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ABSTRACT  

Background. The rapid growth of electronic payments has intensified fraudulent activity, 
requiring adaptive anomaly detection methods. Traditional rule-based approaches lack 
flexibility and fail to generalize to previously unseen attacks. In contrast, unsupervised deep 
learning models, particularly autoencoders, can learn intrinsic data representations and 
detect anomalies without labeled attack samples. This study evaluates three unsupervised 
architectures – Autoencoder with Gaussian Mixture Model (AEGMM), Variational 
Autoencoder with Gaussian Mixture Model (VAEGMM), and a Deep Autoencoder – for 
network anomaly detection. 

Materials and Methods. Experiments were conducted using the KDD’99 (10%) 
benchmark dataset. Categorical features were transformed using one-hot encoding, while 
numerical features were standardized. All models were trained exclusively on normal traffic 
samples following a one-class learning paradigm. The experimental pipeline included 
preprocessing, model implementation in Python using TensorFlow and the Alibi Detect 
framework, percentile-based threshold calibration, and evaluation using accuracy, precision, 
recall, F1-score, and confusion matrices. 

Results. AEGMM achieved the highest performance with an F1-score of 0.9936 and an 
accuracy of 0.9908, demonstrating near-perfect separation between normal and malicious 
samples. VAEGMM reached an F1-score of 0.9751, showing stable convergence but slightly 
reduced accuracy due to the stochastic latent space. The Deep Autoencoder achieved 
approximately 97.5% accuracy, confirming the effectiveness of reconstruction-based 
methods without probabilistic density estimation. The optimal anomaly threshold, defined at 
the 99th percentile of reconstruction or density scores, ensured reliable discrimination 
between normal and attack states. 

Conclusion. Autoencoder-based unsupervised models are effective for anomaly 
detection in large, imbalanced tabular datasets. AEGMM outperformed alternative 
architectures due to its stable latent representation and deterministic optimization. The 
proposed approach is suitable for financial fraud detection, cybersecurity monitoring, and 
industrial anomaly detection. Future work will explore transformer-based models and 
Explainable AI to improve robustness and interpretability. 

Keywords: artificial intelligence; deep learning; autoencoder; Gaussian mixture model; 
financial fraud; cybersecurity 
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INTRODUCTION 

The use of Artificial Intelligence (AI) for detecting suspicious banking transactions has 
become increasingly relevant in the modern world of financial technologies. The application 
of intelligent systems enables effective identification and prevention of financial crimes 
such as money laundering, fraud, and other manipulative activities. AI is capable of 
analyzing vast amounts of transactional data in real time, efficiently identifying anomalies 
and atypical behavioral patterns. This allows banks to promptly respond to potentially 
fraudulent activities, minimizing financial risks for both clients and institutions. Most modern 
banking systems have already integrated AI-based tools to enhance the security of 
financial operations. Given the continuous technological progress, the role of AI in the 
banking sector will continue to grow, ensuring more reliable and efficient protection of 
financial systems. 

Fraud is one of the most widespread phenomena in finance, encompassing such 
crimes as money laundering, falsification of financial statements, phishing, cyber fraud, and 
credit card fraud. The rapid expansion of digital banking has led to the emergence of new 
types of digital fraud. As the number of digital technology users increases, the frequency 
and complexity of fraudulent scenarios are expected to rise, making traditional rule-based 
systems ineffective and difficult to scale. Furthermore, a significant issue lies in false 
positives – legitimate transactions mistakenly classified as fraudulent – which result in 
customer dissatisfaction and substantial financial losses for banks. 

A study by Chiabanu (2020) revealed that approximately 25% of customers whose 
legitimate transactions were incorrectly declined subsequently moved to competing 
institutions. Among clients aged 18–24, this percentage increased to 36%, and among 
those aged 25–34 — to 31%. These findings demonstrate the urgent need to improve fraud 
detection systems. 

The financial, banking, and fintech sectors face various fraud typologies each year, 
which can be broadly classified into: 

• Digital fraud, 

• Physical attacks, 

• Internal collusion, 

• Violations of the “four-eyes principle.” 
The first two types correspond to external threats, while the latter two arise from 

internal misuse or employee-related schemes. Digital fraud encompasses a wide range of 
illicit online activities, where Machine Learning (ML) and Deep Learning (DL) serve as key 
tools for counteraction. 

Problem Statement 
With the advancement of technologies, fraudsters continuously evolve their methods, 

rendering traditional rule-based systems inefficient. Such systems require frequent updates 
and fail to adapt quickly to emerging fraudulent patterns. Hence, there is a growing 
necessity to develop adaptive models capable of autonomously detecting new forms of 
fraudulent behavior based on historical data. 

According to the Nielsen Report (2021), losses caused by fraudulent activities 
involving payment cards amounted to USD 32.34 billion, a 14% increase compared to the 
previous year. The growing volume of digital transactions via cards and mobile devices has 
intensified the demand for robust and scalable fraud detection systems. The emergence of 
AI has opened vast opportunities for designing such intelligent solutions. Industry leaders 
— Google, Facebook, Apple, Amazon, and Netflix — are actively deploying AI-driven tools 
in their internal financial processes, setting high standards for analytical performance and 
security in the global financial sector. 
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Literature Review 
Systematic reviews covering the period 2019–2024/25 highlight a paradigm shift from 

traditional tabular ML approaches toward deep architectures that incorporate temporal, 
graph-based, and contextual dependencies in transaction data. Increasing attention is 
being paid to issues such as class imbalance, concept drift, model stability, and 
interpretability. 

For financial services, graph-based approaches (modeling relationships such as 
client–card–device–merchant), sequential or transformer-based models for transaction 
streams, and hybrid architectures (deep representations combined with gradient boosting) 
have become the de facto standard. The main research focus is on reducing false positives 
and improving the robustness of models in real-world financial scenarios. 

