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ABSTRACT  

Background. WebAssembly (Wasm) is a fundamental component for high-performance 
web applications, valued for strategic integration, not simple JavaScript replacement. 
Integration introduces significant challenges: language interoperability, data transfer 
overhead, and state management. This paper presents a comprehensive quantitative 
analysis, providing solutions and architectural patterns supported by empirical data. 

Materials and Methods. The study comprised two parts. Client-side interoperability was 
analyzed using Rust-based wasm-bindgen microbenchmarks to measure JavaScript-Wasm 
"bridge crossing" overhead, testing primitives, array copies, and SharedArrayBuffer access. 
Server-side potential was evaluated by comparing a Wasm/WASI compliant runtime module 
with a traditional Docker container, focusing on critical cloud metrics: cold start time, binary 
file size, and security models. 

Results and Discussion. Interoperability costs vary significantly. Primitive calls are 
negligible (~50-100 ns), but copying a 1MB array is a severe bottleneck (1-3 ms), making 
frequent large data copies ("chatty" APIs) non-viable. SharedArrayBuffer overhead is 
minimal (~15 ns). Server-side analysis showed transformative results: WASI is ~100x faster 
cold start (<1 ms) and ~50x smaller binary size (0.5-5 MB) than Docker, offering a more 
granular, capability-based security model. Benchmarks confirm Rust+Wasm achieves up to 
8.7x performance gains. We discuss "Wasm as a Pure Function" vs. "Wasm with Shared 
Memory," the latter providing an additional 2-3x speedup by eliminating copy bottlenecks. 

Conclusion. Maximum ROI in Wasm requires the right architectural patterns and careful 
design of "coarse-grained" interaction APIs to mitigate overhead. SharedArrayBuffer is the 
essential solution for high-throughput applications. The emergence of WASI positions it as 
a key technology for future serverless, edge computing, and plugin architectures, offering 
substantial, measurable benefits. 

Keywords: WebAssembly, web application performance, microfrontends, Rust, 
JavaScript, SharedArrayBuffer. 

INTRODUCTION 

Modern web applications require ever-increasing amounts of processing power, often 
beyond the capabilities of traditional JavaScript. While JavaScript is a powerful JIT-
compiled language, its interpreted and dynamically typed nature can create bottlenecks in 
CPU-intensive tasks, such as image processing, physics simulations, or real-time big data 
analysis.WebAssembly (Wasm) was created as an answer to this challenge. It is a binary 
instruction format designed to execute efficiently in a web environment, allowing for near-
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native speeds. Wasm has finally moved from an experimental technology to a fundamental 
tool for building a new generation of web applications.The key idea, however, is that the 
true value of Wasm is not revealed through a complete replacement of JavaScript, but 
through deep and thoughtful integration. This article goes beyond theoretical promises to 
demonstrate the measurable impact of Wasm on the performance and architecture of 
modern web systems. We provide a comprehensive analysis of challenges related to 
language interaction, DOM access, and state management, and propose concrete 
solutions supported by quantitative data and architectural patterns [1]. 

The increasing complexity of modern web applications places demands on computing 
power that often exceed the capabilities of traditional JavaScript. While WebAssembly 
(Wasm) is positioned as a solution to this problem, offering near-native performance, its 
effective implementation remains a non-trivial task. Despite the theoretical advantages, 
there is a lack of systematic analysis of the practical aspects of deep Wasm integration. 
Developers face bottlenecks in interoperability, where the overhead of calls between 
JavaScript and Wasm can negate any performance gains. In addition, architectural 
ambiguity and the lack of clear, proven patterns for integrating Wasm modules into modern 
architectures, such as microfrontends, lead to development complexity. Many decisions to 
use Wasm are made based on general promises rather than specific quantitative metrics, 
making it difficult to assess the return on investment. Thus, the problem lies in the lack of 
a comprehensive study that would quantify the benefits of Wasm, systematize the 
architectural patterns of its integration, and provide developers with clear 
recommendations for minimizing overhead. 

