality index 𝐹𝑆𝑄𝐼: 

 𝐹𝑆𝑄𝐼(𝑡) = 𝑤𝜙𝑅𝐶 ⋅ 𝑇𝐶 + 𝑤𝜇𝑅𝐸 + 𝑤𝜎

𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹𝑚𝑎𝑥
+ 𝑤𝜅𝑆𝐶𝐼 − 𝑤𝜌𝑅𝐸𝑋,  (13) 

where range is [0, 1]. 
The interpretation is:  

• 𝐹𝑆𝑄𝐼 ≥  0.9 →  𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙(𝑁𝑜𝑟𝑚𝑎𝑙). 

• 0.7 − 0.9 →  𝐷𝑒𝑔𝑟𝑎𝑑𝑒𝑑. 

• <  0.7 →  𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒. 

Dynamic risk index 𝐷𝑅𝐼: 

 𝐷𝑅𝐼(𝑡) = ∑ 𝑃𝑖 ⋅ 𝐼𝑖 ⋅ 𝑤𝑖

𝑘

𝑖=1

,  (14) 

where 𝑃𝑖 – probability of event 𝑖, 𝐼𝑖 – impact magnitude, 𝑤𝑖 – weight.  

The interpretation is: 

• 𝐷𝑅𝐼 >  0.4 →  𝑟𝑖𝑠𝑘 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑟𝑒𝑛𝑑, 𝑟𝑒𝑞𝑢𝑖𝑟𝑖𝑛𝑔 𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛 𝑎𝑐𝑡𝑖𝑜𝑛𝑠. 

SFS stability index 𝐹𝑆𝑆𝐼: 

 𝐹𝑆𝑆𝐼(𝑡) = 1 −
𝜎𝑝𝑒𝑟 𝑓(𝑡) + 𝜎𝑒𝑟𝑟𝑜𝑟(𝑡)

𝜎𝑚𝑎𝑥
.  (15) 

The interpretation is: 

• 𝐻𝑖𝑔ℎ𝑒𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 =  𝑏𝑒𝑡𝑡𝑒𝑟 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦. 

• 𝑉𝑎𝑙𝑢𝑒𝑠 <  0.5 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑡𝑜𝑤𝑎𝑟𝑑 𝑆𝐷 𝑜𝑟 𝑆𝐹. 
SDLC functional integrity 𝐿𝐹𝐼, which measures how consistently the system remains 

in acceptable states across SDLC phases: 

 𝐿𝐹𝐼(𝑡) =
1

𝑇𝑡𝑜𝑡𝑎𝑙
∑ 𝑄(𝑆𝑝ℎ𝑎𝑠𝑒) ⋅ 𝛥𝑡𝑝ℎ𝑎𝑠𝑒𝑠

𝑝ℎ𝑎𝑠𝑒𝑠

.  (16) 

Composite SDLC state metric 𝐶𝐿𝑆𝑀 allows for end-to-end lifecycle monitoring: 
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Table 4. Quantitative Metrics Calculations 

Dimension Metric Calculation Range Interpretation 

Functional 
adequacy, 

𝜙(𝑡) 

Requirement 

Coverage, 𝑅𝐶  
𝑅𝐶 =

𝑁𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑒𝑑

𝑁𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑

 [0, 1] 
Degree of 

implemented 
requirements 

 

Requirement 
Consistency, 

𝑅𝐶𝑜𝑛  

𝑅𝐶𝑜𝑛 = NLP-based 

coherence score between 
requirements 

[0, 1] 
Higher = fewer 

conflicts 

 
Test Pass 

Ratio, 𝑇𝑃𝑅  
𝑇𝑃𝑅 =

𝑁𝑝𝑎𝑠𝑠𝑒𝑑

𝑁𝑡𝑜𝑡𝑎𝑙

 [0, 1] 
Functional 

correctness 

 

Technical 
Coherence, 

𝑇𝐶  

𝑇𝐶 = 1 / 
𝑁𝑎𝑑𝑎𝑝𝑡𝑒𝑑

𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

 [0, 1] 

The right tech 
stack, the higher = 

the fewer 
mismatches 

Perform., 
𝜇(𝑡) 

Response 
Efficiency, 𝑅𝐸 

𝑅𝐸 = 1 −  
𝑡𝑟𝑒𝑠𝑝

𝑡𝑆𝐿𝐴

 [0, 1] 
Lower latency → 

higher RE 

 

