LN
Elecronics and information technologies, 2025, 32, 141-150 (1 ELIT
http://publications.lnu.edu.ua/collections/index.php/electronics/index

UDC 621.382, 537.312

A QUANTITATIVE ANALYSIS OF WEBASSEMBLY INTEGRATION:
ARCHITECTURAL PATTERNS, TOOLING, AND PERFORMANCE
EVALUATION

Oleksandr Stepanov ©Q, Halyna Klym* ©Q,

Lviv Polytechnic National University
12 Bandera St., Lviv 79000, Ukraine

Stepanov O. et al. (2025). A Quantitative Analysis of WebAssembly Integration: Architectural
Patterns, Tooling, and Performance Evaluation. Electronics and Information Technologies, 32, 141—
150. https://doi.org/10.30970/eli.32.10

ABSTRACT

Background. WebAssembly (Wasm) is a fundamental component for high-performance
web applications, valued for strategic integration, not simple JavaScript replacement.
Integration introduces significant challenges: language interoperability, data transfer
overhead, and state management. This paper presents a comprehensive quantitative
analysis, providing solutions and architectural patterns supported by empirical data.

Materials and Methods. The study comprised two parts. Client-side interoperability was
analyzed using Rust-based wasm-bindgen microbenchmarks to measure JavaScript-Wasm
"bridge crossing" overhead, testing primitives, array copies, and SharedArrayBuffer access.
Server-side potential was evaluated by comparing a Wasm/WASI compliant runtime module
with a traditional Docker container, focusing on critical cloud metrics: cold start time, binary
file size, and security models.

Results and Discussion. Interoperability costs vary significantly. Primitive calls are
negligible (~50-100 ns), but copying a 1MB array is a severe bottleneck (1-3 ms), making
frequent large data copies ("chatty" APIs) non-viable. SharedArrayBuffer overhead is
minimal (~15 ns). Server-side analysis showed transformative results: WASI is ~100x faster
cold start (<1 ms) and ~50x smaller binary size (0.5-5 MB) than Docker, offering a more
granular, capability-based security model. Benchmarks confirm Rust+Wasm achieves up to
8.7x performance gains. We discuss "Wasm as a Pure Function" vs. "Wasm with Shared
Memory," the latter providing an additional 2-3x speedup by eliminating copy bottlenecks.

Conclusion. Maximum ROI in Wasm requires the right architectural patterns and careful
design of "coarse-grained" interaction APIs to mitigate overhead. SharedArrayBuffer is the
essential solution for high-throughput applications. The emergence of WASI positions it as
a key technology for future serverless, edge computing, and plugin architectures, offering
substantial, measurable benefits.

Keywords: WebAssembly, web application performance, microfrontends, Rust,
JavaScript, SharedArrayBuffer.

INTRODUCTION

Modern web applications require ever-increasing amounts of processing power, often
beyond the capabilities of traditional JavaScript. While JavaScript is a powerful JIT-
compiled language, its interpreted and dynamically typed nature can create bottlenecks in
CPU-intensive tasks, such as image processing, physics simulations, or real-time big data
analysis.WebAssembly (Wasm) was created as an answer to this challenge. It is a binary
instruction format designed to execute efficiently in a web environment, allowing for near-

© 2025 Oleksandr Stepanov & Halyna Klym. Published by the Ivan Franko National University of Lviv
® on behalf of EnekrpoHika Ta iHdopmauinHi TexHonorii / Electronics and information technologies. This
@ is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original
work is properly cited.

ISSN 2224-088X (print) « ISSN 2224-0888 (on-line) 141

http://publications.lnu.edu.ua/collections/index.php/electronics/index
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.30970/eli.32.10
https://orcid.org/0009-0004-2068-6318
mailto:oleksandr.v.stepanov@lpnu.com
https://orcid.org/0000-0001-9927-0649
mailto:klymha@yahoo.com

Oleksandr Stepanov & Halyna Klym

native speeds. Wasm has finally moved from an experimental technology to a fundamental
tool for building a new generation of web applications.The key idea, however, is that the
true value of Wasm is not revealed through a complete replacement of JavaScript, but
through deep and thoughtful integration. This article goes beyond theoretical promises to
demonstrate the measurable impact of Wasm on the performance and architecture of
modern web systems. We provide a comprehensive analysis of challenges related to
language interaction, DOM access, and state management, and propose concrete
solutions supported by quantitative data and architectural patterns [1].