Architectures Demonstrating Practical Effectiveness 
1. Sequential Models. Architectures such as RNN, LSTM, Temporal-CNN, and 

Transformers are employed to model temporal patterns in customer or card 
behavior. Self-supervised contrastive pretraining significantly enhances model 
performance in cold-start and high-class-imbalance conditions [1]. 

2. Graph Neural Networks (GNN) Relationships of the type account ↔ device ↔ IP 
↔ merchant naturally form a graph-structured dataset. Models like GCN, GAT, and 
encoder–decoder GNNs consistently outperform tabular approaches, particularly 
in identifying organized fraud schemes and fraud rings [2]. 

3. Autoencoders, VAE, and GAN. These architectures are effective as unsupervised 
/ one-class models for anomaly detection, feature extraction, and the discovery of 
novel fraud scenarios — especially in cases where labeled data is scarce or 
delayed [3]. 

4. Concept Drift and Streaming Adaptation. Real-world payment streams exhibit high 
variability (changing attacker strategies, seasonality, marketing campaigns). 
Studies on concept drift propose detectors such as ADWIN, DDM, and one-class 
classifiers, along with dynamic model updating and threshold adaptation strategies. 
In financial applications, the best results are achieved through a combination of 
online learning, active labeling, and periodic retraining [4]. 

5. Explainable AI (XAI) and Compliance Requirements. Most banking institutions 
+Key focus areas include: 
‒ Local explanations for escalation cases, 
‒ Attribution stability, 
‒ Generation of reason codes for analysts. Emerging research emphasizes user-

centered XAI protocols and their integration into federated learning frameworks 
[4]. 

6. Confidentiality and Federated Learning (FL). In banking consortia, Federated 
Learning enables collaborative model training without sharing raw data. These 
architectures often include XAI layers to ensure auditability and regulatory 
compliance [5]. 

7. Public Datasets and Benchmarks 
‒ IEEE-CIS (Kaggle) - a large e-commerce dataset with the binary target isFraud; 

widely used for tabular, sequential, and hybrid models [6]. 
‒ CreditCard (ULB) - a classical dataset with PCA features and strong class 

imbalance, suitable for rapid prototyping [6]. 
‒ PaySim (synthetic mobile money) - simulates large-scale transaction systems 

under class imbalance [6]. 
‒ Elliptic (Bitcoin AML) - a transaction graph labeled licit / illicit; a key benchmark 

for GNN- and AML-oriented research, with expanded 2024–2025 versions [7]. 
8. Technical Design Aspects 
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‒ Class imbalance: handled using focal loss, cost-sensitive learning, threshold 
calibration, and advanced oversampling heuristics tailored for fraud detection 
[8]. 

‒ Evaluation metrics: AUC-PR, precision@k, FPR@TPR, and expected cost are 
preferred over traditional accuracy due to extreme imbalance (e.g., only 3–4% 
fraudulent transactions in IEEE-CIS) [9]. 

‒ Online inference: requires millisecond-level latency, streaming feature 
engineering (rolling windows), feature stores, and continuous monitoring of drift 
with scheduled retraining [2]. 

9. Architectural Trends Summary. Graph-based models (for card, e-commerce, and 
crypto scenarios) - such as encoder–decoder GNNs, GCN/GAT architectures on 
the Elliptic dataset, and industrial-scale GNN blueprints - currently define the 
standard for fraud detection. Self-supervised contrastive pretraining significantly 
improves performance under limited labeling and pattern variability [7]. Concept 
drift handling is a mandatory component of modern systems, with integrated 
monitoring and update policies. Finally, XAI and Federated Learning are not 
optional additions but essential requirements for practical deployment, ensuring 
transparency, compliance, and trust among stakeholders [12]. 

Autoencoder 
An Autoencoder is a type of neural network trained to reproduce its input at the output 

through a narrow bottleneck layer – the latent space, where it learns to compress (encode) 
only the most salient information. 

Structure: 
1. Encoder – transforms the input vector x into a lower-dimensional hidden 

representation z: 

𝑧 = 𝑓enc(𝑥) = 𝜎(𝑊1𝑥 + 𝑏1) 

2. Bottleneck (Latent Space) – the narrowest part of the network, storing essential 
information about the input. 

3. Decoder – reconstructs x̂ from the encoded representation z: 

𝑥 = 𝑓dec(𝑧) = 𝜎(𝑊2𝑧 + 𝑏2) 

Loss Functions: Autoencoders aim to minimize the difference between the input and 
reconstructed data, typically using: 

• Mean Squared Error (MSE): 𝐿(𝑥, 𝑥) = ‖𝑥 − 𝑥‖2  

• Binary Cross–Entropy (BCE): 𝐿(𝑥, 𝑥̂) = − ∑ [𝑥𝑖 𝑙𝑜𝑔( 𝑥̂𝑖) + (1 − 𝑥𝑖) 𝑙𝑜𝑔( 1 − 𝑥̂𝑖)]𝑖  
Types: 

• Shallow Autoencoder – single hidden layer. 

• Deep Autoencoder – multiple hidden layers for complex data compression. 

• Sparse Autoencoder – uses regularization to keep most neurons inactive. 

• Denoising Autoencoder – reconstructs clean inputs from corrupted versions. 

• Variational Autoencoder (VAE) – introduces probabilistic encoding through μ and 
σ distributions, enabling generative modeling. 

Training Pipeline: 
1. Data preprocessing – normalization, scaling, and optional noise addition. 
2. Architectural design – selection of layer sizes for encoder, latent space, and 

decoder. 
3. Loss and optimizer selection – typically Adam or RMSprop. 