Resource 
Utilization 
Efficiency, 

𝑅𝑈𝐸 

𝑅𝐸 = 1 − 
𝐶𝑃𝑈 + 𝑀𝐸𝑀

100
 [0, 1] 

Optimal 
performance 

balance 

Stability, 

𝜎(𝑡) 

Mean Time 
Between 
Failures, 

𝑀𝑇𝐵𝐹 

𝑀𝑇𝐵𝐹 = Empirical [0, ∞) 
Higher = more 

stable 

 

Variance of 
Key Metrics, 

𝜎𝑝𝑒𝑟 𝑓 

𝜎𝑝𝑒𝑟 𝑓 = standard deviation 

of latency/load 

norm. 
[0, 1] 

Lower = more 
stable 

Security/ 

risk, 𝜌(𝑡) 

Vulnerability 

Index, 𝑉𝐼 
𝑉𝐼 = 1 −

𝛴(𝐶𝑉𝑆𝑆𝑖 ⋅ 𝑤𝑖)

𝛴𝑤𝑖 ⋅ 10
 [0, 1] 

1 = no 
vulnerabilities 

 
Risk Expo-
sure, 𝑅𝐸𝑋 

𝑅𝐸𝑋 = 𝑃(𝐸𝑣𝑒𝑛𝑡) × 𝐼𝑚𝑝𝑎𝑐𝑡 [0, 1] 
Expected severity 

of failure 

 
Attack Surface 

Ratio, 𝐴𝑆𝑅 
𝐴𝑆𝑅 =

𝑁𝑒𝑥𝑝𝑜𝑠𝑒𝑑 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑠

𝑁𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑠

 [0, 1] 
Lower = more 

secure 

Contextual 
coherence, 

𝜅(𝑡) 

Semantic 
Consistency 
Index, 𝑆𝐶𝐼 

𝑆𝐶𝐼 = 𝑠𝑖𝑚(𝑣1, 𝑣2)  [0, 1] 
High value = 
coherent with 

context 

 
Configuration 

Drift, 𝐶𝐷 

𝐶𝐷 = 1 − 

𝑠𝑖𝑚(𝑐𝑜𝑛𝑓𝑟𝑢𝑛𝑡𝑖𝑚𝑒 , 𝑐𝑜𝑛𝑓𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) 
[0, 1] 0 = perfect match 

Lifecycle 
robustness, 

𝜏(𝑡) 

Phase 
Consistency, 

𝑃𝐶 

Entropy of transitions 

𝑃𝐶 =  −𝛴 𝑝𝑖  𝑙𝑜𝑔 𝑝𝑖  
[0, 𝑙𝑜𝑔𝑁] 

Lower = more 
deterministic 

SDLC 

 
Temporal 

Integrity, 𝑇𝐼 

𝑇𝐼 = delay between planned 
and actual phase 

completion 

norm. 
[0, 1] 

Schedule stability 
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 𝐶𝐿𝑆𝑀(𝑡) =
1

𝑁𝑝ℎ𝑎𝑠𝑒𝑠
∑ (𝐹𝑆𝑄𝐼𝑘 − 𝐷𝑅𝐼𝑘)

𝑁𝑝ℎ𝑎𝑠𝑒𝑠

𝑘=1

,  (17) 

where range is [0, 1]. 
The interpretation is: 

• 𝐶𝐿𝑆𝑀 >  0.7 →  𝑆𝐷𝐿𝐶 𝑖𝑠 ℎ𝑒𝑎𝑙𝑡ℎ𝑦 (ℎ𝑖𝑔ℎ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦). 

• 𝐶𝐿𝑆𝑀 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0.4 − 0.7 →  𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛. 

• 𝐶𝐿𝑆𝑀 <  0.4 →  𝑖𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑟 𝑟𝑖𝑠𝑘 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛. 

At the moment, we are setting the thresholds for SFS classification that are defined by 

analyzing normalized quality, risk, and stability metrics such as 𝐹𝑆𝑄𝐼, 𝐷𝑅𝐼 and 𝐹𝑆𝑆𝐼across 

multiple SDLC phases and mapping their statistical distributions to empirically observed 
states. The entire table with the thresholds is shown in Table 5. 

Table 5. Thresholds for SFS classification 

SFS 𝐹𝑆𝑄𝐼 range 𝐷𝑅𝐼 range 𝐹𝑆𝑆𝐼 range Qualitative interpretation 

Normal, 𝑆𝑁 0.90 – 1.00 < 0.10 > 0.85 
Fully stable, performant, secure; 

system meets or exceeds all 
requirements. 