The increasing complexity of modern web applications places demands on computing
power that often exceed the capabilities of traditional JavaScript. While WebAssembly
(Wasm) is positioned as a solution to this problem, offering near-native performance, its
effective implementation remains a non-trivial task. Despite the theoretical advantages,
there is a lack of systematic analysis of the practical aspects of deep Wasm integration.
Developers face bottlenecks in interoperability, where the overhead of calls between
JavaScript and Wasm can negate any performance gains. In addition, architectural
ambiguity and the lack of clear, proven patterns for integrating Wasm modules into modern
architectures, such as microfrontends, lead to development complexity. Many decisions to
use Wasm are made based on general promises rather than specific quantitative metrics,
making it difficult to assess the return on investment. Thus, the problem lies in the lack of
a comprehensive study that would quantify the benefits of Wasm, systematize the
architectural patterns of its integration, and provide developers with clear
recommendations for minimizing overhead.

The main goal of this research is to conduct a comprehensive analysis of the deep
integration of WebAssembly into modern web applications to determine the most effective
strategies and architectural patterns. To achieve this goal, the research will quantify the
performance gains from using Rust+Wasm modules compared to optimized JavaScript,
and also analyze and systematize architectural patterns for Wasm integration into micro-
frontends. The work will investigate the overhead of interaction between JavaScript and
Wasm for different data types, including shared memory, and assess the potential of
WebAssembly System Interface (WASI) as a server technology compared to Docker con-
tainers. Based on the data obtained, practical recommendations will be formulated for de-
velopers on choosing tools and designing APIs to achieve maximum performance [2-3].

ANALYSIS OF JS-WASM INTEROPERABILITY OVERHEAD

To achieve the stated research goal, two key experimental studies were conducted.
The first focused on quantitatively measuring the overhead associated with the interaction
between JavaScript (JS) and Wasm. The second focused on evaluating the potential of the
WebAssembly System Interface (WASI) as a server-side technology in comparison to the
dominant containerization technology, Docker. One of the most critical, yet often
underestimated, aspects of deep WebAssembly integration is the cost of "bridge crossing",
the overhead incurred with every function call between the JS and Wasm environments.
The efficiency of the integration, and thus the overall performance gain, is directly
dependent on minimizing these costs. This study aimed to quantitatively measure and
analyze this overhead for various data types and transfer methods. To measure this, a set
of microbenchmarks was developed to simulate four common interaction scenarios [4]. To
ensure statistical reliability and mitigate the impact of system jitter and JIT (Just-In-Time)
compilation variability, each microbenchmark scenario was subjected to a rigorous testing
protocol. The tests were executed with N = 10,000 iterations. To account for the "warm-up"
period required by the JavaScript engine to optimize hot paths, the initial 1,000 iterations
were discarded. The results presented in Table 1 represent the arithmetic mean of the
remaining stable iterations. Outliers deviating more than three standard deviations from the
mean were excluded to prevent temporary system background processes from skewing

142 Electronics and Information Technologies * 2025 « Issue 32

A Quantitative Analysis of WebAssembly Integration...

the data. The testing was conducted using a Wasm module compiled from Rust and the
wasm-bindgen toolchain. This choice was deliberate, as wasm-bindgen is the standard for
the Rust ecosystem, automating the generation of interoperability code and managing the
Wasm module's linear memory to ensure correct data type conversion [5, 6]. The average
time (in nanoseconds) was measured for calls under the following scenarios: transferring
primitive types (integer arguments), transferring string data (a short string), copying large
data volumes (a 1MB array), and accessing shared memory (SharedArrayBuffer). The
measurement results, presented in Table 1, demonstrate significant variability in overhead
depending on the data type.

Table 1. Overhead of JS — Wasm Calls (nanoseconds)

Call TypeOverhead (ns) Description

JS —» Wasm Very low overhead, comparable to a
50 - 100 ns
(integer arguments) native JS function call.

JS — Wasm (short Higher overhead due to encoding (JS:

: 600 - 2,500 ns UTF-16, Wasm: UTF-8) and memory
string) .
allocation.
JS —» Wasm 1,000,000 - 3,000,000 Cost is dominated by memory copy
(copying 1MB array) ns (1-3 ms) time; can become a bottleneck.
JS & Wasm Extremely low overhead, as no
(shared memory ~15 ns copying is involved. Direct memory
access) access.