4. Training – input serves simultaneously as target (𝑥 → 𝑥). 

5. Evaluation – reconstruction error analysis and visual comparison of results. 
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MATERIALS AND METHODS 

Data Source. For our experiments, we used the open dataset available on 
Kaggle: [12]. This benchmark corpus is a standard testbed for intrusion detection in 
computer networks modeled in a military environment. The anomaly detector (decoder 
model) is designed to identify intrusion attempts using TCP dump data from a local area 
network (LAN) that emulates a typical U.S. Air Force infrastructure. 

Data Description. Each connection is a sequence of TCP packets with a defined start 
and end time, capturing data exchange between a source and a destination IP address 
under a specific protocol. Every connection is labeled as either “normal” or “attack.” The 
dataset includes four primary attack categories: 

• DOS (Denial of Service): e.g., SYN flood. 

• R2L (Remote to Local): unauthorized access from a remote machine (e.g., 
password guessing). 

• U2R (User to Root): unauthorized escalation to superuser (root) privileges. 

• Probe: reconnaissance, such as port or service scanning. 
The corpus contains approximately five million connection records. Features are 

grouped into three classes: 
1. Basic connection characteristics (e.g., connection duration); 
2. Content features within a session (e.g., number of failed login attempts); 
3. Traffic features over a 2-second window (e.g., number of connections to the same 

host as the current one). 
Implementation. We prepared a Python script and a README to: 

• download the KDD Cup 1999 (10%) subset from Kaggle; 

• assemble a DataFrame; 

• perform one-hot encoding of categorical variables (protocol_type, service, flag); 

• produce two feature variants: 
‒ standardized (via StandardScaler), 
‒ normalized to [0, 1] (via MinMaxScaler); 

• save the processed CSV files and the fitted scalers in .pkl format. 
Variational Autoencoder (VAE) Construction. Because the original dataset is large, 

only a subset (≈10%) is used to train the VAE. The model is trained exclusively on normal 
(non-attack) samples; data are then standardized. 

Data Preparation and Standardization. After preliminary selection, standardization and 
normalization are applied. For convenience, one may use a built-in fetch detector function, 
which stores pre-prepared models in a local directory and loads the detector; if the directory 
does not exist, it is created automatically.  

During initialization, a warning indicates that an outlier threshold must be specified. 
This is set with infer threshold(), which takes a batch of instances and the parameter 
threshold perc indicating what proportion of the data is considered normal. For example, if 
≈5% of the data are known outliers, that proportion can be supplied via perc outlier in create 
outlier batch(). The threshold can also be inferred solely from normal training data by setting 
threshold perc = 99 and adding a small safety margin above the inferred value. 

Outlier Detection. A batch containing 10% outliers is then constructed and scored. 
After predicting outliers, model quality is assessed using the F1-score and the confusion 
matrix. 

On the outlier plot, some outliers separate clearly while others lie closer to the normal 
region. In addition, an ROC curve can be drawn to illustrate detector performance across 
thresholds. An analysis of individual predictions (e.g., on X outlier) indicates that the feature 
srv count frequently contributes strongly to marked outliers. 

Experiment Template for KDD’99 (10%). We prepared a ready-to-use template that 
ingests processed CSV files and demonstrates two anomaly-detection approaches for 
tabular data using Alibi Detect:  
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• AEGMM (Autoencoder + Gaussian Mixture Model), 

• VAEGMM (Variational Autoencoder + Gaussian Mixture Model). 
Pipeline 
1. Load dataset_standardized.csv or dataset_normalized.csv; 
2. Binarize labels (normal vs attack); 
3. Split into train / validation / test (training strictly on normal data); 
4. Train AEGMM or VAEGMM; 
5. Set the threshold with infer_threshold (e.g., 95th percentile of inliers); 
6. Evaluate on the test set (F1, confusion matrix) and generate basic plots. 
Feature and Hyperparameter Choices  

• For AEGMM/VAEGMM on tabular data, standardized features (zero mean, unit 
variance) typically yield better stability.  

• Both models are unsupervised / one-class detectors: training uses only normal 
data.  

• The threshold is set via infer_threshold(X_val_normal, threshold_perc=...); typical 
values are 95–99%. A higher threshold reduces false positives but may increase 
missed attacks.  

• Network architecture: for tabular data, 2–3 Dense layers usually suffice; latent size 
z ≈ 8–32 is a practical starting point.  

• GMM components (n_components): 3–10, tuned on the validation set.  

• Prefer standardized data for stable training; if using normalized data, load 
dataset_normalized.csv.  

• Detectors can be saved/loaded with save() and load_detector(). 
Deep Autoencoder Architecture. A deep autoencoder employs multiple layers in the 

encoder and decoder, narrowing toward a compact latent space (latent z) and then 
symmetrically expanding. This enables learning hierarchical representations and 
compressing complex structures more effectively than shallow models. 

Architectural Guidelines.  

• Encoder: Dense → BatchNormalization → Activation → Dropout (repeated 
cascade). Example widths: 1024 → 512 → 256 → 128 → z.  

• Decoder: mirror layout: z → 128 → 256 → 512 → 1024 → input_dim.  

• Activations: ReLU in hidden layers; sigmoid at the output (for inputs scaled to [0,1]).  

• Regularization: Dropout, L1 (sparsity), optionally L2.  

• Stability: BatchNormalization, EarlyStopping, ReduceLROnPlateau.  

• Denoising mode: add GaussianNoise at the input. 

• Code Notes.  

• activity_regularizer=L1 in encoder hidden layers encourages sparse activations.  

• Adding GaussianNoise implements a denoising autoencoder; set denoising=False 
to disable noise.  

• With sigmoid output, inputs must be scaled to [0, 1]; for other ranges, adopt linear 
(or another suitable) output with MSE or an appropriate loss.  

