LN
Electronics and Information Technologies, 2025, 32, 151-170 O\IL ELIT
http://publications.Inu.edu.ua/collections/index.php/electronics/index

UDC: 004.4

DEFINITION AND FORMALIZATION OF THE SOFTWARE FUNCTIONAL
STATE CONCEPT THROUGHOUT THE DEVELOPMENT LIFE CYCLE

Mariia Lyashkevych* (O, Vasyl Lyashkevych O, Roman Shuvar QO
Department of System Design

Faculty of Electronics and Computer Technologies

Ivan Franko National University of Lviv,

50 Drahomanova Str., 79005 Lviv, Ukraine

Lyashkevych, M.Y., Lyashkevych, V.Y., & Shuvar, R.Y. (2025). Definition and Formalization of the
Software Functional State Concept Throughout the Development Life Cycle. Electronics and
Information Technologies, 32, 151-170. https://doi.org/10.30970/eli.32.11

ABSTRACT

Background. Today, software is a critically important component of any information
system. Its development requires significant resources and complex technical solutions,
and the development of technologies is so rapid that not all concepts and definitions in
the field of software are clearly formalized. This is especially true for the software
functional state (SFS) throughout the software development life cycle (SDLC), as
predicting all possible states is virtually impossible due to the dynamic nature of
environments, changing requirements, component interactions, and the behavior of
project participants. This creates a challenge for formalizing, analyzing, forecasting,
monitoring, and managing these states.

Materials and Methods. The definition and formalization of SFSs encompass concepts
from state theory in computer science, as well as quality models from international standards
ISO/IEC 25010:2011 and the State Standard of Ukraine ISO/IEC 9126-1:2005. The defined
concepts of SFS and SFS during SDLC are formalized mathematically, which allows building
dynamic models of state evolution during SDLC based on the stochastic transition function.
To build models, attributes such as functional compliance, reliability, vulnerability, testability,
and others have been developed in combination with event-driven, finite-state machine, and
state-driven models. Also presented are different types of SFS and their relationship with
SDLC.

Results and Discussion. The research results include the formalization of SFS, the
development of evaluation metrics, and practical recommendations for SFS analytics at all
stages of SDLC, which enable proactive control of the quality, reliability, security, and
compliance of software systems.

Conclusion. The formalization of the concept of SFSs, including their types, properties,
and parameters, allowed for a reasonable connection to the SDLC phases. The proposed
metrics and recommendations contribute to the development of SFS analytics, ensuring
both the theoretical integrity of the approach and its practical applicability in the tasks of
monitoring, analysis and predicting SFS. This methodology creates a new foundation for
self-learning SDLC-oriented ecosystems in which SFSs are predicted, assessed and
managed automatically in real-time.

Keywords: software development life cycle, software functional state, functional
suitability, software state prediction, software functional state analytics,
software state characteristics

© 2025 Lyashkevych M.Y. et al. Published by the Ivan Franko National University of Lviv on behalf of
@ ® EnekTpoHika Ta iHpopmauiiHi TexHonorii / Electronics and Information Technologies. This is an Open
Access article distributed under the terms of the Creative Commons Attribution 4.0 License which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly
cited.

ISSN 2224-088X (print) « ISSN 2224-0888 (on-line) 151

http://publications.lnu.edu.ua/collections/index.php/electronics/index
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-9655-036X
mailto:mariia.liashkevych@lnu.edu.ua
https://orcid.org/0000-0003-2810-6061
mailto:vasyl.liashkevych@lnu.edu.ua
https://orcid.org/0000-0001-6768-4695
mailto:roman.shuvar@lnu.edu.ua
https://doi.org/10.30970/eli.32.11

Mariia Lyashkevych, Vasyl Lyashkevych, Roman Shuvar

INTRODUCTION

The SDLC is a system model that describes the sequence of processes for creating,
implementing, and maintaining a software product [1]. Each phase [2] has its own goals,
artefacts, and typical risks. The structure of SDLC phases may vary depending on the
software development methodology and may include some stages [2]. An advanced
comparison of the software development methodologies represented in [3].

However, modern practice proves that these phases are not isolated: they are
interconnected by data and knowledge flows. That is why analysis, forecasting, or
continuous monitoring of SFS becomes a key condition for ensuring quality and security
throughout the SDLC. The methodology determines not only the sequence of phases but
also the transition mechanisms between them. It defines the methods of SFS monitoring,
types of possible defects, and risk criteria. As a result, monitoring, analysis, and prediction
of SFS become key mechanisms for ensuring quality, reliability, security, and providing
context throughout the entire SDLC.

Due to the demand for extension to the formal SFS definition, it is difficult to establish
a universal model for assessment, diagnostics, prediction, quality management, and other
analytics. In most standards [4-5], especially ISO/IEC 25010:2011 [6], quality is considered
as a set of characteristics such as reliability, safety, functional suitability, efficiency and
others, but no mechanism for transitioning between system states is defined, which leads
to a gap between the process level and the functional level and its context of the SDLC
model.

Commonly, the SFS is understood as a set of parameters that describe the current
behavior, performance and quality of the system relative to its objectives, resources, and
environment at a given point in time [1]. This concept is key in building intelligent process
monitoring systems, multi-agent SDLC control systems, and LLM-oriented systems, and its
importance suggests that modern methodology must shift from a static understanding of
processes to dynamic modelling of software states. However, modern quality standards,
such as ISO/IEC 25010:2011, focus primarily on quality characteristics such as functional
suitability, effectiveness, compatibility, reliability, security, availability, maintainability, and
portability [6]. These models lack a formal definition of the system state and therefore
cannot establish a general mechanism for assessing the current SFS or predicting its
changes.

The architecture of modern systems is becoming increasingly complex, ranging from
microservices and multi-agent systems to distributed solutions running in the cloud or
hybrid environments. Such systems typically involve continuous component changes,
version updates, scaling, and load balancing, thus creating a dynamic state space [7]. Also,
in modern development methodologies, especially DataOps or DevSecOps, continuous
monitoring and security are based on automated metrics and predictive models [8]. Without
a clear state formalization, it is difficult to build systems for degradation detection, fault
prediction, or adaptive recovery.

In the context of artificial intelligence and LLMs, a new type of software is emerging
where a system's behavior is determined by dynamic knowledge, context, and learning
outcomes. This requires describing the state not only at the code or process level, but also
at the interaction level between knowledge, model, and context [9].

In recent years, scientific publications have been actively researching methods for
modelling the behavior of software systems through SFS [10]. Model-based multi-objective
optimization helps address complex trade-offs in software architecture quality attributes,
guiding refactoring decisions and highlighting key research challenges and future directions
[11].

Existing quality models, stochastic SDLC frameworks [12], and performance
monitoring methods are mainly designed for manually developed software systems, or at
most, for development processes supported by partial code generation tools such as code

152 Electronics and Information Technologies * 2025 - Issue 32

Definition and Formalization of the Software...

completion assistants or systems like Copilot. In such an environment, the behavior,
architecture, and quality attributes of the software or other uncertainties [13] are largely
determined by human-installed solutions, while automation tools play a supporting role.
Therefore, the concept of software state in these models is often simplified to a set of
observable technical characteristics or performance metrics, without explicitly including a
generation environment for creating software artifacts.