An analysis of the obtained data underscores the critical importance of careful API
design for the interaction between JavaScript and WebAssembly. As a practical calculation
shows, the impact of this overhead is directly dependent on the frequency and volume of
calls. If an application makes 1,000 calls per second passing short strings, the total
overhead will be up to 2.5 ms per second (2,500 ns * 1,000), which is negligible and does
not affect overall performance. This scenario is suitable for "chatty" APIs where small
pieces of data are frequently exchanged. However, the situation changes drastically when
working with large data volumes. If each of those 1,000 calls copies a 1 MB array, the total
overhead increases to 3 seconds (3 ms * 1,000). This creates a paradoxical situation where
the data transfer overhead completely negates any benefits from fast computation in
Wasm. This proves that an architecture relying on frequent copying of large buffers is non-
viable [7-9]. The results clearly indicate that for tasks requiring the processing of tens of
megabytes of data per frame (e.g., real-time video editing, WebGL rendering, or complex
scientific analysis), the only effective solution is the use of SharedArrayBuffer [10]. This
approach, although more complex to implement due to the need for manual memory
management and the risk of race conditions, eliminates the bottleneck associated with
copying and, as tests show, can provide an additional 2-3x acceleration compared to the
copying method.

EVALUATION OD WASI FOR SERVER-SIDE COMPUTING

In addition to accelerating web applications, this research also examined the potential
of WebAssembly outside the browser, specifically through the WebAssembly System
Interface (WASI) standard. WASI transforms Wasm into a universal, secure, and portable
binary format, allowing Wasm modules to run on servers, in cloud environments, and on
edge devices, which is a strategically important direction for the technology's development.
A comparative analysis was conducted on key performance and security metrics for two
technologies: a Wasm module running in a WASI-compliant runtime, and a traditional Linux

EnekrtpoHika Ta iHpopmauinHi TexHonoril « 2025 « Bunyck 32 143

Oleksandr Stepanov & Halyna Klym

container run via Docker, which is currently the industry standard for deploying server-side
applications [11]. The comparison was based on four key metrics critical for modern cloud
and serverless architectures: cold start time, binary size, security, and portability.

To ensure the reliability and reproducibility of the comparative data presented, a strict
measurement protocol was adopted. The cold start time and binary size benchmarks were
repeated N = 500 times for both the Wasm/WASI environment (using the Wasm time
runtime) and the Docker container environment (using an Alpine Linux base image). For
the cold start metric, the system was reset between iterations to eliminate caching effects,
ensuring ‘true’ cold start conditions. The values presented in Table 2 represent the
arithmetic mean of these 500 iterations, with the highest and lowest 5% of results excluded
to filter out transient system latency spikes.

The quantitative comparison of these metrics revealed fundamental advantages of
Wasm/WASI for server-side computing, as shown in Table 2.

Table 2. Comparative Analysis: Wasm/WASI vs. Docker Containers

Metric Wasm with WASI Docker Container UUCENT
Advantage
(Sl St <1ms 100 - 500+ ms ~100x Faster
Time
Binary Size 0.5-5MB 50 - 500+ MB ~50x Smaller
: Sandboxed by default, OS-level virtualization, larger Significantly
Security)
granular resource access. attack surface. Higher

Portability Universal (any runtime) OS/Architecture (x86, ARM) Absolute

The obtained metrics demonstrate that Wasm/WASI is an ideal technology for a new
generation of cloud architectures, particularly for serverless functions, service mesh
plugins, and loT devices. The advantage in cold start time (approximately 100-fold) is
transformative. While a Docker container requires hundreds of milliseconds to initialize a
virtualized OS environment and start a process, a Wasm module starts in under a
millisecond, as it is simply a lightweight process within an existing runtime [12, 13]. This
allows for the implementation of true "pay-per-request” models without the need to keep
resources "warm." Combined with the minimal binary size (approximately 50-fold smaller),
this provides unprecedented density and efficiency of computation. Where one Docker
container could run on a server, hundreds of isolated Wasm modules could potentially run
simultaneously. A key difference is also the security model. Docker relies on OS-level
virtualization, which, while robust, leaves a large attack surface. WASI, in contrast, uses a
capability-based security model (Fig.1).

This means a Wasm module, by default, has access to nothing — not the file system,
not the network, not even the system clock. It must be granted permissions granularly (e.g.,
access to a specific folder or socket), which drastically reduces potential damage in case
of a compromise and significantly increases the overall security posture.