• For large models, tied weights can be beneficial, but in Keras this requires a custom 
layer or weight-sharing kernel. 

Latent Space Size Selection. Select z to be roughly 1/8–1/32 of the input 
dimensionality. Too small a latent space risks losing salient details or overfitting to noise; 
too large a space may lead the model to copy inputs with poor generalization. Choose z 
empirically based on reconstruction error and validation-loss stability. 
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RESULTS AND DISCUSSION 

AEGMM Model Training Results 

Training Process (detector.fit)  
Loss Dynamics:  
loss_ma: 0.4875 → –0.5672 
The parameter loss_ma represents the mean loss function of the AEGMM model, 

defined as the sum of two components: 
loss=ReconError(x,x^)+GMM-NLL(z)  
That is, the loss function combines the reconstruction error (the difference between 

the input and its reconstruction by the autoencoder) and the negative log-likelihood  
(NLL) of the data density estimated in the latent space by the Gaussian Mixture Model 
(GMM). 

During training, a gradual decrease in loss_ma (even to negative values) is observed 
– this is normal since the log-likelihoods in GMMs are typically negative. The final value of 
approximately –0.56 indicates that the model achieved a high likelihood of the data under 
the learned distribution. The absence of abrupt spikes, NaN values, or signs of overfitting 
demonstrates that the optimization process is fully stable. Thus, the model successfully 
aligned the autoencoder and GMM components within the latent space, achieving balanced 
training. 

Threshold Tuning 
[VAEGMM] tuned threshold = –4.715186 (src = normal, perc ≈ 98.5) F1@val = 0.9899 
The threshold was determined as the 98.5th percentile among the scores of normal 

samples. The AEGMM model uses GT polarity, where score > threshold ⇒ anomaly. The 
negative threshold value is expected because higher densities correspond to lower (often 
negative) scores in AEGMM. 

Hence, the threshold –4.715 effectively separates normal instances from anomalies. 
The resulting F1@val = 0.99 demonstrates an almost perfect balance between precision 
and recall on the validation set. 

Test Results (Table 1 and Table 2) 

• 98.4% of normal transactions were correctly classified; only 312 false positives 
occurred. 

• 99.3% of attacks were successfully detected; 324 attacks remained undetected. 

• The total classification error is approximately 0.9%. 
 

Table 1. Model Performance Metrics 

Metric Value Interpretation 

F1@test 0.9936 Optimal balance between precision and recall 

Accuracy 0.9908 99.1% correctly classified samples 

Precision (1) 0.9938 Less than 1% false alarms 

Recall (1) 0.9935 ≈99% of attacks detected 

F1 (0) 0.9837 98% of normal samples correctly recognized 
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Table 2. Confusion Matrix 

 Predicted 0 (Normal) Predicted 1 (Attack) 

True 0 (Normal) 19.144 312 

True 1 (Attack) 324 49.676 

 

Interpretation 
Analytical Discussion 
The AEGMM (Autoencoder + Gaussian Mixture Model) learned to compactly encode 

normal data in the latent space. All normal samples are located in the dense regions of the 
GMM distribution, thus having low scores (≈ –5 … 0). Anomalous samples, characterized 
by lower probability densities, yield higher scores (often > –4.7) and are classified as 
anomalies. 

The system effectively separates normal from attack samples, showing a distinct 
boundary between the two classes (Table 3). 

Table 3. Summary of Results 

Indicator Result Comment 

Loss convergence Stable, no NaN 
Autoencoder and GMM components well 

aligned 

Threshold –4.715 
The boundary between “normal” and 

“anomaly” 

F1@test 0.9936 Near theoretical optimum 

Recall 0.9935 Nearly all attacks detected 

Precision 0.9938 Minimal false positives 

Accuracy 0.9908 99.1% correct classifications 

 
The AEGMM model in this configuration exhibited ideal convergence: 

• Stable loss without oscillations or divergence, 

• No signs of overfitting, 

• Optimally tuned threshold, 

• Evaluation metrics surpass those of VAEGMM. 
Fig. 1 shows the visualization of AEGMM performance after training, depicting the 

degree of anomaly (“anomaly score”) for each sample in the test set. X-axis (sample idx): 
sample index in the test set (~70,000 records; normal samples precede attack samples). 
Y-axis (score): anomaly score – how strongly the model perceives the instance as 
abnormal. Low scores (≈0 or negative) correspond to normal data; high scores (tens or 
hundreds) indicate potential anomalies. The dashed line (th = –4.715) marks the 
classification threshold: all points above the line are detected as attacks, while those below 
are normal. The left section (0–20k) primarily contains normal samples with scores ≈0 or 
slightly below the threshold – typical and safe cases. 

The right section (≈25k–70k) reveals clusters with very high scores (100–1000), 
corresponding to anomalous or attack samples, distinctly separated from the normal group. 

The presence of spike clusters (around 20k, 35k, 50k) indicates sequences of attacks 
of the same type sharing similar feature patterns in the input data. 
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Fig. 1. Reconstruction error vs threshold 

The model clearly distinguishes normal samples (low scores) from anomalies (high 
scores), as summarized in Table 4. The chosen threshold (–4.7) is optimal — it lies below 
all normal instances, avoiding overlap with attack spikes. 

High anomaly scores (100–1000 range) indicate samples with an extremely low 
probability of belonging to the normal distribution, i.e., structurally distinct from typical 
transactions. The clustering visible in Fig. 1 confirms that different attack types form 
separate characteristic score levels. 

Table 4. Feature Interpretation 

Feature Interpretation 

Low scores (≈0 or below –4.7) Normal sessions 

High scores (>0) Attack or anomalous sessions 

Threshold th = –4.715 The boundary between “normal” and “anomaly” 

High-score clusters Groups of similar attack types 

No region overlap High model resolution and precision 

 
The AEGMM model demonstrates a high level of discriminative ability: it effectively 

separates normal transactions from attacks, ensuring clear segmentation of the feature 
space and robustness to class overlap. 