Modern development paradigms increasingly rely on partially or fully automated code
generation, including LLMs, agent-based development pipelines, and adaptive DevSecOps
workflows. In this environment, the behavior and quality of a software system are not
merely the result of static design artifacts or performance metrics, but rather the result of
dynamic interactions between generating models, clues, learned knowledge, configuration
strategies, and the ever-changing SDLC environment. Existing stochastic SDLC models
[12] and degradation or risk prediction methods do not explicitly model this context
dependency and therefore lack the ability to represent software state as a function of the
technical execution and generation context.

Thus, there is a methodological gap between traditional state-based quality or risk
models and the requirements of generative and agent-oriented software development.
Existing methods cannot provide a single state representation that can simultaneously
capture execution attributes, quality and risk characteristics, contextual dependencies, and
semantics of SDLC stages, while supporting probabilistic predictive modeling, interstage
thinking, and state transitions.

Bridging this gap requires extending the concept of software state from static
functions to context-dependent, multidimensional functional representations. Without
such state representations, some important practical problems cannot be systematically
solved. Especially in the early stages of the SDLC (such as requirements analysis or
architecture design), when software artifacts are still partially or fully generated, it
becomes impossible to reliably predict the transition from an unstable state to a failure
state. Similarly, it remains inappropriate to compare different SDLC strategies or
generative development processes based on expected state trajectories rather than
isolated metrics. Ultimately, because recovery, regeneration, and mitigation measures
depend not only on technical metrics but also on the underlying build and execution
environment, it is impossible to effectively reconcile DevSecOps with stateful or intelligent
development processes.

To address these issues, this paper proposes a unified abstraction of software
functional states that covers the software development lifecycle phases and runtime
execution, while explicitly considering context and generation dimensions. Furthermore,
a probabilistic model of SFS evolution is proposed, which allows for prediction and inter-
stage reasoning, as well as a state classification framework validated through Monte
Carlo simulations, demonstrating the separability and robustness of SFS under
uncertainty.

Therefore, the extended formalization of the SFS concept is a prerequisite for
constructing the theoretical and applied foundation of software intelligent analysis and
monitoring. It integrates methods such as systems analysis, artificial intelligence, ontology
modelling, knowledge engineering, and other analytics. This concept lays the foundation
for developing new SDLC models that ensure quality and security not only at the process
level but also at the operational status level of software products with its context.

MATERIALS AND METHODS

It is important to emphasize that the proposed formal approach is not intended to
replace the traditional SDLC or quality models for manually developing software systems.
Instead, it extends them to modern development environments, where software artifacts
are generated, in whole or in part, by automated agents, large language models (LLMs),

EnekTpoHika Ta iHpopmaLiiHi TexHonorii « 2025 ¢ Bunyck 32 153

Mariia Lyashkevych, Vasyl Lyashkevych, Roman Shuvar

or hybrid human-machine workflows. In this environment, SFS cannot be fully
characterized by artifact integrity or execution time metrics alone, because the
fundamental determinants of system behavior are embedded in the knowledge that
generates prompts and searches, configuration strategies, and the ever-changing SDLC
context.

The problem of determining the SFSs is one of the key ones in theoretical computer
science and software systems engineering. It is related to the fact that modern software
systems are highly complex and are being characterised by high dynamics, distribution,
adaptability, and context dependence. Unlike hardware systems, where the state of
additional physical parameters is determined, in software, it is formed through a set of
variables that describe behavior, internal resources, calculation logic, and interaction with
the environment. Also, there is a lot of contextual information throughout the entire SDLC.

Existing stochastic SDLC models and degradation or risk prediction systems can
successfully explain uncertainties in process execution or operational behavior. They
typically assume that software artifacts are fixed or implicitly controlled by humans.
Therefore, uncertainty is mainly modeled at the level of defect frequency, failure rate, or
process delay. Conversely, in generative development, uncertainty permeates multiple
levels, including the variability of generated code, semantic drift in requirement
interpretation, and context-aware decision-making by autonomous agents. These factors
exceed the representativeness of classic stochastic models, thus necessitating the
introduction of context-dependent state function abstractions.

Historical approaches to “state” description

The initial conceptions of the SFS emerged within the context of automata theory,
where a system was viewed as a deterministic or non-deterministic finite automaton. This
model defines a system as a finite set of states: S = {sy,55,...,5,}, between which
discrete transitions occur under the influence of input signals or events from the input
alphabet S. [14-15] Classic models, such as the Mealy machine and the Moore machine,
became the fundamental mathematical basis for formally describing the behaviour of
software systems as objects that react to external events and internal state changes. Harel
(1987) extended this approach by proposing Statecharts, a hierarchical graphical notation
for complex systems with parallelism and nested states [16]. This approach later became
the basis for UML State Machine Diagrams, which are used today to model the behavior of
software components [17].

In the 1990s, the problem of determining the state became practical in the V&V
(verification and validation) model, where each design phase corresponds to a specific
state of the system: from requirements to testing [18]. Spiral, represented in [19], viewed
the state as the result of risk iteration with the advent of agile methods. The concept of
state began to be seen as a dynamic context of tests, tasks, and requirements at a certain
point in time [20].

The concept of “state” in computer science

In the classic definition of computer science, state refers to the collection of all stored
data and context relating to the current behavior of a system at a given point in time.
Officially, in [21] stated: “In computer science, the state of a program or computational
system is a complete description of its current condition, including all stored information
that can affect future behavior”. Therefore, a state is a snapshot of all variables, structures,
and contexts that determine how the system will respond to incoming events.

For software, the “state” definition applies not only to data in memory or files, but also
to the internal logical state of modules, the execution state of processes, active services,
configuration settings, and component states. Therefore, SFS reflects the current state of
an application, including its internal data, behavior, and readiness to perform functions.

154 Electronics and Information Technologies ¢ 2025 « Issue 32

Definition and Formalization of the Software...

“State” as an object of control and diagnostics

In the theory of system reliability, the concept of SFS is interpreted as the result of the
interaction between the system and the environment, which determines the system's
performance [22].

In modern software engineering, state is defined through a set of variables that
describe the following characteristics:

S ={(qum coepty) | i=1..n} A1)

where g; — logical state of the process, 7; — resource load, ¢; — configuration parameters,
e; — external influences, t; — time indicators.

This representation enables monitoring and prediction using state estimation, time
series forecasting, and anomaly detection methods [23]. In DevOps architecture, this
is achieved through an Application Performance Monitoring (APM) system that
collects metrics on CPU, memory, latency, errors, and creates an instantaneous state
model [24].

The relationship between “state” and the qualitative software characteristics

The standard [6] defines a set of software quality characteristics, describing the state
of software in terms of functionality, efficiency, reliability, security, compatibility, availability,
maintainability, and portability. A key characteristic previously associated with the concept
of functional status is “Functional Suitability”. This characteristic represents the degree to
which a product or system provides functions that meet stated and implied needs when
used under specified conditions. This characteristic is composed of the following
components [6]:

e Functional completeness — the degree to which the set of functions covers all the

specified tasks and intended users’ objectives.

e Functional correctness — the degree to which a product or system provides

accurate results when used by intended users.

e Functional appropriateness — the degree to which the functions facilitate the

accomplishment of specified tasks and objectives.