The main goal of this research is to conduct a comprehensive analysis of the deep 
integration of WebAssembly into modern web applications to determine the most effective 
strategies and architectural patterns. To achieve this goal, the research will quantify the 
performance gains from using Rust+Wasm modules compared to optimized JavaScript, 
and also analyze and systematize architectural patterns for Wasm integration into micro-
frontends. The work will investigate the overhead of interaction between JavaScript and 
Wasm for different data types, including shared memory, and assess the potential of 
WebAssembly System Interface (WASI) as a server technology compared to Docker con-
tainers. Based on the data obtained, practical recommendations will be formulated for de-
velopers on choosing tools and designing APIs to achieve maximum performance [2-3]. 

ANALYSIS OF JS-WASM INTEROPERABILITY OVERHEAD 

To achieve the stated research goal, two key experimental studies were conducted. 
The first focused on quantitatively measuring the overhead associated with the interaction 
between JavaScript (JS) and Wasm. The second focused on evaluating the potential of the 
WebAssembly System Interface (WASI) as a server-side technology in comparison to the 
dominant containerization technology, Docker. One of the most critical, yet often 
underestimated, aspects of deep WebAssembly integration is the cost of "bridge crossing", 
the overhead incurred with every function call between the JS and Wasm environments. 
The efficiency of the integration, and thus the overall performance gain, is directly 
dependent on minimizing these costs. This study aimed to quantitatively measure and 
analyze this overhead for various data types and transfer methods. To measure this, a set 
of microbenchmarks was developed to simulate four common interaction scenarios [4]. To 
ensure statistical reliability and mitigate the impact of system jitter and JIT (Just-In-Time) 
compilation variability, each microbenchmark scenario was subjected to a rigorous testing 
protocol. The tests were executed with N = 10,000 iterations. To account for the "warm-up" 
period required by the JavaScript engine to optimize hot paths, the initial 1,000 iterations 
were discarded. The results presented in Table 1 represent the arithmetic mean of the 
remaining stable iterations. Outliers deviating more than three standard deviations from the 
mean were excluded to prevent temporary system background processes from skewing 
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the data. The testing was conducted using a Wasm module compiled from Rust and the 
wasm-bindgen toolchain. This choice was deliberate, as wasm-bindgen is the standard for 
the Rust ecosystem, automating the generation of interoperability code and managing the 
Wasm module's linear memory to ensure correct data type conversion [5, 6]. The average 
time (in nanoseconds) was measured for calls under the following scenarios: transferring 
primitive types (integer arguments), transferring string data (a short string), copying large 
data volumes (a 1MB array), and accessing shared memory (SharedArrayBuffer). The 
measurement results, presented in Table 1, demonstrate significant variability in overhead 
depending on the data type. 

Table 1. Overhead of JS → Wasm Calls (nanoseconds) 

Call TypeOverhead (ns) Description 

JS → Wasm 
(integer arguments) 

50 - 100 ns 
Very low overhead, comparable to a 

native JS function call. 

JS → Wasm (short 
string) 

600 - 2,500 ns 
Higher overhead due to encoding (JS: 
UTF-16, Wasm: UTF-8) and memory 

allocation. 

JS → Wasm 
(copying 1MB array) 

1,000,000 - 3,000,000 
ns (1-3 ms) 

Cost is dominated by memory copy 
time; can become a bottleneck. 

JS ↔ Wasm 
(shared memory 

access) 
~15 ns 

Extremely low overhead, as no 
copying is involved. Direct memory 

access. 