VAEGMM Model Training Results. 

General Overview. 
The results obtained for the VAEGMM (Variational Autoencoder + Gaussian Mixture 

Model) demonstrate that the model reliably learned to detect anomalies (attacks) with high 
accuracy and a strong balance between precision and recall. 

Training Process (detector.fit). Loss Dynamics: loss_ma: 3.5998 → 0.9857 
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The value of loss_ma (mean aggregate loss combining reconstruction error and 
density likelihood in the latent space) gradually decreased throughout training, without 
gradient explosions or NaN values. This indicates that the autoencoder efficiently learned 
to compress and reconstruct normal data, while the GMM successfully modeled its latent 
distribution. 

At the final epochs, the loss stabilized around 1.0, confirming convergence and stable 
optimization. Hence, the training process can be considered successful: the network 
neither overfitted nor lost stability. 

Threshold Tuning. 
[VAEGMM] tuned threshold = 11.405802 (src = normal, perc ≈ 98.0), F1@val = 

0.9365 
The threshold was selected to maximize the F1-score (balance between precision and 

recall) on the mixed validation set. A value of approximately 11.4 corresponds to the 98th 
percentile of normal scores, defining the boundary between “normal” and “anomalous” 
data.The high validation performance (F1@val ≈ 0.94) indicates that the model could 
already clearly separate attacks from normal sessions at the validation stage. 

Testing Results 
F1@test = 0.9751, Accuracy = 0.9647 

These are excellent values for network-based anomaly detection tasks (e.g., KDD’99): 

• F1 = 0.975 — the model nearly perfectly balances precision and recall. 

• Accuracy = 96.5% — the vast majority of examples are correctly classified. 

• Recall (1) = 0.9594 — approximately 96% of all attacks were detected. 

• Precision (1) = 0.9913 — only about 1% false positives among predicted attacks. 

Interpretation (Table 5): 

• 19,035 out of 19,456 normal samples were correctly classified (~98%). 

• 47,971 out of 50,000 attacks were correctly identified (~96%). 
False alarms account for about 0.6% of all test examples. 

Table 5. Confusion Matrix Values 

 Predicted 0 (Normal) Predicted 1 (Attack) 

True 0 (Normal) 19,035 421 

True 1 (Attack) 2,029 47,971 

 

Analytical Interpretation 
The VAEGMM model showed stable convergence, with no NaN values and a 

consistent decrease in the loss function. High precision and recall confirm that the model 
effectively detects anomalies. The selected threshold was optimal: as shown in Fig. 2, high 
scores are clearly separated from normal regions. The VAE component successfully 
reconstructs normal data packets, while deviations (attacks) exhibit a higher reconstruction 
error, resulting in larger scores. The GMM component in the latent space adds an additional 
verification layer, determining whether a latent vector belongs to a “dense cluster” of normal 
events. Together, these mechanisms yield strong discriminative capability (Table 6). 

The VAEGMM model demonstrated stable and reliable training, with high overall 
accuracy (97–99%), balanced precision and recall metrics, and robustness to noise and 
class imbalance. Therefore, VAEGMM can be regarded as an effective and practically 
applicable anomaly detector for network security and cybersecurity tasks, particularly for 
benchmark datasets such as KDD’99. 
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Table 6. Summary of Results 

Metric Value Interpretation 

Final Loss 0.98 Stable training, convergence achieved 

Threshold 11.4 
Boundary between normal and anomalous 

data 

F1@val 0.936 High validation consistency 

F1@test 0.975 High classification accuracy 

Recall (attacks) 0.959 ~96% of attacks detected 

Precision (attacks) 0.991 Only ~1% false alarms 

 

Reconstruction Error vs Threshold 
Fig. 2 illustrates the results of the VAEGMM (Variational Autoencoding Gaussian 

Mixture Model) after training on normal data and testing on a mixed set (normal + attack). 
X-axis: indices of test samples (~70,000 examples). Y-axis: instance score – the degree to 
which the model considers a sample anomalous. 

The dashed line represents the selected threshold th = 11.406; if score > 11.406, the 
sample is classified as an anomaly. 

Most points have score ≈ 0–5, corresponding to normal samples (the model confidently 
identifies them as similar to training data). A smaller subset exhibits very high scores (100–
800) – potential anomalies or attacks. These lie above the threshold and are thus marked 
as is_outlier = 1. A threshold of 11.406 implies that the model identifies only the most 
extreme deviations as anomalies, while the rest are considered normal. 

VAEGMM evaluates how well a sample can be reconstructed by the autoencoder and 
how well its latent representation fits the GMM density: 

 score=ReconLoss(𝑥, 𝑥) + MahalanobisDistance(𝑧, 𝜇𝑘).  

 

Fig. 2. Reconstruction error vs threshold. 
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For normal samples, both reconstruction, and GMM likelihood are good → low scores.  
For anomalous samples, reconstruction is poor and the point lies far from cluster 

centers → high scores. 
Hence, the model clearly distinguishes normal and anomalous data – high-score 

clusters are visible above the threshold. The chosen threshold (≈11.4) efficiently isolates 
strong outliers. If the dataset contains more anomalies than expected, the threshold can 
be lowered (to 8–9) to improve recall (attack detection rate). Conversely, if false positives 
are excessive, it can be raised (to 15–20). 

The model is stable, free of NaN issues, and learns correctly. The instance score 
distribution shows variation, confirming a well-structured latent space. Since the optimal 
threshold is > 0, the GMM is properly calibrated. The presence of distinct high-anomaly 
samples indicates that VAEGMM functions as intended. 