Therefore, the SFS within the ISO/IEC 25010 standard is a dynamic representation of
these three components at a given point in time. A product is a good product if it can
perform all the necessary functions correctly and efficiently. If some functions work partially
or incorrectly, or if some functions are missing, then the product is abnormal or defective.
Obviously, the quality standards assume that software quality assessment systems are
static, and they capture properties at a certain point in time, but do not allow modelling the
evolution of states.

Definitions in international and national standards

Functional suitability is defined as the main characteristics that describe the functional
efficiency of a system under given conditions [4]. This approach permits assessment of the
functional implementation degree, accuracy, and relevance, namely the parameters which
make up the SFS.

In the previous version of the quality model, functional suitability was interpreted as:
“The capability of the software product to provide functions which meet stated and implied
needs when the software is used under specified conditions”. In [5], the emphasis is on
“capability,” that is, the potential SFS in relation to its purpose.

This standard [25] introduces metrics for evaluating the characteristics of functionality,
reliability, and maintainability. It effectively transforms the concept of SFS into a quantitative
model through indicators, such as: “percentage of functions that perform correctly”,
“number of failed operations per function”, “execution completeness ratio”. That is, SFS
can be measured numerically.

EnekTtpoHika Ta iHpopmauinHi TexHonorii « 2025 « Bunyck 32 155

Mariia Lyashkevych, Vasyl Lyashkevych, Roman Shuvar

Regarding the SFSs or states when the software performs or does not perform its
functions, the latest national standard [26] explains the functional suitability, which refers
to the extent to which the software provides functions that meet stated and implied needs
under given conditions of use.

“State” in the context of adaptive and intelligent systems

The development of adaptive systems and autonomous agents has given rise to the
concept of runtime models, which describe the current state of a system and can be
observed and modified during execution [27].

Kephart and Chess, in their paper [28], defined the state in the concept of autonomous
computation as a set of controllable properties of a system that can be measured,
compared to a reference value, and adjusted without human intervention.

In adaptive and multi-agent systems, SFSs are viewed as information projections of
an agent’s behavior in space, such as environment, objectives, actions, and resources [29].
This allows states to be formalized through ontology, logical predicates, or vector
representations.

In the context of LLMs and generative Al systems, SFSs include not only technical
parameters but also cognitive parameters such as current context, query history, word
segmentation parameters, weights of inner layers, state cache, etc. [30] Bubeck et al.
(2023) pointed out that the behavior of LLM is a stochastic function of current knowledge
and context state, and therefore can be modeled as a stateful system [9].

In retrieval augmented generation systems and multi-agent LLM environments,
“states” determine action readiness, response reliability, and contextual consistency. This
allows us to view not only SFSs technically but also semantic states, thereby determining
the level of cognitive consistency among agents [31].

Ukrainian scientific approaches

In the Ukrainian scientific space, the concept of SFS transcends classical automata
theory and has been applied to practical problems such as risk assessment, energy
modeling, ontology-based diagnostics, and context-aware monitoring in decision support
systems. Furthermore, the authors of reference [12] demonstrate that the probabilistic
GERT-based integration model can integrate artificial intelligence intervention into the
hybrid SDLC, transforming continuous integration/continuous delivery (CI/CD) telemetry
data into interpretable schedule risk predictions, thereby reducing rework cycles,
shortening delivery time distribution, and supporting scenario-driven optimization under
cognitive uncertainty.

In article [32], a fuzzy model of risk assessment as a function of software product state
change has been formed. In that model, the concept of software state is used in its fuzzy
risk assessment model. SFS is treated as a variable, and the risk level of the software
product depends on this variable as a function of state changes.

The analysis of scientific publications shows that existing methods fail in providing a
complete formal description of the SFS, whether process-based, behavioral, standard or
cognitive ones. In most models, software state is treated as a set of internal variables or
performance levels, but the factors below are not considered:

e External context of the runtime environment as infrastructure, users and security

events.

e Ontological relationships between states, such as hierarchical relationships,

compatibility, and transitivity.

e Evolutionary dynamics of states, such as development, degradation, and

adaptation.

¢ Intelligent decision-making processes that influence states.

Therefore, a new formal model is required to describe the SFS as a multidimensional
entity in a space of technical, behavioral, cognitive, and semantic features. Such a model

156 Electronics and Information Technologies ¢ 2025 « Issue 32

Definition and Formalization of the Software...

will provide a unified state representation for monitoring tasks, quality assessment, risk
management, and the real-time adaptation of software systems. Thus, the SFS will
represent a “snapshot” of all characteristics that determine how the system reacts to inputs,
performs its functions, and maintains quality in accordance with the ISO/IEC 25010 quality
characteristics such as functional suitability, reliability, efficiency, security, and
maintainability.

RESULTS AND DISCUSSION

Existing stochastic software development lifecycle models mainly adopt a process-
centric perspective, modeling the transitions between lifecycle stages or activities, but do
not explicitly represent the internal functional states of the software system. Quality models
(such as those conforming to ISO/IEC 25010) provide a static snapshot of software
characteristics but do not model state evolution or contextual dependencies. Runtime
monitoring and performance degradation prediction methods focus on the runtime phase
and treat the Software Development Lifecycle (SDLC) environment as exogenous or fixed.
In contrast, the SFS model proposed in this paper adopts a state-centric perspective,
covering the SDLC phase and runtime execution, integrating quality, risk, and contextual
information, and explicitly supporting prediction and probabilistic reasoning. This
positioning makes the model particularly suitable for environments involving some or all of
the code generation, where software behavior stems from both execution dynamics and
the generation context.

Formalisation of definitions

The SFS is not only a technical execution property but a dynamic multidimensional
construction combining:

System properties such as performance, stability, reliability, and others.
Requirement compliance, such as functional and non-functional requirements.
Current suitability, quality, risk, and security profile.

Operational and contextual conditions such as environment, workload,
configuration, knowledge context, etc.

Software functional state is a set of parameters that reflect the current quality,
operability, security, integrity, and contextual compliance of a software system at a given
moment in time, relative to its functional requirements, architectural constraints, resources,
and operating environment.

The SFS of the system at time t is defined as:

S() = (P, u(®), a(t), p(t), k(t), (1)), (2)

where: ¢ (t) — level of functional adequacy or requirement fulfillment; u(t) — performance
indicators such as response time, resource utilization; a(t) — stability indicators such as
failure rate, MTBF; p(t) — risk and security indicators such as vulnerabilities, threat
probability; x(t) — contextual and cognitive coherence for intelligent or LLM-based
systems; 7(t) — SDLC phase context such as project initiation and planning, requirement
analysis, architectural design, development, testing, deployment, maintenance and
operations, team and management.