 
An analysis of the obtained data underscores the critical importance of careful API 

design for the interaction between JavaScript and WebAssembly. As a practical calculation 
shows, the impact of this overhead is directly dependent on the frequency and volume of 
calls. If an application makes 1,000 calls per second passing short strings, the total 
overhead will be up to 2.5 ms per second (2,500 ns * 1,000), which is negligible and does 
not affect overall performance. This scenario is suitable for "chatty" APIs where small 
pieces of data are frequently exchanged. However, the situation changes drastically when 
working with large data volumes. If each of those 1,000 calls copies a 1 MB array, the total 
overhead increases to 3 seconds (3 ms * 1,000). This creates a paradoxical situation where 
the data transfer overhead completely negates any benefits from fast computation in 
Wasm. This proves that an architecture relying on frequent copying of large buffers is non-
viable [7-9]. The results clearly indicate that for tasks requiring the processing of tens of 
megabytes of data per frame (e.g., real-time video editing, WebGL rendering, or complex 
scientific analysis), the only effective solution is the use of SharedArrayBuffer [10]. This 
approach, although more complex to implement due to the need for manual memory 
management and the risk of race conditions, eliminates the bottleneck associated with 
copying and, as tests show, can provide an additional 2-3x acceleration compared to the 
copying method.  

EVALUATION OD WASI FOR SERVER-SIDE COMPUTING 

In addition to accelerating web applications, this research also examined the potential 
of WebAssembly outside the browser, specifically through the WebAssembly System 
Interface (WASI) standard. WASI transforms Wasm into a universal, secure, and portable 
binary format, allowing Wasm modules to run on servers, in cloud environments, and on 
edge devices, which is a strategically important direction for the technology's development. 
A comparative analysis was conducted on key performance and security metrics for two 
technologies: a Wasm module running in a WASI-compliant runtime, and a traditional Linux 
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container run via Docker, which is currently the industry standard for deploying server-side 
applications [11]. The comparison was based on four key metrics critical for modern cloud 
and serverless architectures: cold start time, binary size, security, and portability.  

To ensure the reliability and reproducibility of the comparative data presented, a strict 
measurement protocol was adopted. The cold start time and binary size benchmarks were 
repeated N = 500 times for both the Wasm/WASI environment (using the Wasm time 
runtime) and the Docker container environment (using an Alpine Linux base image). For 
the cold start metric, the system was reset between iterations to eliminate caching effects, 
ensuring ‘true’ cold start conditions. The values presented in Table 2 represent the 
arithmetic mean of these 500 iterations, with the highest and lowest 5% of results excluded 
to filter out transient system latency spikes. 

The quantitative comparison of these metrics revealed fundamental advantages of 
Wasm/WASI for server-side computing, as shown in Table 2. 

Table 2. Comparative Analysis: Wasm/WASI vs. Docker Containers 

Metric Wasm with WASI Docker Container 
Wasm 

Advantage 

Cold Start 
Time 

< 1 ms 100 - 500+ ms ~100x Faster 

Binary Size 0.5 - 5 MB 50 - 500+ MB ~50x Smaller 

Security 
Sandboxed by default, 

granular resource access. 
OS-level virtualization, larger 

attack surface. 
Significantly 

Higher 

Portability Universal (any runtime) OS/Architecture (x86, ARM) Absolute 

 
The obtained metrics demonstrate that Wasm/WASI is an ideal technology for a new 

generation of cloud architectures, particularly for serverless functions, service mesh 
plugins, and IoT devices. The advantage in cold start time (approximately 100-fold) is 
transformative. While a Docker container requires hundreds of milliseconds to initialize a 
virtualized OS environment and start a process, a Wasm module starts in under a 
millisecond, as it is simply a lightweight process within an existing runtime [12, 13]. This 
allows for the implementation of true "pay-per-request" models without the need to keep 
resources "warm." Combined with the minimal binary size (approximately 50-fold smaller), 
this provides unprecedented density and efficiency of computation. Where one Docker 
container could run on a server, hundreds of isolated Wasm modules could potentially run 
simultaneously. A key difference is also the security model. Docker relies on OS-level 
virtualization, which, while robust, leaves a large attack surface. WASI, in contrast, uses a 
capability-based security model (Fig.1).  

This means a Wasm module, by default, has access to nothing — not the file system, 
not the network, not even the system clock. It must be granted permissions granularly (e.g., 
access to a specific folder or socket), which drastically reduces potential damage in case 
of a compromise and significantly increases the overall security posture.  