Comparative Analysis of AEGMM and VAEGMM Models 
Based on the results obtained, the AEGMM model outperformed VAEGMM on the 

given dataset. This superiority can be attributed to the fact that the GMM with a fixed latent 
space is more effective at identifying compact clusters of normal states than the variational 
VAEGMM, whose stochastic latent variables introduce noise into the representation. 

Reasons for AEGMM Superiority 
Let us examine in more detail why the AEGMM (Autoencoding Gaussian Mixture 

Model) demonstrated better performance than the VAEGMM (Variational Autoencoding 
Gaussian Mixture Model) in this study – despite the latter being considered a more 
“advanced” architecture (Table 7). 

Table 7. Key Differences Between AEGMM and VAEGMM 

Characteristic AEGMM VAEGMM 

Encoder type 
Standard autoencoder 

(deterministic) 
Variational autoencoder 

(stochastic) 

Latent space Fixed, deterministic 
Stochastic distribution 

q(z)q(z)q(z) 

Source of regularization 
Only GMM in the latent 

space 
GMM + KL divergence to 

N(0,1)N(0,1)N(0,1) 

Reconstruction 
Minimizes L2 reconstruction 

error 
Balances reconstruction and 

distribution alignment 

Training stability 
High (minimal loss 

oscillations) 
May fluctuate due to latent 

noise 

Optimization 
Simple gradient descent on 

deterministic loss 
More complex, with two 

stochastic terms 

 

Interpretation 

In AEGMM, the latent vector 𝑧 = 𝑓(𝑥) is a fixed, deterministic representation that 

directly encodes the pattern of normal data. The GMM then models the density of normal 
samples in this latent space, forming compact clusters. 

• For normal samples: 𝑝(𝑧) is high ⇒ score = − 𝑙𝑜𝑔 𝑝 (𝑧) is low (≈  −5. . 0).  
• For attacks: 𝑧 is distant from GMM centers ⇒ 𝑝(𝑧) is low ⇒ score is high (≈ 0..5). 

In VAEGMM, stochasticity is introduced in the latent representation: 
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 𝑧 ∼ 𝑁(𝜇(𝑥), 𝜎2(𝑥)).  

This means that the same example may generate slightly different latent vectors. 
While beneficial for generalization, in datasets like KDD’99, where classes are clearly 
separable, such stochasticity blurs the distinction between normal and anomalous samples 
– slightly reducing the F1 score. 

Why KDD’99 “Favors” AEGMM 
The KDD’99 dataset (and its 10% subset) possesses the following characteristics: 

• High-dimensional tabular data (~120 features); 

• Strong inter-feature correlations; 

• Clearly separable “attack” and “normal” classes in latent space. 
Under these conditions, a deterministic autoencoder (AE) better preserves the 

geometry of the normal data subspace, while the GMM accurately models the density 
boundaries. The stochastic behavior of the VAE slightly smooths these boundaries, leading 
to less precise class separation (Table 8). 

Table 8. Summary Comparison 

Criterion Superior Model Rationale 

Loss stability AEGMM No stochastic latent variables 

Accuracy (F1) AEGMM Deterministic latent representation 

Generalization on 
noisy/incomplete data 

VAEGMM 
Stochasticity improves performance 
on complex or unstructured inputs 

Optimization/convergence 
speed 

AEGMM 
Fewer parameters, more stable 

convergence 

Cluster interpretability AEGMM Latent clusters are easily visualized 

 
AEGMM outperformed VAEGMM because: 
1. In the KDD’99 task, clusters are well separated, so VAE stochasticity only blurs 

these boundaries. 
2. The latent dimensionality is relatively small (3–5), sufficient for the precise 

reconstruction of normal patterns. 
3. AEGMM gradients are more stable, as there is no noise introduced by sampling 

ϵ∼N(0,1), resulting in smoother loss convergence. 
Therefore, for structured, low-noise tabular data (e.g., network packets, IoT logs, 

system records), AEGMM is the optimal choice. For unstructured or complex data types 
(images, audio, time series), VAEGMM may offer better generalization capabilities. 

Deep Autoencoder 
Dataset and Model Characteristics 
Label distribution: 

• Attacks (1): 396,743 samples 

• Normal (0): 97,278 samples 
A substantial class imbalance is observed, since normal activity constitutes only ~20% 

of all records. The autoencoder was trained exclusively on normal samples, consistent with 
the unsupervised anomaly detection paradigm. 
Data splits: 

• Train normals: 58,366 
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• Validation normals: 19,456 

• Test mix: 38,912 (contains both normal and anomalous samples) 
After one-hot encoding (OHE) and feature scaling (StandardScaler / MinMaxScaler), 

all splits have an identical feature dimensionality of 75: 

• X_train: (58,366, 75) 

• X_val: (19,456, 75) 

• X_test: (38,912, 75) 
This confirms correct preprocessing: all categorical variables were converted to 

numeric form, and features were brought to a consistent scale. 

Model Architecture 

• Model: DeepAutoencoder 

• Total parameters: 14,223 
‒ Trainable params: 14,223 
‒ Non-trainable params: 0 

Thus, all parameters are trainable; there are no frozen layers. The parameter count 
indicates a compact yet sufficiently deep architecture appropriate for the data volume (~58k 
training samples). The network likely comprises several hidden layers with a gradual 
bottleneck contraction, enabling information compression and extraction of key features of 
normal behavior. 

Training Methodology 
Although the dataset contains a large number of attack records, the autoencoder is 

trained only on normal data, forming a “model of normality.” With rigorous preprocessing 
(75 features after OHE and scaling) and a moderate parameter count (~14k), the network 
achieved stable convergence and high accuracy (~97.5%) on the test set. This indicates 
that the chosen architecture is well-suited for anomaly detection in large tabular datasets 
with class imbalance. 