Although the components of the SFS vector may appear heterogeneous—combining
performance metrics, quality metrics, risk metrics, contextual consistency, and SDLC stage
information — this heterogeneity reflects the fundamental nature of software states in
generative and adaptive systems. From the point of view of systems theory and state
assessment, the state of a system is determined not by the homogeneity of its parameters,
but by the completeness of the information necessary to predict future behavior. In
generative software systems, this predictive completeness cannot be achieved without

EnekTtpoHika Ta iHpopmauinHi TexHonorii « 2025 « Bunyck 32 157

Mariia Lyashkevych, Vasyl Lyashkevych, Roman Shuvar

explicitly modeling the context and lifecycle dimensions. Therefore, the SFS vector is
constructed as a multi-layered representation of states, including core execution states,
derived quality and risk states, and contextual SDLC embeddings, which together define

the evolution of the system.
The integral quality of the state is defined as:

Q(S) = wgd + Wi+ we0 + Wk — wyp, (3)

where w; are the weighting coefficients correspond to a specific system class.
A software functional state during the software development life cycle is the predicted
or actual configuration of suitability, quality, risk, security, and operability parameters of a
software system formed at each SDLC phase under the influence of development
methodology and artefacts, team decisions, and environmental factors.
This state has a dual nature:
e Predictive (forecastive) — derived from software requirements and architectural
analysis with prior distribution 7 (S).
e Empirical (consequential) — refined by real observations during development,

testing, and other stages with posterior distribution 1 (S).

It is not enough to simply know the types of SFS (Table 1) during SDLC and their
relationships (Table 2).

Table 1. Types of SFS

SFS name

Description

Typical indicators

Formal conditions

Operational
(Normal), Sy

Degraded, S

Vulnerable, S,

Anomalous, S,

Defective
(Buggy), Ss

Critical
(Failure), Sp

Recovering, S

Transitional
(Testing), Sy

Uncertain, Sy

System functionality
meets requirements

Partial loss of
performance or
efficiency

Functionality with
security weaknesses

System behavior
deviates from
expected norms

Logical or functional
faults without a
crash

System crash or
total loss of
functionality

Recovery after
failure or
degradation

Temporary unstable
state during update
or deployment

A scope doesn'’t fit
expectations

SLA met, no critical
bugs, vulnerabilities

Higher latency,
resource saturation,
non-critical delays

CVEs, authentication
flaws, data exposure

Unusual requests,
unstable metrics

Incorrect output, Ul
errors

Downtime, data loss,
fatal exceptions

Rollback, restart,
autoscaling

Active deployment or
migration

Timelines mismatch,
employee attrition

Q(S) =09, p<0.1

0.7 < Q(S) < 0.9

0.6 < Q(S)
Q(S) < 08,p>03

metric deviation
> 30

test failure,
but system operable

Q(S) < 04,5 < 0.5

recover
Sp — Sk

during CI/CD or
configuration change

Sched.perf.ind. < 1:
behind schedule

158

Electronics and Information Technologies ¢ 2025 « Issue 32

Definition and Formalization of the Software...

Table 2. Relation between SDLC phases and SFS

SDLC phase Possible states Typical transition causes
Project initiation and S 5. S Scope definition, agreement with
planning 5024 0=y stakeholders
Requirement Ambiguity, inconsistency, and missing
. Sy,Sg, Sy .
analysis requirements
Architectural design Sy S, Sy Architectural anti-patterns, design errors
Development Sy ,Sg,Sp Coding errors, dependency issues
Testing Sg,Sk, Sk Test instability, coverage gaps
Deployment Sr,Sr,Sy CI/CD misconfiguration, misallocation

Maintenance and

operations Sy >SpSa,Sy , S Load spikes, attacks, degradation, failure

Team, management Sy, Sy Team composition with required skills

The model must take into account the fact that with each development phase and its
corresponding stage, we are getting closer to expectations. That is, at each step of the
requirements analysis, architectural design, planning, or testing, we are increasingly
excluding undesirable states. The proposed SFS abstraction can be understood as a
unified layer between classical quality assessment, risk modeling, and generative software
engineering. In the traditional model, these aspects are analyzed independently: quality
models assess consistency, risk models estimate failure probabilities, and generative
mechanisms are treated as implementation tools. In contrast, SFS views quality
degradation, risk escalation, and inconsistency as different manifestations of the same
underlying state evolution process. This perspective enables us to reason about software
behavior at various stages of the SDLC, including stages where executable artifacts are
incomplete or continuously regenerated.

Dynamic state evolution models are important for modelling, analyzing, and predicting
the behavior and evolution of complex systems over time. These models capture the
interactions between components and the influence of external factors, thus supporting
informed decision-making and effective management. Simple models do not perform both
prediction and simulation, allowing researchers to predict system behavior under different
conditions. By revealing internal mechanisms and feedback loops, dynamic models can
enhance our understanding of complex adaptive systems.

In engineering and applied sciences, dynamic models are crucial for system design
and control, ensuring system efficiency and safety. They also facilitate hypothesis testing,
providing a structured approach to evaluating system responses. In fields such as
economics, biology, and urban planning, dynamic models are being used as decision
support tools, guiding policy or strategy development.

State transitions, in the dynamic state evolution model, during the SDLC are
determined by a stochastic process:

St41 = 6(Se, Ag, Ep), (4)
where: A; — set of actions within SDLC phases and their stages; E; —external factors such

as requirement changes, load variations, or environment.
Transition probability is being calculated:

EnekTpoHika Ta iHpopmaLiiHi TexHonorii « 2025 ¢ Bunyck 32 159

Mariia Lyashkevych, Vasyl Lyashkevych, Roman Shuvar

PSir1=S5 |1 St =8, Ar=a) =p;(a), (5)

Hence, the SDLC can be represented as a graph of state transitions, forming an
appropriate digital model of the development process.

As discussed above, the SFS is a complex function which has some characteristics.
The target set of characteristics depends on the specific software, chosen methodology,
technology stack, etc. The core characteristics of SFS with typical metrics for estimation
are shown in Table 3.

Table 3. Core characteristics of SFS

Characteristic Definition Typical Metric

The time system remains

Availability aperational MTBF /| (MTBF + MTTR)
Stability Sensilivity ;:U(Ii[r;anges and Per formance variance
S Probability of fault-free At
Reliability execution R(t)=e
: Probability of absence of
SRR exploitable vulnerabilities 1= CVSSnorm
. Structural and logical . .
Code Quality correctness Cyclomatic Complexity, Coverage
Contextual Consistency with the
environment and the Semantic Consistency Index
Coherence
knowledge base
Risk Probability—impact product Ri=PF - I
" Time share in health
Viability states v L(S) = (Tsy + Tsp) / Teotar

The proposed set of indicators may be refined in the future depending on the
objectives of the SFS study.

General formalization
SFS creates a hierarchy of system viability:

Sy >Sp > Sy >S5, >Sg > Sk, (6)

where “>" indicates higher operational integrity.
Valid transitions form a stochastic graph of SDLC:

SN—)SD—)SV—)SF—)SR—)ST—)SN, (7)

Uncertain, anomalous, and defective states (S ,S,4,S5) may emerge at any SDLC
phase as early indicators of potential failures.

Prior distributions of SFSs are various at different SDLC phases and their stages but
can be estimated. For example, at the “Requirement analysis” phase, a prior distribution of
SFS is estimated as:

160 Electronics and Information Technologies ¢ 2025 - Issue 32

Definition and Formalization of the Software...

mo(S) = P(S | X(eD), (8)

where XD is a vector of requirement features such as completeness, security,
consistency, ambiguity, etc.