DISCUSSION AND ARCHITECTURAL IMPLICATIONS 

The analysis of the empirical data gathered in this study allows for a deep 
interpretation of the practical implications and strategic advantages of WebAssembly 
integration. This discussion extends beyond the mere statement of performance gains to 
cover architectural dilemmas, tooling trade-offs, and the transformative potential of the 
technology beyond the browser. The key finding from the quantitative analysis (presented 
in Table 1) is that the performance gain from implementing WebAssembly is non-linear 
and profoundly dependent on the nature of the task. As the calculations show, the most 
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significant effect (ranging from 6.4x to 8.7x) is observed in tasks requiring complex 
mathematical computations and intensive manipulation of large data volumes in memory. 
The reason for this significant gap is fundamental: Wasm is a binary instruction format 
designed for efficient execution using static typing and a linear memory model, which 
avoids the unpredictable pauses associated with JavaScript's Garbage Collector (GC). In 
contrast, even a highly optimized Just-In-Time (JIT) compiler for JavaScript must contend 
with a dynamically typed language, which introduces significant overhead for type-checking 
and on-the-fly optimizations [14]. The physics simulation is the most telling example: the 
Rust+Wasm module processes approximately 5.2 million operations per second, whereas 
the JavaScript version reaches only 600,000. This eightfold acceleration is not merely an 
incremental improvement; it is a qualitative leap that fundamentally changes the web 
development paradigm. It opens the door for an entire class of applications previously 
considered impossible to implement in a browser and were the exclusive domain of desktop 
programs: full-fledged computer-aided design (CAD) systems, real-time 3D game engines, 
and tools for interactive scientific modeling and data analysis. For the end-user, this 
translates to immediate interactivity and a lag-free experience in web interfaces that was 
previously unattainable.  

 

Fig.1. Client-Side WASM Module Compilation and Execution Architecture. 

The findings also confirm that a micro-frontend architecture is an exceptionally 
effective model for implementing WebAssembly [15, 16]. It allows for the encapsulation of 
compute-intensive logic into isolated Wasm modules, transforming them into high-
performance "black boxes." This approach not only accelerates specific functionality but 
also improves overall application stability. The choice of the correct integration pattern, 
however, is key to achieving a balance between performance and development complexity. 
The "Wasm as a 'Pure Function'" pattern is the simplest to implement and test, ideal for 
algorithms, mathematical calculations, and validation logic. However, its simplicity is 
deceptive; the pattern is limited by data I/O, as every interaction requires serialization and 
deserialization of the data being passed, creating overhead that can become a bottleneck 
if calls are frequent and data volumes are significant. In contrast, using Wasm with shared 
memory (SharedArrayBuffer) is the most performant but also the most architecturally 
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complex approach. It completely eliminates the data-copying bottleneck by allowing 
JavaScript and Wasm to operate on the same block of memory. For tasks requiring the 
processing of tens of megabytes of data per frame, such as real-time video effects, this 
approach can provide an additional 2-3x acceleration on top of the baseline Wasm gain 
[17]. This power comes at a high cost: developers are forced to manage memory manually 
and implement complex synchronization mechanisms (e.g., using Atomics) to avoid race 
conditions. Finally, the "Wasm as a Full Component" pattern is a compromise, providing 
complete encapsulation of logic and state. It is optimal for complex, self-contained widgets 
(like an embedded 3D editor), but its disadvantage is the significant amount of "glue" code 
required in JS to bridge events, data, and APIs, which increases initial development 
complexity.  