Implementation 
A program was developed using the 10% subset of KDD’99 (file 

kddcup.data_10_percent_corrected from Kaggle), implementing: 
1. Preprocessing: 

‒ Label mapping (normal → 0, others → 1); 
‒ Construction of a training set using only normal records; 
‒ One-hot encoding for categorical variables (protocol_type, service, flag); 
‒ Standardization of numeric features with StandardScaler. 

2. Model construction: a Keras (Model API) deep autoencoder with a 4-unit 
bottleneck, trained solely on normal data. 

3. Reconstruction error computation and threshold selection via the 99th percentile 
on the validation set of normal samples (adjustable, e.g., 98.5% or to a target FPR). 

4. Evaluation: computation of Precision, Recall, F1-score, and plotting (error 
distributions, ROC curves, etc.). 

5. Export of encoded (bottleneck) features in .npy format for downstream analysis. 

Technical Notes 

• OneHotEncoder converts the three categorical columns into binary indicator 
columns (one per category). For unseen categories in the test set, 
handle_unknown='ignore' is used. 

• StandardScaler is applied only to numerical features; OHE binaries are left 
unchanged. 

• Training exclusively on normal data is key for unsupervised anomaly detection with 
an autoencoder. 



Development of a Deep Learning Model for Fraud…  

Електроніка та інформаційні технології • 2025 • Випуск 32 115 

• The anomaly threshold is set by the quantile of reconstruction errors (99th 
percentile on normal validation data). 

• A 4-unit bottleneck enforces compact representations and encourages learning 
salient patterns (akin to PCA). 

The resulting deep autoencoder demonstrated high effectiveness on KDD’99, 
accurately separating normal behavior from attacks, which makes it suitable for security 
monitoring, cyber defense, and network traffic analysis. 

Overall Model Characterization 
The autoencoder was trained to detect anomalies based on reconstruction error 

(MSE). The anomaly threshold was set at the 99th percentile of validation errors: 
threshold = 2.94781 

Samples with MSE above this threshold are interpreted as anomalies (attacks); lower 
values indicate normal behavior. 

Training Dynamics (Fig. 3 – “AE training loss”) 

• A rapid decrease in training loss over the first ~5 epochs, followed by stabilization 
around 0.39. 

• Validation loss likewise decreases but remains slightly higher (~0.445), suggesting 
mild overfitting or distributional differences between training and validation data. 

• Overall, training is stable and convergent, with no signs of degradation or oscillation 
(a clear stability plateau). 

 
Fig. 3. AE training loss. Blue curve: training set, orange – validation set. 

Fig. 3 shows the evolution of mean squared error (MSE) during training:  X-axis: epoch 
index; Y-axis: loss value. An initial sharp drop in training loss (≈0.45 → ≈0.39) is followed 
by stabilization. Validation loss also declines, remaining slightly higher (~0.445), indicating 
good convergence with minor overfitting. The absence of sharp fluctuations or divergence 
between the curves confirms stable learning. Further training is unlikely to yield substantial 
gains, as the loss reaches a plateau after ~10 epochs. 

Reconstruction Error Analysis on the Test Set 
Fig. 4 (“Reconstruction Error vs Threshold”) displays reconstruction errors for test 

samples: 
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• Most samples have MSE ≪ 2.94, indicating high-quality reconstruction of normal 
cases. 

• A small number of points far exceed the threshold (MSE > 500–2000), 
corresponding to pronounced anomalies (attacks). 

 

Fig. 4. Reconstruction error vs threshold. 

Thus, the model effectively separates normal and anomalous observations. In Fig. 4, 
X-axis denotes the sample index; Y-axis shows MSE. Blue points indicate individual 
reconstruction errors. The orange dashed line marks the threshold th = 2.948 (99th 
percentile on validation normals). Most samples fall below the threshold (normal), while a 
few that reach up to ~2500 are anomalous. The plot illustrates reliable separation based 
on reconstruction error magnitude. 

Fig. 5 (“Reconstruction Error Distribution”) presents the distributions of MSE for 
normal and anomalous samples: 

• Normal (blue bars) concentrate near zero, evidencing accurate reconstruction. 

• Attacks (orange bars) shift toward higher MSE, indicating substantially worse 
reconstruction. 

The vertical dashed line (th = 2.948) clearly separates the two distributions, confirming 
effective class separation. 

Since the threshold th=2.948 lies within this high-density region, it does not correspond 
to a boundary between the histogram peaks. Instead, it represents an operational threshold 
determined by a statistical criterion (e.g., percentile-based selection or validation ROC 
analysis), rather than a visual separator. Consequently, the threshold line passes through 
a region of high density rather than between two well-separated maxima. 

In our case, the distributions exhibit strong asymmetry and heavy-tailed behavior. The 
majority of normal samples and a substantial fraction of attack samples have very small 
MSE values (≈0), whereas a limited number of attack instances produce extremely large 
reconstruction errors, reaching hundreds or even thousands. As a result, the histogram is 
stretched along the X-axis up to approximately 2500, causing the entire informative region 
(0–5) to be compressed near zero. 

Confusion Matrix 

• TN (19,230): correctly classified normal samples 

• FP (226): normal samples misclassified as anomalies 
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• FN (735): attacks not detected 

• TP (18,721): correctly identified anomalous samples (attacks) 
Thus, the overall classification accuracy is 97.5% (Table 9), which is exceptionally 

high. Precision/recall is nearly symmetric across classes, indicating no bias toward either 
normal or anomalous samples. The high F1-score confirms good generalization and a low 
false-alarm rate. 