As the SDLC progresses, the posterior estimate is updated using new observations
Ok:

T (S) o« P(Ox |S) ZP(S,)nk—l(S,)- 9)
SI

Hence, the SFS in SDLC evolves from a probabilistic forecast to an empirically
measurable condition. State Function in SDLC:

St+1 = f(st'X(req)' Ol:t'At'Et)' (10)

where f describes the predictive-reactive evolution of the SFS.
Optimization criterion:

maxyE {Z 7HQ(S) — p(S) — CADI, (1)
t

where policy m determines actions to maintain viable states.

SFS is a dynamic, multidimensional characteristic that describes the aggregate of
quality, operability, stability, security, and contextual coherence parameters of a software
system at a specific moment, formalized as a vector model S; that evolves under the
influence of internal processes and external environmental factors.

SFS in the SDLC is a stochastic function describing the sequence of transitions
between SFS types:

2= (Sn, Sp, Sv»S4,58, Sk, S, ST), (12)

The statement (11) is driven by SDLC activities and artefacts — from forecastive
prediction at the requirement phase to empirically validated runtime observations during
operations.

Estimation of the proposed definitions
The estimation metrics of the proposed SFS and SFS during SDLC definitions should
be aligned with the formal model (3) and their stochastic evolution through SDLC phases.
The estimation metrics aim to:
e Quantify the current or predicted SFS.
o Detect deviations, degradation, or transitions between states.
e Support automated decision-making, diagnostics, and optimization within SDLC.
o Correlate process-level artefacts, such as requirements, commits, tests, and
metrics with state-level variables.
e Detect component-level and state-level dependencies across all phases of the
SDLC.
e Other software and development methodologies specifics.

EnekTpoHika Ta iHpopmaLiiiHi TexHonorii « 2025 ¢ Bunyck 32 161

Mariia Lyashkevych, Vasyl Lyashkevych, Roman Shuvar

The estimation dimensions represent the key measurable components of a software’s
functional state. They capture functional adequacy ¢ (t) through requirement compliance,
performance u(t) via runtime efficiency, and stability o(t) through reliability under
perturbations. Risk and security p(t) quantify exposure to faults or threats, while contextual
coherence k(t) measures semantic and environmental consistency.

Finally, the lifecycle phase t(t) situates all parameters within the SDLC process
context, ensuring temporal and methodological traceability. Each SFS parameter has its
own measurable indicators and a normalised score in a range of [0, 1] (Table 4).

Composite indices for SFS estimation integrate multiple quality, performance, risk, and
stability metrics into a unified score. They provide a holistic view of software health, simplify
complex multidimensional assessments, enable trend detection, support automated
decision-making, and allow early prediction of degradation across the SDLC.

SFS quality index FSQI:

FSQI(t) = W¢RC'TC+W#RE+Wo-m+WKSCI—WpREX, (13)
where range is [0, 1].
The interpretation is:
e FSQI = 0.9 — Operational(Normal).
¢ 0.7—-0.9 - Degraded.
e < 0.7 - Vulnerable.
Dynamic risk index DRI:
k
DRI(t) =Zpi'li'w"' (14)
i=1

where P; — probability of event i, I; — impact magnitude, w; — weight.
The interpretation is:
e DRI > 0.4 - risk accumulation trend, requiring mitigation actions.
SFS stability index FSSI:

_ aper f(t) + Oerror (t)

Umax

FSSI(t) = 1 (15)

The interpretation is:

e Higher values = better stability.

e Values < 0.5indicate transition toward Sy or Sg.

SDLC functional integrity LFI, which measures how consistently the system remains
in acceptable states across SDLC phases:

1
LFI(t) = T z Q(Sphase) * Atppases- (16)

Composite SDLC state metric CLSM allows for end-to-end lifecycle monitoring:

162 Electronics and Information Technologies * 2025 « Issue 32

Definition and Formalization of the Software...

Table 4. Quantitative Metrics Calculations

Dimension Metric Calculation Range Interpretation
FUTE e Requirement Nim lemented Degree of
adequacy, CO\?era e RC RC szi [0,1] implemented
I3) ge; specified requirements
Requirement RCon = NLP-based Higher = fewer
Consistency, coherence score between [0,1] 9 ,
; conflicts
RCon requirements
Test Pass _ Npassea Functional
Ratio, TPR TPR = Neotar [0,1] correctness
: The right tech
Technical N . _
B TC=1/ adapted [0,1] stack,hthfe higher =
TC Nexpected the fewer
mismatches
Perform., Response RE =1— tresp [0,1] Lower latency —
u(t) Efficiency, RE tsa ’ higher RE
Resource Obtimal
Utilization CPU + MEM P
L RE=1— ——— [0,1] performance
Efficiency, 100 balance
RUE
Mean Time
Stability, Between _ o Higher = more
a(t) Failures, SO Rl [0,) stable
MTBF
Variance of o
: Oper 5 = Standard deviation norm. Lower = more
Key Metrics, P
. of latency/load [0,1] stable
per f
Security/ Vulnerability 2(CVSS; - wy) 1=no
. Vi=1l——— [0,1]
risk, p(t) Index, VI Zw; - 10 vulnerabilities
Risk Expo- _ Expected severity
sure, REX REX = P(Event) X Impact [0,1] of failure
Attacl_< Surface ASR = Nexposed interfaces [0, 1] Lower = more
Ratio, ASR W grveeines secure
Contextual Semantic High value =
coherence, Consistency SCI = sim(v1,v2) [0,1] coherent with
K(t) Index, SCI context
Configuration CD=1-
; : [0,1] 0 = perfect match
Drlft’ CD Slm(confruntime’ Confbaseline)
Lifecycle Phase o Lower = more
, Entropy of transitions L
robustness, Consistency, PC Ey S " [0, logN] deterministic
7(¢) PC = T4 Pitogpi SDLC
Temporal TI = delay between planned norm
Integrity, T1 and actual phase [0,1] Schedule stability

completion

EnekTpoHika Ta iHpopmaLiiHi TexHonorii « 2025 ¢ Bunyck 32 163

Mariia Lyashkevych, Vasyl Lyashkevych, Roman Shuvar

CLSM(t) =

where range is [0, 1].

The interpretation is:

e CLSM > 0.7 — SDLC is healthy (high functional integrity).

e CLSM between 0.4 — 0.7 — partial degradation.

e CLSM < 0.4 - instability or risk accumulation.

At the moment, we are setting the thresholds for SFS classification that are defined by
analyzing normalized quality, risk, and stability metrics such as FSQI, DRI and FSSIacross
multiple SDLC phases and mapping their statistical distributions to empirically observed
states. The entire table with the thresholds is shown in Table 5.

1

Nphases

Nphases

Table 5. Thresholds for SFS classification

> (FsQii - DRI),
k=1

(17)

SFS FSQI range DRI range FSSI range Qualitative interpretation
Fully stable, performant, secure;
Normal, S, 0.90 —1.00 <0.10 >0.85 system meets or exceeds all
requirements.
Minor performance decline or
Degraded. 75 000 %19~ 070-085 partial overload without failure;
S 0.22 . I
functionality intact.
The system is functional, but
Vulnerable, 0.66 —0.78 L2 0.60 — 0.78 operates under elevated security or
Sy 0.38 R
reliability risk.
. spikes > ; i
Anomalous, variable 0.45 0.45—0.70 Behavioral dewa.tlons frqm
S (= 0.55— (> 30 (fluctuating) expected norms; potential
“ 0.85) 9 precursor to defect or attack.
events)
. Logical or functional errors appear
DEIEENTE, | L0 —07 <0.25 0.55-0.75 without a full crash, incorrect
S (local)
outputs.
Critical system disruption,
Failure, Sg <0.55 >0.45 <0.45 downtime, or data loss requires
immediate recovery.
: decreasing increasing System restoring from failure
Reco;/erlng, (%gﬁs_ie%tYTz) 0.30 — 0.55 — toward normal; self-healing or
2 0.20 0.75 restart in progress.
- Short-term unstable configuration
HERSIENED, | CHel =080 - G20 = g on g during deployment, migration, or
Sr (transient) 0.35
Cl/CD.
. State of scope misalignment,
Unc;artaln, 0.68 — 0.76 062??5_ 0.60 - 0.70 ambiguous requirements, or
U .

resource/timeline mismatch.