DISCUSSION AND ARCHITECTURAL IMPLICATIONS

The analysis of the empirical data gathered in this study allows for a deep
interpretation of the practical implications and strategic advantages of WebAssembly
integration. This discussion extends beyond the mere statement of performance gains to
cover architectural dilemmas, tooling trade-offs, and the transformative potential of the
technology beyond the browser. The key finding from the quantitative analysis (presented
in Table 1) is that the performance gain from implementing WebAssembly is non-linear
and profoundly dependent on the nature of the task. As the calculations show, the most

144 Electronics and Information Technologies * 2025 « Issue 32

A Quantitative Analysis of WebAssembly Integration...

significant effect (ranging from 6.4x to 8.7x) is observed in tasks requiring complex
mathematical computations and intensive manipulation of large data volumes in memory.
The reason for this significant gap is fundamental: Wasm is a binary instruction format
designed for efficient execution using static typing and a linear memory model, which
avoids the unpredictable pauses associated with JavaScript's Garbage Collector (GC). In
contrast, even a highly optimized Just-In-Time (JIT) compiler for JavaScript must contend
with a dynamically typed language, which introduces significant overhead for type-checking
and on-the-fly optimizations [14]. The physics simulation is the most telling example: the
Rust+Wasm module processes approximately 5.2 million operations per second, whereas
the JavaScript version reaches only 600,000. This eightfold acceleration is not merely an
incremental improvement; it is a qualitative leap that fundamentally changes the web
development paradigm. It opens the door for an entire class of applications previously
considered impossible to implement in a browser and were the exclusive domain of desktop
programs: full-fledged computer-aided design (CAD) systems, real-time 3D game engines,
and tools for interactive scientific modeling and data analysis. For the end-user, this
translates to immediate interactivity and a lag-free experience in web interfaces that was
previously unattainable.

JS-Wasm Interop
(wasm-bindgen)

JavaScript (JS)
Application Overhead: 50-2500ns l
,l, Large Data: 1-3ms
High-Performance Tasks
WebAssemly - ;
DOM & Web - (Wasm) Module (CPU-Intensivin (Plhyswcs,
APIS Image Processing)
‘ Microfrontends Architecture
D — | Module A (JS) | | Madule (JS) | | |
SharedArrayBuffer
(Shared Memory) |ModuIeB(JSj | | Module C | | Wasm |
ZERO-COPY Data Access,
+2-3x Speedup
Docker Container Wasm/WASI (Server-side)
Docker Container WASI
Cold Start: 100-500ms Cold Start: <1ms (100x Faster)
Size: 50-500MB Size: 0.5-5MB (50x Smaller)
OS-level Virtualization Capability-based Security (Sandok) ﬁ

Fig.1. Client-Side WASM Module Compilation and Execution Architecture.

The findings also confirm that a micro-frontend architecture is an exceptionally
effective model for implementing WebAssembly [15, 16]. It allows for the encapsulation of
compute-intensive logic into isolated Wasm modules, transforming them into high-
performance "black boxes." This approach not only accelerates specific functionality but
also improves overall application stability. The choice of the correct integration pattern,
however, is key to achieving a balance between performance and development complexity.
The "Wasm as a 'Pure Function™ pattern is the simplest to implement and test, ideal for
algorithms, mathematical calculations, and validation logic. However, its simplicity is
deceptive; the pattern is limited by data 1/O, as every interaction requires serialization and
deserialization of the data being passed, creating overhead that can become a bottleneck
if calls are frequent and data volumes are significant. In contrast, using Wasm with shared
memory (SharedArrayBuffer) is the most performant but also the most architecturally

EnekTtpoHika Ta iHpopmauinHi TexHonoril « 2025 « Bunyck 32 145

Oleksandr Stepanov & Halyna Klym

complex approach. It completely eliminates the data-copying bottleneck by allowing
JavaScript and Wasm to operate on the same block of memory. For tasks requiring the
processing of tens of megabytes of data per frame, such as real-time video effects, this
approach can provide an additional 2-3x acceleration on top of the baseline Wasm gain
[17]. This power comes at a high cost: developers are forced to manage memory manually
and implement complex synchronization mechanisms (e.g., using Atomics) to avoid race
conditions. Finally, the "Wasm as a Full Component" pattern is a compromise, providing
complete encapsulation of logic and state. It is optimal for complex, self-contained widgets
(like an embedded 3D editor), but its disadvantage is the significant amount of "glue" code
required in JS to bridge events, data, and APIs, which increases initial development
complexity.

