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ABSTRACT

Background. The rapid growth of electronic payments has intensified fraudulent activity,
requiring adaptive anomaly detection methods. Traditional rule-based approaches lack
flexibility and fail to generalize to previously unseen attacks. In contrast, unsupervised deep
learning models, particularly autoencoders, can learn intrinsic data representations and
detect anomalies without labeled attack samples. This study evaluates three unsupervised
architectures — Autoencoder with Gaussian Mixture Model (AEGMM), Variational
Autoencoder with Gaussian Mixture Model (VAEGMM), and a Deep Autoencoder — for
network anomaly detection.

Materials and Methods. Experiments were conducted using the KDD’99 (10%)
benchmark dataset. Categorical features were transformed using one-hot encoding, while
numerical features were standardized. All models were trained exclusively on normal traffic
samples following a one-class learning paradigm. The experimental pipeline included
preprocessing, model implementation in Python using TensorFlow and the Alibi Detect
framework, percentile-based threshold calibration, and evaluation using accuracy, precision,
recall, F1-score, and confusion matrices.

Results. AEGMM achieved the highest performance with an F1-score of 0.9936 and an
accuracy of 0.9908, demonstrating near-perfect separation between normal and malicious
samples. VAEGMM reached an F1-score of 0.9751, showing stable convergence but slightly
reduced accuracy due to the stochastic latent space. The Deep Autoencoder achieved
approximately 97.5% accuracy, confirming the effectiveness of reconstruction-based
methods without probabilistic density estimation. The optimal anomaly threshold, defined at
the 99th percentile of reconstruction or density scores, ensured reliable discrimination
between normal and attack states.

Conclusion. Autoencoder-based unsupervised models are effective for anomaly
detection in large, imbalanced tabular datasets. AEGMM outperformed alternative
architectures due to its stable latent representation and deterministic optimization. The
proposed approach is suitable for financial fraud detection, cybersecurity monitoring, and
industrial anomaly detection. Future work will explore transformer-based models and
Explainable Al to improve robustness and interpretability.

Keywords: artificial intelligence; deep learning; autoencoder; Gaussian mixture model;
financial fraud; cybersecurity
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INTRODUCTION

The use of Atrtificial Intelligence (Al) for detecting suspicious banking transactions has
become increasingly relevant in the modern world of financial technologies. The application
of intelligent systems enables effective identification and prevention of financial crimes
such as money laundering, fraud, and other manipulative activities. Al is capable of
analyzing vast amounts of transactional data in real time, efficiently identifying anomalies
and atypical behavioral patterns. This allows banks to promptly respond to potentially
fraudulent activities, minimizing financial risks for both clients and institutions. Most modern
banking systems have already integrated Al-based tools to enhance the security of
financial operations. Given the continuous technological progress, the role of Al in the
banking sector will continue to grow, ensuring more reliable and efficient protection of
financial systems.

Fraud is one of the most widespread phenomena in finance, encompassing such
crimes as money laundering, falsification of financial statements, phishing, cyber fraud, and
credit card fraud. The rapid expansion of digital banking has led to the emergence of new
types of digital fraud. As the number of digital technology users increases, the frequency
and complexity of fraudulent scenarios are expected to rise, making traditional rule-based
systems ineffective and difficult to scale. Furthermore, a significant issue lies in false
positives — legitimate transactions mistakenly classified as fraudulent — which result in
customer dissatisfaction and substantial financial losses for banks.

A study by Chiabanu (2020) revealed that approximately 25% of customers whose
legitimate transactions were incorrectly declined subsequently moved to competing
institutions. Among clients aged 18-24, this percentage increased to 36%, and among
those aged 25-34 — to 31%. These findings demonstrate the urgent need to improve fraud
detection systems.

The financial, banking, and fintech sectors face various fraud typologies each year,
which can be broadly classified into:

¢ Digital fraud,

e Physical attacks,

¢ Internal collusion,

¢ Violations of the “four-eyes principle.”

The first two types correspond to external threats, while the latter two arise from
internal misuse or employee-related schemes. Digital fraud encompasses a wide range of
illicit online activities, where Machine Learning (ML) and Deep Learning (DL) serve as key
tools for counteraction.