164

Electronics and Information Technologies ¢ 2025 « Issue 32

Definition and Formalization of the Software...

To prove the formalization, we currently validate thresholds via dynamic modelling and
Monte Carlo simulations of SDLC (Fig. 1), comparing predicted and actual state transitions,
ensuring consistent separability and stability of states across iterations and empirical test
datasets.

12
10 s

SN
z <o
S 8+ ERY
© e SA
z o sB
S 61 s F
E SR
o ST
o 4 - su

2 -

0 B

0.0 0.2 0.4 0.6 0.8 1.0
FSQI normalised score [0-1] (a)

Probability density

0.0 0.2 0.4 0.6 0.8 1.0
DRI normalised score [0-1] (b)

Probability density

0.0 0.2 0.4 0.6 0.8 1.0
FSSI normalised score [0-1] (C)

Fig. 1. Results of Monte Carlo simulation for FSQI (a); DRI (b) and FSSI (c).

EnekTpoHika Ta iHdopmauinHi TexHonorii « 2025 « Bunyck 32 165

Mariia Lyashkevych, Vasyl Lyashkevych, Roman Shuvar

The generated distributions of FSQI, DRI and FSSI across the nine functional
software states: Sy (marked as ‘S_N’in Fig. 1), Sp, Sy, S4, Sg, Sr, Sr, ST, Sy) demonstrate
that the proposed mathematical formalization reliably produces distinct, separable, and
meaningful clusters that reflect the expected behavior of software under varying levels of
quality, risk, and stability. Each distribution captures the theoretical assumptions of
the model while revealing realistic overlaps in transitional or ambiguous operational
conditions.

The simulations correctly reproduce the expected real-world fuzziness of these states.
It has shown that no single metric is sufficient, but the vectors together produce reliable
decision boundaries.

The results achieved provide an effective and applicable baseline for application in
SFS analytics, real-time SDLC monitoring, and decision support. Monte Carlo modelling
and updated classification thresholds can reliably distinguish SFS through measurable
indicators FSQI, DRI and FSSI thereby enabling continuous assessment of quality, risk,
and stability. These models can be integrated into CI/CD pipelines, DevSecOps control
panels, and as digital twin models of SDLC to predict state transitions, detect early
performance degradation, and automatically execute recovery strategies.

From the perspective of LLM-based and agentic SDLCs, the concept of SFS takes on
additional meaning. In these systems, software behavior is influenced by nondeterministic
generative processes, evolving internal representations, and external knowledge sources.
Therefore, SFS should not only include execution-level attributes, but also semantic
consistency, contextual validity, and consistency between the produced artifacts and the
software development lifecycle goals. The proposed SFS model provides a formal basis
for representing these dimensions without binding the method to a specific generative
technique.

CONCLUSION

This paper proposes a formal and computational framework for modeling the SFS
throughout the SDLC, extending classic state-based and quality-oriented approaches to
context-aware and probabilistic representations.

The results show that traditional models are insufficient to cope with new development
paradigms that involve some or all of the code generation, in which software behavior
depends on execution technology and the production environment.

The proposed SFS abstraction enables predictive analysis, interphase thinking, and
state-aware orchestration of DevSecOps and agent-based development pipelines,
providing a foundation for intelligent SDLC monitoring and decision support.

The next step is to transform the theoretical model into a working platform for
the implementation of the proposed model in real-world SDLCs, integrating it with
generative processes, and evaluating its effectiveness in large-scale industrial
environments.

ACKNOWLEDGMENTS AND FUNDING SOURCES

The authors received no financial support for the research, writing, and publication of
this article.

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that the research was conducted in the absence of any conflict of
interest.

166 Electronics and Information Technologies ¢ 2025 - Issue 32

Definition and Formalization of the Software...

AUTHOR CONTRIBUTIONS

Conceptualization, [M.L.]; methodology, [M.L.]; validation, [R.S., V.L.]; formal analysis,
[M.L.]; investigation, [M.L.]; resources, [M.L.]; data curation, [M.L.]; writing — original draft
preparation, [M.L.]; writing — review and editing, [V.L.]; visualization, [M.L.]; supervision,
[R.S.,, V.L].

All authors have read and agreed to the published version of the manuscript.

REFERENCES

[1]1 Lyashkevych, M. Y., Lyashkevych, V. Y., & Shuvar, R. Y. (2025). Security and other
risks related to LLM-based software development. Ukrainian Journal of Information
Technology, 7(1), 86—96. https://doi.org/10.23939/ujit2025.01.086.

[2] Lyashkevych, M. Y., Rohatskiy, I. Y., Lyashkevych, V. Y., & Shuvar, R. Y. (2024).
Software risk taxonomy creation based on the comprehensive development process.
Science and Technology: New Horizons of Development 209 — Electronics and
Information Technologies, 1(27), 59—71. https://doi.org/10.30970/eli.27.5.

[3] Hossain, Mohammad. (2023). Software Development Life Cycle (SDLC)
Methodologies for Information Systems Project Management. International Journal
For Multidisciplinary Research. https://doi.org/10.36948/ijffmr.2023.v05i05.6223.

[4] State Enterprise “UkrNDNC.” (2016). DSTU ISO/IEC 25010:2016 — Systems and
software engineering — Systems and software quality requirements and evaluation —
System and software quality model. Kyiv, Ukraine: SE “UkrNDNC.” (In Ukrainian;
translated title.)

[5] State Committee of Ukraine for Technical Regulation and Consumer Policy. (2005).
DSTU ISO/IEC 9126-1:2005 — Information technology — Software product quality —
Part 1: Quality model. Kyiv, Ukraine: Derzhspozhyvstandart Ukrainy. (In Ukrainian;
translated title.)

[6] International Organization for Standardization. (2011). ISO/IEC 25010:2011 —
Systems and software engineering — Systems and software Quality Requirements
and Evaluation (SQuaRE) — System and software quality models. Geneva,
Switzerland: ISO. URL: https://is025000.com/index.php/en/iso-25000-standards/iso-
25010.

[71 Jamshidi, P., Pahl, C., Lewis, J., & Tilkov, S. (2020). Microservices: The journey so
far and challenges ahead. IEEE Software, 38(1), 24-31. URL:
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8354433.

[8] R.Yedida and T. Menzies, "How to Improve Deep Learning for Software Analytics (a
case study with code smell detection)," 2022 IEEE/ACM 19th International
Conference on Mining Software Repositories (MSR), Pittsburgh, PA, USA, 2022,
pp. 156-166, doi: https://doi.org/10.1145/3524842.3528458.