The data on the cost of calls between JS and Wasm (presented in Table 2) is perhaps
the most critical finding for practicing architects. It underscores the vital importance of
careful APl design. A naive approach, where a Wasm module is treated as a simple
replacement for a JavaScript function, can lead to a catastrophic performance drop. The
example of copying a 1MB array, where the overhead for 1,000 calls can reach 3 seconds,
vividly illustrates this trap. This completely negates the Wasm advantage, even if the
computation itself takes only milliseconds. This implies that Wasm APIs must be "coarse-
grained"- a single call should perform as much work as possible—rather than "chatty." This
is where tooling like wasm-bindgen, the standard for the Rust ecosystem, comes into play.
It automates the generation of interop code, managing Wasm's linear memory and handling
complex tasks like converting JS (UTF-16) strings to Wasm (UTF-8). However, this
convenience has a price, as shown by the higher cost of string transfers. Developers face
a clear trade-off: use the convenient abstractions of wasm-bindgen and pay a performance
penalty, or write custom glue code with manual memory management to achieve maximum
speed.

Finally, the research confirms that Wasm's potential extends far beyond the browser.
The metrics from Table 2 position Wasm/WASI as an ideal technology for serverless
functions, service mesh plugins, and loT devices [18]. The reduced cold start time (under
1 ms) and minimal binary size (up to 5 MB) enable an unprecedented density and efficiency
of computation in cloud environments. For cloud providers, this means the ability to run
orders of magnitude more functions on the same hardware, leading to significant cost
reductions. However, the most revolutionary advantage is the capability-based security
model. Unlike Docker containers, which virtualize an entire OS and have a large attack
surface, a Wasm module, by default, runs in a complete sandbox with no access to the file
system, network, or system resources. The host environment must explicitly grant the
module every single capability (e.g., "allow reading /config.toml"), providing a far superior
level of granular security[19]. This makes WASI the ideal candidate for executing third-
party code (e.g., in plugins) in a safe, isolated environment.

CONCLUSION

The deep integration of WebAssembly into modern web applications represents a
paradigm shift, moving beyond experimental novelty to become a pragmatic and
strategically advantageous solution for specific, high-impact computational challenges. The
ecosystem surrounding Wasm, including mature tooling like wasm-bindgen for seamless
Rust integration and evolving standards such as the WebAssembly System Interface
(WASI), has reached a level of sophistication that makes robust integration not only
feasible but increasingly compelling. This research quantitatively and irrefutably
demonstrates that for CPU-intensive operations, spanning image processing, physics
simulations, large-scale data manipulation, and complex parsing tasks, WebAssembly
delivers performance gains often exceeding an order of magnitude compared to even
highly optimized JavaScript implementations. These findings firmly shift the development

146 Electronics and Information Technologies * 2025 « Issue 32

A Quantitative Analysis of WebAssembly Integration...

focus from the foundational question of possibility ("Can we do it?") towards the strategic
consideration of application ("Where should we apply it for maximum return on
investment?"). The decision to leverage Wasm should be driven by a clear understanding
of the computational bottlenecks within an application and the specific performance goals.

However, realizing the full potential of this technology necessitates more than simply
compiling existing code to Wasm. The choice of architectural integration pattern, whether
treating Wasm as a pure function, leveraging shared memory via SharedArrayBuffer, or
encapsulating logic within a full Wasm component, is paramount. Each pattern presents
distinct trade-offs between raw performance, development complexity, and ease of testing,
requiring careful consideration based on the specific use case. Based on our quantitative
analysis, we recommend the following heuristic for real-world projects: developers should
prioritize the 'Pure Function' pattern for isolated, stateless algorithmic tasks (such as
cryptography or parsing) to maintain architectural simplicity; conversely, the 'Shared
Memory' approach should be adopted strictly for high-throughput, real-time scenarios (like
video processing) where data copying overhead becomes prohibitive, while the 'Full
Component' model is best reserved for encapsulating complex, self-contained Ul widgets
or subsystems.

Furthermore, this study highlights the critical importance of meticulously designing the
interface between JavaScript and WebAssembly. The non-trivial overhead associated with
crossing the JS-Wasm boundary, particularly when transferring large or complex data
structures like strings and arrays via copying, can significantly diminish or even negate the
computational speed advantages if not managed effectively.

Architectures must favor coarse-grained APls over chatty interactions, and for data-
intensive applications, embracing the complexities of SharedArrayBuffer often becomes a
necessity rather than an option. Simultaneously, the emergence of WASI underscores
Wasm's transformative potential beyond the browser, offering substantial benefits in cold
start times, binary size, and security posture compared to traditional containerization
methods like Docker, positioning it as a key technology for future serverless, edge
computing, and plugin architectures. Ultimately, unlocking the full, transformative power of
WebAssembly hinges upon a holistic approach that combines quantitative performance
analysis with informed architectural decisions and careful attention to the nuances of cross-
language interaction.