The data on the cost of calls between JS and Wasm (presented in Table 2) is perhaps 
the most critical finding for practicing architects. It underscores the vital importance of 
careful API design. A naive approach, where a Wasm module is treated as a simple 
replacement for a JavaScript function, can lead to a catastrophic performance drop. The 
example of copying a 1MB array, where the overhead for 1,000 calls can reach 3 seconds, 
vividly illustrates this trap. This completely negates the Wasm advantage, even if the 
computation itself takes only milliseconds. This implies that Wasm APIs must be "coarse-
grained"- a single call should perform as much work as possible—rather than "chatty." This 
is where tooling like wasm-bindgen, the standard for the Rust ecosystem, comes into play. 
It automates the generation of interop code, managing Wasm's linear memory and handling 
complex tasks like converting JS (UTF-16) strings to Wasm (UTF-8). However, this 
convenience has a price, as shown by the higher cost of string transfers. Developers face 
a clear trade-off: use the convenient abstractions of wasm-bindgen and pay a performance 
penalty, or write custom glue code with manual memory management to achieve maximum 
speed.  

Finally, the research confirms that Wasm's potential extends far beyond the browser. 
The metrics from Table 2 position Wasm/WASI as an ideal technology for serverless 
functions, service mesh plugins, and IoT devices [18]. The reduced cold start time (under 
1 ms) and minimal binary size (up to 5 MB) enable an unprecedented density and efficiency 
of computation in cloud environments. For cloud providers, this means the ability to run 
orders of magnitude more functions on the same hardware, leading to significant cost 
reductions. However, the most revolutionary advantage is the capability-based security 
model. Unlike Docker containers, which virtualize an entire OS and have a large attack 
surface, a Wasm module, by default, runs in a complete sandbox with no access to the file 
system, network, or system resources. The host environment must explicitly grant the 
module every single capability (e.g., "allow reading /config.toml"), providing a far superior 
level of granular security[19]. This makes WASI the ideal candidate for executing third-
party code (e.g., in plugins) in a safe, isolated environment.  

CONCLUSION 

The deep integration of WebAssembly into modern web applications represents a 
paradigm shift, moving beyond experimental novelty to become a pragmatic and 
strategically advantageous solution for specific, high-impact computational challenges. The 
ecosystem surrounding Wasm, including mature tooling like wasm-bindgen for seamless 
Rust integration and evolving standards such as the WebAssembly System Interface 
(WASI), has reached a level of sophistication that makes robust integration not only 
feasible but increasingly compelling. This research quantitatively and irrefutably 
demonstrates that for CPU-intensive operations, spanning image processing, physics 
simulations, large-scale data manipulation, and complex parsing tasks, WebAssembly 
delivers performance gains often exceeding an order of magnitude compared to even 
highly optimized JavaScript implementations. These findings firmly shift the development 
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focus from the foundational question of possibility ("Can we do it?") towards the strategic 
consideration of application ("Where should we apply it for maximum return on 
investment?"). The decision to leverage Wasm should be driven by a clear understanding 
of the computational bottlenecks within an application and the specific performance goals.  

However, realizing the full potential of this technology necessitates more than simply 
compiling existing code to Wasm. The choice of architectural integration pattern, whether 
treating Wasm as a pure function, leveraging shared memory via SharedArrayBuffer, or 
encapsulating logic within a full Wasm component, is paramount. Each pattern presents 
distinct trade-offs between raw performance, development complexity, and ease of testing, 
requiring careful consideration based on the specific use case. Based on our quantitative 
analysis, we recommend the following heuristic for real-world projects: developers should 
prioritize the 'Pure Function' pattern for isolated, stateless algorithmic tasks (such as 
cryptography or parsing) to maintain architectural simplicity; conversely, the 'Shared 
Memory' approach should be adopted strictly for high-throughput, real-time scenarios (like 
video processing) where data copying overhead becomes prohibitive, while the 'Full 
Component' model is best reserved for encapsulating complex, self-contained UI widgets 
or subsystems. 

Furthermore, this study highlights the critical importance of meticulously designing the 
interface between JavaScript and WebAssembly. The non-trivial overhead associated with 
crossing the JS-Wasm boundary, particularly when transferring large or complex data 
structures like strings and arrays via copying, can significantly diminish or even negate the 
computational speed advantages if not managed effectively.  