Problem Statement

With the advancement of technologies, fraudsters continuously evolve their methods,
rendering traditional rule-based systems inefficient. Such systems require frequent updates
and fail to adapt quickly to emerging fraudulent patterns. Hence, there is a growing
necessity to develop adaptive models capable of autonomously detecting new forms of
fraudulent behavior based on historical data.

According to the Nielsen Report (2021), losses caused by fraudulent activities
involving payment cards amounted to USD 32.34 billion, a 14% increase compared to the
previous year. The growing volume of digital transactions via cards and mobile devices has
intensified the demand for robust and scalable fraud detection systems. The emergence of
Al has opened vast opportunities for designing such intelligent solutions. Industry leaders
— Google, Facebook, Apple, Amazon, and Netflix — are actively deploying Al-driven tools
in their internal financial processes, setting high standards for analytical performance and
security in the global financial sector.
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Literature Review

Systematic reviews covering the period 2019-2024/25 highlight a paradigm shift from
traditional tabular ML approaches toward deep architectures that incorporate temporal,
graph-based, and contextual dependencies in transaction data. Increasing attention is
being paid to issues such as class imbalance, concept drift, model stability, and
interpretability.

For financial services, graph-based approaches (modeling relationships such as
client—card—device—merchant), sequential or transformer-based models for transaction
streams, and hybrid architectures (deep representations combined with gradient boosting)
have become the de facto standard. The main research focus is on reducing false positives
and improving the robustness of models in real-world financial scenarios.

Architectures Demonstrating Practical Effectiveness

1.

Sequential Models. Architectures such as RNN, LSTM, Temporal-CNN, and

Transformers are employed to model temporal patterns in customer or card

behavior. Self-supervised contrastive pretraining significantly enhances model

performance in cold-start and high-class-imbalance conditions [1].

Graph Neural Networks (GNN) Relationships of the type account « device « IP

< merchant naturally form a graph-structured dataset. Models like GCN, GAT, and

encoder—decoder GNNs consistently outperform tabular approaches, particularly

in identifying organized fraud schemes and fraud rings [2].

Autoencoders, VAE, and GAN. These architectures are effective as unsupervised

/ one-class models for anomaly detection, feature extraction, and the discovery of

novel fraud scenarios — especially in cases where labeled data is scarce or

delayed [3].

Concept Drift and Streaming Adaptation. Real-world payment streams exhibit high

variability (changing attacker strategies, seasonality, marketing campaigns).

Studies on concept drift propose detectors such as ADWIN, DDM, and one-class

classifiers, along with dynamic model updating and threshold adaptation strategies.

In financial applications, the best results are achieved through a combination of

online learning, active labeling, and periodic retraining [4].

Explainable Al (XAl) and Compliance Requirements. Most banking institutions

+Key focus areas include:

— Local explanations for escalation cases,

— Attribution stability,

— Generation of reason codes for analysts. Emerging research emphasizes user-
centered XAl protocols and their integration into federated learning frameworks
[4].

Confidentiality and Federated Learning (FL). In banking consortia, Federated

Learning enables collaborative model training without sharing raw data. These

architectures often include XAl layers to ensure auditability and regulatory

compliance [5].

Public Datasets and Benchmarks

— |EEE-CIS (Kaggle) - a large e-commerce dataset with the binary target isFraud;
widely used for tabular, sequential, and hybrid models [6].

— CreditCard (ULB) - a classical dataset with PCA features and strong class
imbalance, suitable for rapid prototyping [6].

— PaySim (synthetic mobile money) - simulates large-scale transaction systems
under class imbalance [6].

— Elliptic (Bitcoin AML) - a transaction graph labeled licit / illicit; a key benchmark
for GNN- and AML-oriented research, with expanded 2024—2025 versions [7].

Technical Design Aspects
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— Class imbalance: handled using focal loss, cost-sensitive learning, threshold
calibration, and advanced oversampling heuristics tailored for fraud detection
[8].

— Evaluation metrics: AUC-PR, precision@k, FPR@TPR, and expected cost are
preferred over traditional accuracy due to extreme imbalance (e.g., only 3—4%
fraudulent transactions in IEEE-CIS) [9].