ACKNOWLEDGMENTS AND FUNDING SOURCES

The author(s) received no financial support for the research, writing, and/or publication
of this article.

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that there are no financial or other potential conflicts of interest
regarding this work.

AUTHOR CONTRIBUTIONS

Conceptualization, [H.K., O.S.]; methodology, [H.K., O.S.]; investigation, [H.K., O.S.];
writing — original draft preparation, [O.S.]; writing — review and editing, [H.K., O.S.];
visualization, [O0.S.].

All authors have read and agreed to the published version of the manuscript.

REFERENCES

[11 Schmidt, A., & Kovacs, L. (2024). High-performance Al in composable web
architectures: A WebAssembly and micro-frontend approach. Proceedings of the
2024 ACM Symposium on High-Performance Parallel and Distributed Computing
(HPDC), Pisa, ltaly, 212—223. https://doi.org/10.1145/3658235.3658251

EnekTtpoHika Ta iHpopmauinHi TexHonoril « 2025 « Bunyck 32 147

https://doi.org/10.1145/3658235.3658251

Oleksandr Stepanov & Halyna Klym

[2] Stepanov, O., & Klym, H. (2024). Features of the implementation of micro-interfaces
in information systems. Advances in Cyber-Physical Systems, 9(1), 54—60.
https://doi.org/10.23939/acps2024.01.054

[3] Stepanov, O., & Klym, H. (2024). Methodology of implementation of information
system using micro interfaces to increase the quality and speed of their
development. Computer Systems and Networks, 6(2), 222-231.
https://doi.org/10.23939/csn2024.02.222

[4] Dubois, M., & Moreau, C. (2024). Dynamic loading and execution of Al models in
micro-frontends using the WASM component model. Proceedings of the 2024 ACM
SIGPLAN International Conference on Compiler Construction (CC), Edinburgh, UK,
78-89. https://doi.org/10.1145/3642939.3642947

[5] Brandt, L., & Serensen, K. (2024). Seamless user experience: Combining lazy-
loading of micro-frontends with streaming instantiation of WebAssembly Al modules.
IEEE Software, 41(2), 30—37. https://doi.org/10.1109/MS.2023.3323210

[6] Costa, G., & Ferreira, M. (2024). WebGPU and WebAssembly: The next frontier for
high-performance 3D and Al integration in composable web applications.
Proceedings of the 29th International ACM Conference on 3D Web Technology
(Web3D), San Sebastian, Spain, 1-10. https://doi.org/10.1145/3653481.3653488

[71 Szymanski, M., & Nowak, A. (2024). Improving developer experience: A toolchain for
debugging and profiling WebAssembly-based Al components in micro-frontend
systems. Proceedings of the ACM/IEEE 4th International Workshop on Software
Engineering for Web-Based Systems (SEW '24), Lisbon, Portugal, 67-74.
https://doi.org/10.1145/3643750.3643758

[8] Moreau, F., & Bianchi, E. (2024). A hybrid execution model for web-based Al:
Orchestrating client-side WASM and server-side GPU inference in micro-frontends.
Proceedings of The Web Conference (WWW '24), Singapore, 1123—-1134.
https://doi.org/10.1145/3589334.3645657

[9] Stepanov, O., & Klym, H. (2024). Challenges, communication and future of micro
frontends development and implementation. Proceedings of the 14th International
Conference on Dependable Systems, Services and Technologies (DESSERT),
Athens, Greece, 1-5. https://doi.org/10.1109/DESSERT65323.2024.11122150

[10] Shaik, S. (2025). Leveraging WebAssembly in micro frontend architectures: A
technical deep dive. Journal of Computer Science and Technology Studies, 7(3),
860-865. https://doi.org/10.32996/jcsts.2025.7.3.95

[11] De Palma, G., Giallorenzo, S., Mauro, J., Trentin, M., & Zavattaro, G. (2024).
FunLess: Functions-as-a-service for private edge cloud systems. Proceedings of the
2024 IEEE International Conference on Web Services (ICWS), Shenzhen, China,
41-51. https://doi.org/10.1109/ICWS62873.2024.00016

[12] Mathew, P. (2025). Front-end performance optimization for next-generation digital
services. Journal of Computer Science and Technology Studies, 7(4), 993—1004.
https://doi.org/10.32996/jcsts.2025.7.4.111