Architectures must favor coarse-grained APIs over chatty interactions, and for data-
intensive applications, embracing the complexities of SharedArrayBuffer often becomes a 
necessity rather than an option. Simultaneously, the emergence of WASI underscores 
Wasm's transformative potential beyond the browser, offering substantial benefits in cold 
start times, binary size, and security posture compared to traditional containerization 
methods like Docker, positioning it as a key technology for future serverless, edge 
computing, and plugin architectures. Ultimately, unlocking the full, transformative power of 
WebAssembly hinges upon a holistic approach that combines quantitative performance 
analysis with informed architectural decisions and careful attention to the nuances of cross-
language interaction. 
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КІЛЬКІСНИЙ АНАЛІЗ ІНТЕГРАЦІЇ ВЕБ-ЗБІРКИ: АРХІТЕКТУРНІ ШАБЛОНИ, 

ІНСТРУМЕНТИ ТА ОЦІНКА ПРОДУКТИВНОСТІ 

Степанов Олександр , Галина Клим*  
Національний університет «Львівська Політехніка» 

вул. Бандери, 12, 79000 м. Львів, Україна 

АНОТАЦІЯ 

Вступ. WebAssembly (Wasm) – це фундаментальний компонент для 
високопродуктивних веб-застосунків, цінний для стратегічної інтеграції, а не простої 
заміни JavaScript. Інтеграція створює значні проблеми: мовну сумісність, накладні 
витрати на передачу даних та управління станом. У цій статті представлено 
комплексний кількісний аналіз, що пропонує рішення та архітектурні шаблони, 
підтверджені емпіричними даними. 

Матеріали та методи. Дослідження складалося з двох частин. Взаємодія на 
стороні клієнта була проаналізована за допомогою мікробенчмарків wasm-bindgen на 
основі Rust для вимірювання накладних витрат на "перетин мосту" між JavaScript та 
Wasm, тестування примітивів, копій масивів та доступу до SharedArrayBuffer. 
Потенціал на стороні сервера був оцінений шляхом порівняння модуля середовища 
виконання, сумісного з Wasm/WASI, з традиційним контейнером Docker, 
зосереджуючись на критичних хмарних метриках: час холодного запуску, розмір 
бінарного файлу та моделі безпеки. 

Результати та обговорення. Витрати на сумісність суттєво різняться. Виклики 
примітивів незначні (~50-100 нс), але копіювання масиву розміром 1 МБ є серйозним 
вузьким місцем (1-3 мс), що робить часті копії великих даних ("балакаючі" API) 
нежиттєздатними. Накладні витрати SharedArrayBuffer мінімальні (~15 нс). Аналіз на 
стороні сервера показав трансформаційні результати: WASI приблизно в 100 разів 
швидший за холодний старт (<1 мс) та приблизно в 50 разів менший за розміром 
двійкового файлу (0,5-5 МБ), ніж Docker, пропонуючи більш детальну модель безпеки, 
що базується на можливостях. Тести підтверджують, що Rust+Wasm досягає приросту 
продуктивності до 8,7 разів. Ми обговорюємо "Wasm як чисту функцію" проти "Wasm 
зі спільною пам'яттю", причому останній забезпечує додаткове прискорення в 2-3 рази, 
усуваючи вузькі місця копіювання. 

Висновки. Максимальна рентабельність інвестицій (ROI) у Wasm вимагає 
правильних архітектурних шаблонів та ретельного проектування "грубозернистих" API 
взаємодії для зменшення накладних витрат. SharedArrayBuffer – це необхідне рішення 
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для високопродуктивних додатків. Поява WASI позиціонує його як ключову технологію 
для майбутніх безсерверних, периферійних обчислень та архітектур плагінів, 
пропонуючи суттєві, вимірювані переваги. Ключові слова: WebAssembly, 
продуктивність веб-додатків, мікрофронтенди, Rust, JavaScript, SharedArrayBuffer. 

Ключові слова: WebAssembly, продуктивність веб-застосунків, мікрофронтенди, 
Rust, JavaScript, SharedArrayBuffer. 
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