— Online inference: requires millisecond-level latency, streaming feature
engineering (rolling windows), feature stores, and continuous monitoring of drift
with scheduled retraining [2].

9. Architectural Trends Summary. Graph-based models (for card, e-commerce, and

crypto scenarios) - such as encoder—decoder GNNs, GCN/GAT architectures on
the Elliptic dataset, and industrial-scale GNN blueprints - currently define the
standard for fraud detection. Self-supervised contrastive pretraining significantly
improves performance under limited labeling and pattern variability [7]. Concept
drift handling is a mandatory component of modern systems, with integrated
monitoring and update policies. Finally, XAl and Federated Learning are not
optional additions but essential requirements for practical deployment, ensuring
transparency, compliance, and trust among stakeholders [12].

Autoencoder

An Autoencoder is a type of neural network trained to reproduce its input at the output
through a narrow bottleneck layer — the latent space, where it learns to compress (encode)
only the most salient information.

Structure:

1.

Encoder — transforms the input vector x into a lower-dimensional hidden
representation z:

Z = fenc(x) = o(Wix + by)

2. Bottleneck (Latent Space) — the narrowest part of the network, storing essential

information about the input.

3. Decoder - reconstructs x from the encoded representation z:

X = faec(2) = o(W2z + by)

Loss Functions: Autoencoders aim to minimize the difference between the input and
reconstructed data, typically using:

Mean Squared Error (MSE): L(x, %) = ||x — ||?
Binary Cross—Entropy (BCE): L(x, %) = — >;[x; log(%) + (1 —x;) log(1 — %;)]

Types:

Shallow Autoencoder — single hidden layer.

Deep Autoencoder — multiple hidden layers for complex data compression.
Sparse Autoencoder — uses regularization to keep most neurons inactive.
Denoising Autoencoder — reconstructs clean inputs from corrupted versions.
Variational Autoencoder (VAE) — introduces probabilistic encoding through p and
o distributions, enabling generative modeling.

Training Pipeline:

1.

oA

Data preprocessing — normalization, scaling, and optional noise addition.
Architectural design — selection of layer sizes for encoder, latent space, and
decoder.

Loss and optimizer selection — typically Adam or RMSprop.

Training — input serves simultaneously as target (x = X).

Evaluation — reconstruction error analysis and visual comparison of results.
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MATERIALS AND METHODS

Data Source. For our experiments, we used the open dataset available on
Kaggle: [12]. This benchmark corpus is a standard testbed for intrusion detection in
computer networks modeled in a military environment. The anomaly detector (decoder
model) is designed to identify intrusion attempts using TCP dump data from a local area
network (LAN) that emulates a typical U.S. Air Force infrastructure.

Data Description. Each connection is a sequence of TCP packets with a defined start
and end time, capturing data exchange between a source and a destination IP address
under a specific protocol. Every connection is labeled as either “normal” or “attack.” The
dataset includes four primary attack categories:

e DOS (Denial of Service): e.g., SYN flood.

e R2L (Remote to Local): unauthorized access from a remote machine (e.g.,

password guessing).

¢ U2R (User to Root): unauthorized escalation to superuser (root) privileges.

e Probe: reconnaissance, such as port or service scanning.

The corpus contains approximately five million connection records. Features are
grouped into three classes:

1. Basic connection characteristics (e.g., connection duration);

2. Content features within a session (e.g., number of failed login attempts);

3. Traffic features over a 2-second window (e.g., number of connections to the same

host as the current one).

Implementation. We prepared a Python script and a README to:

¢ download the KDD Cup 1999 (10%) subset from Kaggle;

e assemble a DataFrame;

e perform one-hot encoding of categorical variables (protocol_type, service, flag);

e produce two feature variants:

— standardized (via StandardScaler),
— normalized to [0, 1] (via MinMaxScaler);

e save the processed CSV files and the fitted scalers in .pkl format.

Variational Autoencoder (VAE) Construction. Because the original dataset is large,
only a subset (=10%) is used to train the VAE. The model is trained exclusively on normal
(non-attack) samples; data are then standardized.

Data Preparation and Standardization. After preliminary selection, standardization and
normalization are applied. For convenience, one may use a built-in fetch detector function,
which stores pre-prepared models in a local directory and loads the detector; if the directory
does not exist, it is created automatically.