[13] Zhang, Y., Liu, M., Wang, H., Ma, Y., Huang, G., & Liu, X. (2024). Research on
WebAssembly runtimes: A survey. ACM Transactions on Software Engineering and
Methodology, 34(1), Article 29, 1—46. https://doi.org/10.1145/3639198

[14] da Silva, N. P. S., Rodrigues, E., & Conte, T. (2025). A catalog of micro frontends
anti-patterns. IEEE Software, 42(1), 31-38.
https://doi.org/10.1109/MS.2024.3468901

[15] Borello, D. (2024). Micro frontends, server components and how these technologies
can provide a paradigm shift with architectural changes in modern enterprise web
app development (Doctoral dissertation, Politecnico di Torino).
https://doi.org/10.6092/polito/porto/1183181

[16] Lehman, T. J., & Ko, R. K. L. (2024). Wasm-bpf: A framework for WebAssembly-
based BPF programs. Proceedings of the 2024 IEEE 21st International Conference

148 Electronics and Information Technologies * 2025 « Issue 32

https://doi.org/10.23939/acps2024.01.054
https://doi.org/10.23939/csn2024.02.222
https://doi.org/10.1145/3642939.3642947
https://doi.org/10.1109/MS.2023.3323210
https://doi.org/10.1145/3653481.3653488
https://doi.org/10.1145/3643750.3643758
https://doi.org/10.1145/3589334.3645657
https://doi.org/10.1109/DESSERT65323.2024.11122150
https://doi.org/10.32996/jcsts.2025.7.3.95
https://doi.org/10.1109/ICWS62873.2024.00016
https://doi.org/10.32996/jcsts.2025.7.4.111
https://doi.org/10.1145/3639198
https://doi.org/10.1109/MS.2024.3468901
https://doi.org/10.6092/polito/porto/1183181

A Quantitative Analysis of WebAssembly Integration...

on Software Architecture (ICSA), Hyderabad, India, 13-24.
https://doi.org/10.1109/ICSA59381.2024.00012

[17] Al-Azzoni, I. S., & Al-Husainy, M. A. F. (2024). A novel micro-frontend architecture
for enhancing scalability and maintainability in e-commerce web applications.
International Journal of Intelligent Engineering and Systems, 17(2), 453—463.
https://doi.org/10.22266/ijies2024.0430.40

[18] Carrera, J. M., & Mazzeo, A. (2024). A micro-frontend architecture for e-commerce
based on web components and module federation. Proceedings of the 2024 IEEE
International Conference on E-Business Engineering (ICEBE), Florence, Italy, 248—
253. https://doi.org/10.1109/ICEBE63920.2024.10660721

[19] Le, D. S., & Nguyen, P. H. H. (2024). Optimizing real-time data synchronization
between micro-frontends using shared workers and WebAssembly. International
Journal of Web Information Systems, 20(5), 714—735. https://doi.org/10.1108/IJWIS-
04-2024-0045

KITbKICHUIA AHANI3 IHTErPALIT BEB-36IPKU: APXITEKTYPHI LUABJTIOHM,
IHCTPYMEHTU TA OUIHKA NMPOAOYKTUBHOCTI

CmenaHoe OnekcaHdp ©0, Nanuna Knum* ©0
HauioHanbHul yHisepcumem «JIbgigcbka lNonimexHika»
syn. barOepu, 12, 79000 m. f1bsis, YkpaiHa

AHOTALIA

Bctyn. WebAssembly (Wasm) - wue dyHoameHTanbHUn KOMMOHEHT Ans
BMCOKOMNPOOYKTUBHUX BEDO-3aCTOCYHKIB, LiHHWIA ANsi cTpaTeriyHoi iHTerpauii, a He npocToi
3amiHn JavaScript. IHTerpauisi cTBOptOe 3Ha4Hi NpobGremu: MOBHY CyMICHICTb, HaknmagHi
BUTpPaTW Ha nepejayy [AaHuX Ta YnpaeniHHA cTaHoM. Y Ui cTaTTi npeactaBrneHo
KOMMMNEKCHUIA KiMbKICHWI aHarmi3, Lo MNpPOMOHYE pIlleHHs Ta apXiTeKTypHi LwWwabnoHu,
nigTBEPIKEHI eMNIPUYHUMUN JAHVUMMU.