Degraded, 
𝑆𝐷 

0.78 – 0.90 
0.10 – 
0.22 

0.70 – 0.85 
Minor performance decline or 
partial overload without failure; 

functionality intact. 

Vulnerable, 
𝑆𝑉 

0.66 – 0.78 
0.22 – 
0.38 

0.60 – 0.78 
The system is functional, but 

operates under elevated security or 
reliability risk. 

Anomalous, 
𝑆𝐴 

variable  
(≈ 0.55–

0.85) 

spikes > 
0.45  
(> 3σ 

events) 

0.45 – 0.70 
(fluctuating) 

Behavioral deviations from 
expected norms; potential 

precursor to defect or attack. 

Defective, 
𝑆𝐵 

0.60 – 0.75 
(local) 

< 0.25 0.55 – 0.75 
Logical or functional errors appear 

without a full crash, incorrect 
outputs. 

Failure, 𝑆𝐹 < 0.55 > 0.45 < 0.45 
Critical system disruption, 

downtime, or data loss requires 
immediate recovery. 

Recovering, 
𝑆𝑅 

0.58 – 0.72 
(transient ↑) 

decreasing  
0.30 → 

0.20 

increasing  
0.55 → 

0.75 

System restoring from failure 
toward normal; self-healing or 

restart in progress. 

Transitional, 
𝑆𝑇 

0.60 – 0.80 
(transient) 

0.20 – 
0.35 

0.55 – 0.70 
Short-term unstable configuration 
during deployment, migration, or 

CI/CD. 

Uncertain, 
𝑆𝑈 

0.68 – 0.76 
0.25 – 
0.35 

0.60 – 0.70 
State of scope misalignment, 
ambiguous requirements, or 
resource/timeline mismatch. 
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To prove the formalization, we currently validate thresholds via dynamic modelling and 
Monte Carlo simulations of SDLC (Fig. 1), comparing predicted and actual state transitions, 
ensuring consistent separability and stability of states across iterations and empirical test 
datasets.  

(a) 

(b) 

(c) 

Fig. 1. Results of Monte Carlo simulation for 𝐹𝑆𝑄𝐼 (a); 𝐷𝑅𝐼 (b) and 𝐹𝑆𝑆𝐼 (c). 



 Mariia Lyashkevych, Vasyl Lyashkevych, Roman Shuvar 

166 Electronics and Information Technologies • 2025 • Issue 32 

The generated distributions of 𝐹𝑆𝑄𝐼, 𝐷𝑅𝐼 and 𝐹𝑆𝑆𝐼 across the nine functional 

software states: 𝑆𝑁 (marked as ‘S_N’ in Fig. 1), 𝑆𝐷, 𝑆𝑉, 𝑆𝐴, 𝑆𝐵, 𝑆𝐹, 𝑆𝑅, 𝑆𝑇, 𝑆𝑈) demonstrate 

that the proposed mathematical formalization reliably produces distinct, separable, and 
meaningful clusters that reflect the expected behavior of software under varying levels of 
quality, risk, and stability. Each distribution captures the theoretical assumptions of  
the model while revealing realistic overlaps in transitional or ambiguous operational 
conditions. 

The simulations correctly reproduce the expected real-world fuzziness of these states. 
It has shown that no single metric is sufficient, but the vectors together produce reliable 
decision boundaries. 

The results achieved provide an effective and applicable baseline for application in 
SFS analytics, real-time SDLC monitoring, and decision support. Monte Carlo modelling 
and updated classification thresholds can reliably distinguish SFS through measurable 

indicators 𝐹𝑆𝑄𝐼, 𝐷𝑅𝐼 and 𝐹𝑆𝑆𝐼 thereby enabling continuous assessment of quality, risk, 

and stability. These models can be integrated into CI/CD pipelines, DevSecOps control 
panels, and as digital twin models of SDLC to predict state transitions, detect early 
performance degradation, and automatically execute recovery strategies. 

From the perspective of LLM-based and agentic SDLCs, the concept of SFS takes on 
additional meaning. In these systems, software behavior is influenced by nondeterministic 
generative processes, evolving internal representations, and external knowledge sources. 
Therefore, SFS should not only include execution-level attributes, but also semantic 
consistency, contextual validity, and consistency between the produced artifacts and the 
software development lifecycle goals. The proposed SFS model provides a formal basis 
for representing these dimensions without binding the method to a specific generative 
technique. 