During initialization, a warning indicates that an outlier threshold must be specified.
This is set with infer threshold(), which takes a batch of instances and the parameter
threshold perc indicating what proportion of the data is considered normal. For example, if
~5% of the data are known oultliers, that proportion can be supplied via perc outlier in create
outlier batch(). The threshold can also be inferred solely from normal training data by setting
threshold perc = 99 and adding a small safety margin above the inferred value.

Outlier Detection. A batch containing 10% outliers is then constructed and scored.
After predicting outliers, model quality is assessed using the F1-score and the confusion
matrix.

On the outlier plot, some outliers separate clearly while others lie closer to the normal
region. In addition, an ROC curve can be drawn to illustrate detector performance across
thresholds. An analysis of individual predictions (e.g., on X outlier) indicates that the feature
srv count frequently contributes strongly to marked outliers.

Experiment Template for KDD'99 (10%). We prepared a ready-to-use template that
ingests processed CSV files and demonstrates two anomaly-detection approaches for
tabular data using Alibi Detect:
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e AEGMM (Autoencoder + Gaussian Mixture Model),

e VAEGMM (Variational Autoencoder + Gaussian Mixture Model).

Pipeline

1. Load dataset standardized.csv or dataset normalized.csv;

2. Binarize labels (normal vs attack);

3. Splitinto train / validation / test (training strictly on normal data);

4. Train AEGMM or VAEGMM;

5. Set the threshold with infer_threshold (e.g., 95th percentile of inliers);

6. Evaluate on the test set (F1, confusion matrix) and generate basic plots.

Feature and Hyperparameter Choices

e For AEGMM/VAEGMM on tabular data, standardized features (zero mean, unit

variance) typically yield better stability.

e Both models are unsupervised / one-class detectors: training uses only normal

data.

¢ The threshold is set via infer_threshold(X_val_normal, threshold_perc=...); typical

values are 95-99%. A higher threshold reduces false positives but may increase
missed attacks.

o Network architecture: for tabular data, 2—3 Dense layers usually suffice; latent size

z = 8-32 is a practical starting point.

¢ GMM components (n_components): 3—10, tuned on the validation set.

o Prefer standardized data for stable training; if using normalized data, load

dataset_normalized.csv.

e Detectors can be saved/loaded with save() and load_detector().

Deep Autoencoder Architecture. A deep autoencoder employs multiple layers in the
encoder and decoder, narrowing toward a compact latent space (latent z) and then
symmetrically expanding. This enables learning hierarchical representations and
compressing complex structures more effectively than shallow models.

Architectural Guidelines.

e Encoder: Dense — BatchNormalization — Activation — Dropout (repeated

cascade). Example widths: 1024 — 512 — 256 — 128 — z.

Decoder: mirror layout: z — 128 — 256 — 512 — 1024 — input_dim.

Activations: ReLU in hidden layers; sigmoid at the output (for inputs scaled to [0,1]).
Regularization: Dropout, L1 (sparsity), optionally L2.

Stability: BatchNormalization, EarlyStopping, ReduceLROnPlateau.

Denoising mode: add GaussianNoise at the input.

Code Notes.

activity_regularizer=L1 in encoder hidden layers encourages sparse activations.
Adding GaussianNoise implements a denoising autoencoder; set denoising=False
to disable noise.

e With sigmoid output, inputs must be scaled to [0, 1]; for other ranges, adopt linear

(or another suitable) output with MSE or an appropriate loss.

e Forlarge models, tied weights can be beneficial, but in Keras this requires a custom

layer or weight-sharing kernel.

Latent Space Size Selection. Select z to be roughly 1/8-1/32 of the input
dimensionality. Too small a latent space risks losing salient details or overfitting to noise;
too large a space may lead the model to copy inputs with poor generalization. Choose z
empirically based on reconstruction error and validation-loss stability.
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RESULTS AND DISCUSSION
AEGMM Model Training Results

Training Process (detector fit)

Loss Dynamics:

loss_ma: 0.4875 — -0.5672

The parameter loss_ma represents the mean loss function of the AEGMM model,
defined as the sum of two components:

loss=ReconError(x,x*)+GMM-NLL(z)

That is, the loss function combines the reconstruction error (the difference between
the input and its reconstruction by the autoencoder) and the negative log-likelihood
(NLL) of the data density estimated in the latent space by the Gaussian Mixture Model
(GMM).