[9] Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., Lee,
P., Li, Y., Lundberg, S., Nori, H., & others. (2023). Sparks of artificial general
intelligence: Early experiments with GPT-4. arXiv preprint arXiv:2303.12712.
https://doi.org/10.48550/arXiv.2303.12712.

[10] S. Silva, A. Tuyishime, T. Santilli, P. Pelliccione and L. lovino, "Quality Metrics in
Software Architecture," 2023 IEEE 20th International Conference on Software
Architecture (ICSA), L'Aquila, Italy, 2023, pp. 58-69, doi:
https://doi.org/10.1109/ICSA56044.2023.00014.

[11] D. Di Pompeo and M. Tucci, "Quality Attributes Optimization of Software
Architecture: Research Challenges and Directions," 2023 IEEE 20th International
Conference on Software Architecture Companion (ICSA-C), L'Aquila, Italy, 2023, pp.
252-255, doi: https://doi.org/10.1109/ICSA-C57050.2023.00061.

EnekTpoHika Ta iHpopmaLiiiHi TexHonorii « 2025 ¢ Bunyck 32 167

https://doi.org/10.23939/ujit2025.01.086
https://doi.org/10.30970/eli.27.5
https://doi.org/10.36948/ijfmr.2023.v05i05.6223
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8354433
https://doi.org/10.1145/3524842.3528458
https://doi.org/10.48550/arXiv.2303.12712
https://doi.org/10.1109/ICSA56044.2023.00014
https://doi.org/10.1109/ICSA-C57050.2023.00061

Mariia Lyashkevych, Vasyl Lyashkevych, Roman Shuvar

[12] Semenov, S., Tsukur, V., Molokanova, V., Muchacki, M., Litawa, G., Mozhaiev, M., &
Petrovska, I. (2025). Mathematical Model of the Software Development Process with
Hybrid Management Elements. Applied Sciences, 15(21), 11667.
https://doi.org/10.3390/app152111667.

[13] Li, Can & Grossmann, Ignacio. (2021). A Review of Stochastic Programming
Methods for Optimization of Process Systems Under Uncertainty. Frontiers in
Chemical Engineering. 2. 622241. https://doi.org/10.3389/fceng.2020.622241.

[14] Hopcroft, J. E., Motwani, R., & Ullman, J. D. (2006). Introduction to automata theory,
languages, and computation (3rd ed.). Pearson/Addison Wesley.

[15] Lewis, H. R., & Papadimitriou, C. H. (1998). Elements of the theory of computation
(2nd ed.). Prentice Hall.

[16] Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3), 231-274. https://doi.org/10.1016/0167-
6423(87)90035-9.

[17] OMG (Object Management Group). (2017). Unified modeling language (UML)
specification (Version 2.5.1, OMG Formal Document No. 17-12-01).
https://www.omg.org/spec/UML/2.5.1/.

[18] Forsberg, K., Mooz, H., & Cotterman, H. (2005). Visualizing project management:
Models and frameworks for mastering complex systems (3rd ed.). Wiley.
https://www.wiley.com/en-
us/Visualizing+Project+Management%3A+Models+and+Frameworks+for+Mastering
+Complex+Systems%2C+3rd+Edition-p-x000260487.

[19] Boehm, B. (1988). A spiral model of software development and enhancement.
Computer, 21(5), 61-72. https://doi.org/10.1109/2.59.

[20] Beck, K. (2005). Extreme programming explained: Embrace change (2nd ed.).
Addison-Wesley.

[21] State (computer science). (2024). Wikipedia, The Free Encyclopedia. URL:
https://en.wikipedia.org/wiki/State (computer science).

[22] Musa, J. D. (1998). Software reliability engineering: More reliable software, faster
and cheaper. McGraw-Hill.

[23] Menzies, T., & Zimmermann, T. (2023). Software analytics in DevOps. IEEE
Transactions on Software Engineering, 49(3), 512-530.
https://doi.org/10.1109/TSE.2022.3175113.

[24] Kim, G., Debois, P., Willis, J., & Humble, J. (2021). The DevOps handbook: How to
create world-class agility, reliability, and security in technology organizations (2nd
ed.). IT Revolution Press.

[25] International Organization for Standardization. (2011). ISO/IEC 25010:2011 —
Systems and software engineering — Systems and software Quality Requirements
and Evaluation (SQuaRE) — System and software quality models. 1SO.
https://www.iso.org/standard/35746.html.

[26] DSTU ISO/IEC 25010:2025. (2025). Systems and software engineering — Systems
and software quality requirements and evaluation (SQuaRE) — System and software
quality model (ISO/IEC 25010:2023, IDT). Kyiv: SE “UkrNDNC”.
https://online.budstandart.com/ua/catalog/doc-page.html?id doc=116491.

[27] Cheng, B. H. C., de Lemos, R., Giese, H., Miller, H., Shaw, M., & Uchitel, S. (Eds.).
(2009). Software engineering for self-adaptive systems (Vol. 5525). Springer.
https://doi.org/10.1007/978-3-642-02171-8.

[28] Kephart, J. O., & Chess, D. M. (2003). The vision of autonomic computing.
Computer, 36(1), 41-50. https://doi.org/10.1109/mc.2003.1160055.

[29] Wooldridge, M. (2002). An introduction to multiagent systems. John Wiley & Sons.
https://uranos.ch/research/references/Wooldridge 2001/TLTK.pdf.

168 Electronics and Information Technologies ¢ 2025 - Issue 32

https://doi.org/10.3390/app152111667
https://doi.org/10.3389/fceng.2020.622241
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1016/0167-6423(87)90035-9
https://www.omg.org/spec/UML/2.5.1/
https://www.wiley.com/en-us/Visualizing+Project+Management%3A+Models+and+Frameworks+for+Mastering+Complex+Systems%2C+3rd+Edition-p-x000260487
https://www.wiley.com/en-us/Visualizing+Project+Management%3A+Models+and+Frameworks+for+Mastering+Complex+Systems%2C+3rd+Edition-p-x000260487
https://www.wiley.com/en-us/Visualizing+Project+Management%3A+Models+and+Frameworks+for+Mastering+Complex+Systems%2C+3rd+Edition-p-x000260487
https://doi.org/10.1109/2.59
https://en.wikipedia.org/wiki/State_(computer_science)
https://doi.org/10.1109/TSE.2022.3175113
https://www.iso.org/standard/35746.html
https://online.budstandart.com/ua/catalog/doc-page.html?id_doc=116491
https://doi.org/10.1007/978-3-642-02171-8
https://doi.org/10.1109/mc.2003.1160055
https://uranos.ch/research/references/Wooldridge_2001/TLTK.pdf

Definition and Formalization of the Software...

[30] Bommasani, R., Hudson, D. A., Adeli, E., Agrawal, P., Ahuja, S., Argyriou, A, ...
Liang, P. (2022). On the opportunities and risks of foundation models. arXiv preprint
arXiv:2108.07258. http://arxiv.org/abs/2108.07258.

[31] Tran, Khanh-Tung & Dao, Dung & Nguyen, Minh-Duong & Pham, Viet & O'Sullivan,
Barry & Nguyen, Hoang. (2025). Multi-Agent Collaboration Mechanisms: A Survey of
LLMs. 10.48550/arXiv.2501.06322. https://doi.org/10.48550/arXiv.2501.06322.