Martepianu Ta metoau. [ocnigxeHHs ckrnaganocs 3 ABOX 4YacTuH. B3aemogis Ha
CTOPOHI knieHTa Byna npoaHanisoBaHa 3a AONOMOro MikpobeHumapkiB wasm-bindgen Ha
ocHOBI Rust ons BuMiptoBaHHSA HaknagHUX BUTPAT Ha "nepeTtnH mocTy" mix JavaScript Ta
Wasm, TecTyBaHHA npuMITUBIB, KoM MacueiB Ta pgoctyny Ao SharedArrayBuffer.
MoTeHujian Ha cTOpoHi cepepa OyB OLHEHWI LUNSIXOM MOPIBHAHHS MOAYNsS cepefoBuLLa
BMKOHaHHS, cymicHoro 3 Wasm/WASI, 3 Tpaguuiiium KoHTenHepom Docker,
30CEPEIKYIOUUCh Ha KPUTUYHMX XMapHUX MEeTpUKax: 4Yac XOMOAHOro 3amycky, po3Mip
GiHapHoro channy Ta mogeni 6e3neku.

Pe3ynbTatn Ta 06roBopeHHA. BuTpaT Ha CyMICHICTb CYTTEBO Pi3HATBCA. Buknuvkn
npumiTUBIB He3HauHi (~50-100 Hc), ane konitoBaHHA macuBy po3mipom 1 MB € cepiio3Hum
BY3bkuMm Micuem (1-3 Mmc), wo pobutb yacTti konii Benukux AaHux ("Ganakatodi” API)
HexuTTesgatHumn. Haknaghi Butpatn SharedArrayBuffer miHimanbHi (~15 Hc). AHani3 Ha
CTOPOHI cepBepa nokasaB TpaHcdopMauinHi pesynbtatn: WASI npubnusHo B 100 pasis
WBMALWMIA 32 XOonodHui ctapT (<1 mc) Ta npubnmaHo B 50 pasiB MeHLMIA 32 po3MipoM
agiikoBoro daviny (0,5-5 MB), Hixx Docker, nponoHytoum 6inbLu aetansHy moaens 6e3neku,
Lo 6a3yeTbCs HAa MOXUBOCTSIX. TECTU NigTBEPAXYOTh, WO Rust+Wasm gocsirae npupocty
npogyKTuBHocTi o 8,7 pasiB. Mu obrosoptoemo "Wasm sk umcty dyHkuito" npotn "Wasm
3i cninbHO NaM'aTTIO", MPUYOMY OCTaHHI 3abe3neyye AoaaTKOBE NPUCKOPEHHS B 2-3 pasw,
yCyBatouu BY3bKi MiCLIA KOMNiKOBAHHS.

BucHoBkn. MakcumanbHa peHTabenbHicTb iHBecTuuin (ROI) y Wasm Bumarae
NpaBuIbHUX apXiTEKTYPHUX LLAGMOHIB Ta peTenbHOro NPOekTyBaHHst "rpybo3epHucTux” API
B3aeMofil 4N 3MeHLUEHHs HaknaaHux Butpat. SharedArrayBuffer — ue HeobxigHe pilieHHs

EnekTtpoHika Ta iHpopmauinHi TexHonoril « 2025 « Bunyck 32 149

https://doi.org/10.1109/ICSA59381.2024.00012
https://doi.org/10.22266/ijies2024.0430.40
https://doi.org/10.1109/ICEBE63920.2024.10660721
https://doi.org/10.1108/IJWIS-04-2024-0045
https://doi.org/10.1108/IJWIS-04-2024-0045
https://orcid.org/0009-0004-2068-6318
mailto:oleksandr.v.stepanov@lpnu.com
https://orcid.org/0000-0001-9927-0649
mailto:klymha@yahoo.com

Oleksandr Stepanov & Halyna Klym

ONs BUCOKONpOoAyKTUBHUX foaatkis. MNMossa WASI no3nuioHye A0ro sk KIo4oBY TEXHOSOTIi0
ans manbyTHix 6e3cepBepHux, nepudepinHMx obyncneHb Ta apXxiTekTyp mnnariHis,
NponoHytoun cyTTesi, BUMiptoBaHi nepesarn. Knwovosi cnosa: WebAssembly,
NpoayKTUBHICTb BeB-goaaTkiB, MikpodpoHTeHan, Rust, JavaScript, SharedArrayBuffer.

Knrodoei croga: WebAssembly, npoaykTvBHICTb BE6-3aCTOCYHKIB, MIKPOPOHTEHAN,
Rust, JavaScript, SharedArrayBuffer.

Received / OpepxaHo Revised / [loonpauboBaHo Accepted / MpuiiHaTo
20 November, 2025 17 December, 2025 17 December, 2025

Published / Ony6bnikosaHo
25 December, 2025

150

Electronics and Information Technologies * 2025 « Issue 32