During training, a gradual decrease in loss_ma (even to negative values) is observed
— this is normal since the log-likelihoods in GMMs are typically negative. The final value of
approximately —0.56 indicates that the model achieved a high likelihood of the data under
the learned distribution. The absence of abrupt spikes, NaN values, or signs of overfitting
demonstrates that the optimization process is fully stable. Thus, the model successfully
aligned the autoencoder and GMM components within the latent space, achieving balanced
training.

Threshold Tuning

[VAEGMM] tuned threshold = —4.715186 (src = normal, perc = 98.5) F1@val = 0.9899

The threshold was determined as the 98.5th percentile among the scores of normal
samples. The AEGMM model uses GT polarity, where score > threshold = anomaly. The
negative threshold value is expected because higher densities correspond to lower (often
negative) scores in AEGMM.

Hence, the threshold —4.715 effectively separates normal instances from anomalies.
The resulting F1@val = 0.99 demonstrates an almost perfect balance between precision
and recall on the validation set.

Test Results (Table 1 and Table 2)

e 98.4% of normal transactions were correctly classified; only 312 false positives

occurred.
e 99.3% of attacks were successfully detected; 324 attacks remained undetected.
e The total classification error is approximately 0.9%.

Table 1. Model Performance Metrics

Metric Value Interpretation
F1@test 0.9936 Optimal balance between precision and recall
Accuracy 0.9908 99.1% correctly classified samples
Precision (1) 0.9938 Less than 1% false alarms
Recall (1) 0.9935 ~99% of attacks detected
F1 (0) 0.9837 98% of normal samples correctly recognized
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Table 2. Confusion Matrix

Predicted 0 (Normal) Predicted 1 (Attack)
True 0 (Normal) 19.144 312
True 1 (Attack) 324 49.676

Interpretation

Analytical Discussion

The AEGMM (Autoencoder + Gaussian Mixture Model) learned to compactly encode
normal data in the latent space. All normal samples are located in the dense regions of the
GMM distribution, thus having low scores (= -5 ... 0). Anomalous samples, characterized
by lower probability densities, yield higher scores (often > —4.7) and are classified as
anomalies.

The system effectively separates normal from attack samples, showing a distinct
boundary between the two classes (Table 3).

Table 3. Summary of Results

Indicator Result Comment

Loss convergence  Stable, no NaN Autoencoder and GMM components well

aligned
Threshold _4.715 The boundarxabne;vr;eale;' “normal” and
F1@test 0.9936 Near theoretical optimum
Recall 0.9935 Nearly all attacks detected
Precision 0.9938 Minimal false positives
Accuracy 0.9908 99.1% correct classifications

The AEGMM model in this configuration exhibited ideal convergence:

e Stable loss without oscillations or divergence,

¢ No signs of overfitting,

e Optimally tuned threshold,

e Evaluation metrics surpass those of VAEGMM.

Fig. 1 shows the visualization of AEGMM performance after training, depicting the
degree of anomaly (“anomaly score”) for each sample in the test set. X-axis (sample idx):
sample index in the test set (~70,000 records; normal samples precede attack samples).
Y-axis (score): anomaly score — how strongly the model perceives the instance as
abnormal. Low scores (=0 or negative) correspond to normal data; high scores (tens or
hundreds) indicate potential anomalies. The dashed line (th = —4.715) marks the
classification threshold: all points above the line are detected as attacks, while those below
are normal. The left section (0—20k) primarily contains normal samples with scores =0 or
slightly below the threshold — typical and safe cases.

The right section (=25k—70k) reveals clusters with very high scores (100—1000),
corresponding to anomalous or attack samples, distinctly separated from the normal group.

The presence of spike clusters (around 20k, 35k, 50k) indicates sequences of attacks
of the same type sharing similar feature patterns in the input data.
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AEGMM: instance score vs threshold (GT)
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Fig. 1. Reconstruction error vs threshold

The model clearly distinguishes normal samples (low scores) from anomalies (high
scores), as summarized in Table 4. The chosen threshold (—4.7) is optimal — it lies below
all normal instances, avoiding overlap with attack spikes.