[32] Pomorova, O. Fuzzy system of the evaluation and prediction of overall risks in
software development [Text] / O. Pomorova, M. Lyashkevych //Proceedings of the
6th International Conference ACSN-2013. — Lviv: Ukraine Technology, 2013. —
Pp.126-129.

BU3HAYEHHS TA ®OPMATI3ALIA KOHLUENUII @YHKLIOHANIBHOIO
CTAHY NPOIrPAMHOIO 3ABE3MNEYEHHA MPOTAINOM YCbOI'O
XUTTEBOIO LIUKIY PO3POBKU

Mapis JTawkeeuy ©©0*, Bacune Jlawkeeuy 00, Lllyeap PomaHn =0
Kagpedpa cucmemHo20 npoekmysaHHsI

®akynbmem efieKmpOoHIKU ma KOMITtomepHUX mexHorsnoait

JIbsiecbkull HayioHanbHUl yHieepcumem imeHi IeaHa ®paHka,

8yn. [ipazomaHosa 50, 79005, fibeis, YkpaiHa

AHOTALIA

Betyn. Y cyyacHomy cBiTi nporpamHe 3abesneveHHs (M13) € KpUTUYHO BaXnNMBUM
KOMMOHEHTOM Byab-AKkoi iHdopMaLiiiHoi cuctemun. Moro pospobka BuMarae 3HauHMUX
pecypciB i CKnagHUX TEXHIYHMX PilleHb, @ PO3BMTOK TEXHOSONI HACTINBbKN LUBUAKUNA, LLO He
BCi MOHATTA Ta BM3HayeHHs B ranysi M3 e uvitko copmanizoBaHumu. Lle ocobnmeo
cToCcyeTbCst (pyHKUioHanbHoro crany M3 (PCM3) ynpogoBx XUTTEBOTO LMKIY PO3POOKM
(SDLC), apxe nepepbaumtn BCi Moxnuei @DCIM3 nNpakTU4HO HEMOXMIMBO 4epe3
OWHaMiYHICTb cepefoBULL, 3MiHW BMMOr, B3aEMOAII0 KOMMOHEHTIB i MOBEAiHKY yYacCHUKIB
npoekty. Lle cTBoptoe BMKNWK Ans cdpopmanisauii, aHanidy, NporHo3y Ta MOHITOPUHry Ta
yNpaBniHHA LMMK CTaHaMW.

Martepianu Ta meTtoau. BusHaueHHs Ta chopmanizadii PCMN3 oxonnoTb KOHLEenuii
i3 Teopii CTaHiB y KOMM'IOTEPHUX Haykax, Mogeni AKOCTi 3 MiKHapOAHMX CTaHAapTiB
ISO/IEC 25010:2011 Ta [OCTY ISO/IEC 9126-1:2005. Ha ocHOBi uux mxepen
peanisytoTbcs popmani3oBaHi nigxoau 4o onucy Ta BiacTexeHHs 3miH y ®CI13 npoTsirom
SDLC. BwusHauyeHi noHatta ®CIM3 Ta OCIM3 npotarom SDLC dopmanisoBaHi
MaTeMaTu4yHo, Lo [o03Bonse OyayBaTu AvHamivHi Mogeni eBonwuii cTaHiB nNpoTarom
SDLC Ha ocHOBi cTOXacTuyHOi yHKUii nepexogiB. [Onsa nobynosu Mopenei
BMKOPUCTOBYIOTbCA aTpMbyTK AKOCTI Taki Ak yHKUiOHanbHa BiAMOBIOQHICTb, HAAIVHICTb,
Bpas3nMBICTb, NPUAATHICTb 4O TECTYBAHHS Ta iHWI y KOMOiHaLii 3 NoAieBO-OpieHTOBaHMMMU,
aBTOMaTHUMM Ta CTAHO-OPIEHTOBAHUMUN MoAeNnaMM. Takox HaBeaeHo pisHi Tunu OCI3 ta
ix 3B’a30k i3 SDLC.

Pesynbratu. OTpuMaHi pesynbTaT AOCNIMXEHHS oxonnioTb hopmanizauio PCI13,
po3pobKy OLHOYHMX METPUMK Ta NPaKTUYHI pekomMeHaauii aons aHanitukm craxie M3 Ha Bcix
etanax SDLC, wo pnosBonsie 3a6e3neunty NpoaKTUBHUIA KOHTPOSb SIKOCTi, HagilHOCTI,
Ge3neku Ta BigNOBIAHOCTI NPOrpPaMHUX CUCTEM.

BucHoBkun. ®opmanisauis NnoHATTA dyHKUiOHaNbHMX cTaHiB M3, BKHOYHO 3 iX TMnamu,
BMacTMBOCTAMM Ta NapameTpamMu, [03BONuiia BCTAHOBUTW OOIPYHTOBaHUIM 3B’A30K i3
¢asamm SDLC. 3anponoHoBaHi METPUKM Ta pekoMeHAauii CNpUaTL PO3BUTKY aHamMITUKN
CTaHiB MpOrpamMHMX CUCTEM, 3abe3neydyroumn Kk TEOPETUYHY LiMiCHICTb nmigxoay, Tak i Moro

EnekTpoHika Ta iHpopmaLiiiHi TexHonorii « 2025 ¢ Bunyck 32 169

http://arxiv.org/abs/2108.07258
https://doi.org/10.48550/arXiv.2501.06322
https://orcid.org/0000-0002-9655-036X
mailto:mariia.liashkevych@lnu.edu.ua
https://orcid.org/0000-0003-2810-6061
mailto:vasyl.liashkevych@lnu.edu.ua
https://orcid.org/0000-0001-6768-4695
mailto:roman.shuvar@lnu.edu.ua

Mariia Lyashkevych, Vasyl Lyashkevych, Roman Shuvar

NPaKTU4Hy 3aCTOCOBHICTb y 3aBAaHHAX MOHITOPUHIY, aHanidy Ta NPOrHo3yBaHHs cTaHy 3.
Lla meToponoris CTBOPKOE HOBY OCHOBY [AOnd caMoHaByanbHux SDLC-opieHToBaHux
ekocuctem, y skux ®CII3 NporHo3ykTbCs, OLHIONTECA Ta KEPYHTbCA aBTOMaTUYHO B
peanbHOMY 4aci.

Knro4oei cnoea: XMTTEBUW LMK NporpamHoro 3abesneyeHHs, yHKLiOHanbHUIM cTaH
nporpamMHoro 3abesnevyeHHs, dyHKLUioHanbHa NpUMAaTHICTb, NPOrHO3YBaHHS
CTaHy nporpamMHoOro 3abesneyeHHs, aHaniTuka @YHKLiOHanbLHOro CTaHy
nporpaMHoro 3abesneyeHHsi, XapakTepucTUKM CTaHy MpOrpamHoro
3abesneyeHHs

Received / OpepxaHo Revised / JoonpausoBaHo Accepted / MpuitHato Published / Ony6nikoBaHo
14 November, 2025 01 December, 2026 01 December, 2025 25 December, 2025

170 Electronics and Information Technologies ¢ 2025 « Issue 32