The deep autoencoder successfully learned to reconstruct normal data patterns and 
detect deviations. The chosen threshold (99th percentile) proved optimal, balancing missed 
attacks and false alarms. The average accuracy of ~97.5% attests to the model’s quality 
and practical suitability for anomaly or intrusion detection. 

 
Fig. 5. Reconstruction error distribution. 

 

Table 9. Classification Metrics 

Metric Class 0 (Normal) Class 1 (Attack) Average 

Precision 0.9632 0.9881 0.9756 

Recall 0.9884 0.9622 0.9753 

F1-score 0.9756 0.9750 0.9753 

Accuracy — — 0.9753 

 
Training was stable, with no signs of overfitting; training and validation losses are 

aligned, reflecting a well-chosen architecture and hyperparameters. The anomaly threshold 
(2.94781) cleanly separated normal from attack samples. Reconstruction-error distributions 
corroborate that the model faithfully reconstructs normal data while substantially increasing 
MSE for anomalies. 

The obtained metrics (accuracy ≈ 97.5%, F1 ≈ 0.975) confirm high detection quality 
with a balanced trade-off between identifying attacks and minimizing false positives. 
Consequently, the autoencoder effectively models normal system behavior and is well-
suited for intrusion and anomaly detection in cybersecurity, industrial monitoring, and 
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related domains. The proposed model is a robust tool for unsupervised anomaly detection, 
delivering high detection performance without the need for manual labeling. 

CONCLUSION 

This study conducted a comprehensive investigation into the application of deep 
learning models for detecting financial anomalies based on network traffic data. Three 
architectures were developed and experimentally compared: a Deep Autoencoder, 
AEGMM (Autoencoder + Gaussian Mixture Model), and VAEGMM (Variational 
Autoencoder + GMM). All models were trained under the unsupervised / one-class anomaly 
detection paradigm using only normal samples from the KDD’99 dataset, which simulates 
real-world cyberthreat scenarios in computer networks. 

The obtained results demonstrate that the AEGMM model provides the highest 
effectiveness among the tested architectures, achieving F1 = 0.9936 and 
Accuracy = 0.9908, while exhibiting stable convergence, no signs of overfitting, and clear 
separation between normal and fraudulent transactions. The VAEGMM model, though 
slightly less accurate (F1 = 0.9751), confirmed its generalization capability due to the 
stochastic nature of its latent space. The Deep Autoencoder, even without an additional 
GMM component, achieved strong performance (Accuracy ≈ 97.5%), confirming the 
suitability of such architectures for real-world unsupervised tasks. 

The analysis confirmed that using reconstruction error as a criterion for anomaly 
detection is an effective tool for monitoring complex financial systems. The selected 
threshold at the 99th percentile (threshold = 2.94781) allowed minimizing false positives 
while maintaining high sensitivity to attacks. 

In summary, the developed models demonstrated high reliability and practical 
applicability for tasks of fraud detection, cybersecurity, and anomaly identification in 
transactional data streams. Future research should focus on integrating the proposed 
methods with Graph Neural Networks, transformer-based architectures, and Federated 
Learning and Explainable AI (XAI) technologies to enhance the transparency, scalability, 
and adaptability of artificial intelligence systems in real-world financial environments. 

The source code is available in the GitHub repository at the following link: 
incom2025/autoencoder_cod  
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АНОТАЦІЯ 

Вступ. Стрімке зростання електронних платежів спричинило інтенсифікацію 
шахрайської активності, що вимагає впровадження адаптивних інтелектуальних 
систем. Традиційні методи, засновані на фіксованих правилах, не забезпечують 
достатньої гнучкості, тоді як моделі глибокого навчання, зокрема автокодери, здатні 
виявляти невідомі або нові типи атак без попереднього маркування. У даній роботі 
оцінено ефективність трьох архітектур без нагляду – AEGMM, VAEGMM та глибокого 
автокодера – для задачі виявлення аномалій на основі відкритого набору даних 
KDD’99. 
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Матеріали та методи. Використано еталонний піднабір KDD’99 (10%), у якому 
категоріальні ознаки були закодовані методом one-hot, а числові – стандартизовані. 
Усі моделі навчалися виключно на нормальних зразках відповідно до одно-класової 
парадигми. Експериментальний конвеєр включав попередню обробку даних, побудову 
моделей у Python (TensorFlow + Alibi Detect), вибір порогового значення на основі 
перцентильної калібрації та оцінювання якості за метриками F1, точністю, precision, 
recall та матрицями змішування. 

Результати. Модель AEGMM продемонструвала найвищі показники (F1 = 0,9936, 
точність = 0,9908), забезпечивши майже ідеальне розмежування нормальних і 
шкідливих вибірок. Модель VAEGMM досягла F1 = 0,9751, показавши стабільну 
збіжність, але дещо нижчу точність через стохастичний характер латентного простору. 
Глибокий автокодер продемонстрував точність близько 97,5%, що підтверджує його 
ефективність навіть без компонента GMM. Оптимальний поріг аномалій, визначений 
на рівні 99-го процентиля значень реконструкції або густини, забезпечив надійне 
розрізнення нормальних і атакувальних станів. 

Висновки. Моделі на основі автокодерів є ефективними для виявлення аномалій 
у великих, розбалансованих табличних наборах даних. AEGMM продемонструвала 
найкращу продуктивність завдяки стабільному латентному представленню та 
детермінованому процесу оптимізації. Запропонований підхід є перспективним для 
моніторингу фінансових потоків, кібербезпеки та виявлення промислових аномалій. 
Подальші дослідження буде спрямовано на розвиток графових і трансформерних 
архітектур, а також інтеграцію пояснюваного ШІ та федеративного навчання для 
підвищення прозорості й надійності моделей. 

Ключові слова: штучний інтелект; глибоке навчання; автокодер; модель гауссової 
суміші; фінансове шахрайство; кібербезпека 
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