CONCLUSION 

This paper proposes a formal and computational framework for modeling the SFS 
throughout the SDLC, extending classic state-based and quality-oriented approaches to 
context-aware and probabilistic representations.  

The results show that traditional models are insufficient to cope with new development 
paradigms that involve some or all of the code generation, in which software behavior 
depends on execution technology and the production environment.  

The proposed SFS abstraction enables predictive analysis, interphase thinking, and 
state-aware orchestration of DevSecOps and agent-based development pipelines, 
providing a foundation for intelligent SDLC monitoring and decision support.  

The next step is to transform the theoretical model into a working platform for  
the implementation of the proposed model in real-world SDLCs, integrating it with 
generative processes, and evaluating its effectiveness in large-scale industrial 
environments. 
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ВИЗНАЧЕННЯ ТА ФОРМАЛІЗАЦІЯ КОНЦЕПЦІЇ ФУНКЦІОНАЛЬНОГО 

СТАНУ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ ПРОТЯГОМ УСЬОГО 

ЖИТТЄВОГО ЦИКЛУ РОЗРОБКИ 

Марія Ляшкевич *, Василь Ляшкевич , Шувар Роман  
Кафедра системного проектування 

Факультет електроніки та комп'ютерних технологій 
Львівський національний університет імені Івана Франка, 

вул. Драгоманова 50, 79005, Львів, Україна 

АНОТАЦІЯ  

Вступ. У сучасному світі програмне забезпечення (ПЗ) є критично важливим 
компонентом будь-якої інформаційної системи. Його розробка вимагає значних 
ресурсів і складних технічних рішень, а розвиток технологій настільки швидкий, що не 
всі поняття та визначення в галузі ПЗ є чітко формалізованими. Це особливо 
стосується функціонального стану ПЗ (ФСПЗ) упродовж життєвого циклу розробки 
(SDLC), адже передбачити всі можливі ФСПЗ практично неможливо через 
динамічність середовищ, зміни вимог, взаємодію компонентів і поведінку учасників 
проєкту. Це створює виклик для формалізації, аналізу, прогнозу та моніторингу та 
управління цими станами. 

Матеріали та методи. Визначення та формалізації ФСПЗ охоплюють концепції 
із теорії станів у комп’ютерних науках, моделі якості з міжнародних стандартів 
ISO/IEC 25010:2011 та ДСТУ ISO/IEC 9126-1:2005. На основі цих джерел 
реалізуються формалізовані підходи до опису та відстеження змін у ФСПЗ протягом 
SDLC. Визначені поняття ФСПЗ та ФСПЗ протягом SDLC формалізовані 
математично, що дозволяє будувати динамічні моделі еволюції станів протягом 
SDLC на основі стохастичної функції переходів. Для побудови моделей 
використовуються атрибути якості такі як функціональна відповідність, надійність, 
вразливість, придатність до тестування та інші у комбінації з подієво-орієнтованими, 
автоматними та стано-орієнтованими моделями. Також наведено різні типи ФСПЗ та 
їх звʼязок із SDLC. 

Результати. Отримані результати дослідження охоплюють формалізацію ФСПЗ, 
розробку оціночних метрик та практичні рекомендації для аналітики станів ПЗ на всіх 
етапах SDLC, що дозволяє забезпечити проактивний контроль якості, надійності, 
безпеки та відповідності програмних систем. 

Висновки. Формалізація поняття функціональних станів ПЗ, включно з їх типами, 
властивостями та параметрами, дозволила встановити обґрунтований зв’язок із 
фазами SDLC. Запропоновані метрики та рекомендації сприяють розвитку аналітики 
станів програмних систем, забезпечуючи як теоретичну цілісність підходу, так і його 
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практичну застосовність у завданнях моніторингу, аналізу та прогнозування стану ПЗ. 
Ця методологія створює нову основу для самонавчальних SDLC-орієнтованих 
екосистем, у яких ФСПЗ прогнозуються, оцінюються та керуються автоматично в 
реальному часі. 

Ключові слова: життєвий цикл програмного забезпечення, функціональний стан 
програмного забезпечення, функціональна придатність, прогнозування 
стану програмного забезпечення, аналітика функціонального стану 
програмного забезпечення, характеристики стану програмного 
забезпечення 
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