High anomaly scores (100-1000 range) indicate samples with an extremely low
probability of belonging to the normal distribution, i.e., structurally distinct from typical
transactions. The clustering visible in Fig. 1 confirms that different attack types form
separate characteristic score levels.

Table 4. Feature Interpretation

Feature Interpretation
Low scores (=0 or below —4.7) Normal sessions
High scores (>0) Attack or anomalous sessions
Threshold th = -4.715 The boundary between “normal” and “anomaly”
High-score clusters Groups of similar attack types
No region overlap High model resolution and precision

The AEGMM model demonstrates a high level of discriminative ability: it effectively
separates normal transactions from attacks, ensuring clear segmentation of the feature
space and robustness to class overlap.

VAEGMM Model Training Results.

General Overview.

The results obtained for the VAEGMM (Variational Autoencoder + Gaussian Mixture
Model) demonstrate that the model reliably learned to detect anomalies (attacks) with high
accuracy and a strong balance between precision and recall.

Training Process (detector.fit). Loss Dynamics: loss_ma: 3.5998 — 0.9857
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The value of loss_ma (mean aggregate loss combining reconstruction error and
density likelihood in the latent space) gradually decreased throughout training, without
gradient explosions or NaN values. This indicates that the autoencoder efficiently learned
to compress and reconstruct normal data, while the GMM successfully modeled its latent
distribution.

At the final epochs, the loss stabilized around 1.0, confirming convergence and stable
optimization. Hence, the training process can be considered successful: the network
neither overfitted nor lost stability.

Threshold Tuning.

[VAEGMM] tuned threshold = 11.405802 (src = normal, perc = 98.0), F1@val =
0.9365

The threshold was selected to maximize the F1-score (balance between precision and
recall) on the mixed validation set. A value of approximately 11.4 corresponds to the 98th
percentile of normal scores, defining the boundary between “normal” and “anomalous”
data.The high validation performance (F1@val = 0.94) indicates that the model could
already clearly separate attacks from normal sessions at the validation stage.

Testing Results
F1@test = 0.9751, Accuracy = 0.9647
These are excellent values for network-based anomaly detection tasks (e.g., KDD’99):
e F1=0.975 — the model nearly perfectly balances precision and recall.
e Accuracy = 96.5% — the vast majority of examples are correctly classified.
¢ Recall (1) = 0.9594 — approximately 96% of all attacks were detected.
e Precision (1) = 0.9913 — only about 1% false positives among predicted attacks.
Interpretation (Table 5):
e 19,035 out of 19,456 normal samples were correctly classified (~98%).
e 47,971 out of 50,000 attacks were correctly identified (~96%).
False alarms account for about 0.6% of all test examples.

Table 5. Confusion Matrix Values

Predicted 0 (Normal) Predicted 1 (Attack)
True 0 (Normal) 19,035 421
True 1 (Attack) 2,029 47,971

Analytical Interpretation

The VAEGMM model showed stable convergence, with no NaN values and a
consistent decrease in the loss function. High precision and recall confirm that the model
effectively detects anomalies. The selected threshold was optimal: as shown in Fig. 2, high
scores are clearly separated from normal regions. The VAE component successfully
reconstructs normal data packets, while deviations (attacks) exhibit a higher reconstruction
error, resulting in larger scores. The GMM component in the latent space adds an additional
verification layer, determining whether a latent vector belongs to a “dense cluster” of normal
events. Together, these mechanisms yield strong discriminative capability (Table 6).

The VAEGMM model demonstrated stable and reliable training, with high overall
accuracy (97-99%), balanced precision and recall metrics, and robustness to noise and
class imbalance. Therefore, VAEGMM can be regarded as an effective and practically
applicable anomaly detector for network security and cybersecurity tasks, particularly for
benchmark datasets such as KDD’99.

110 Electronics and Information Technologies * 2025 « Issue 32



Development of a Deep Learning Model for Fraud...

Table 6. Summary of Results

Metric Value Interpretation
Final Loss 0.98 Stable training, convergence achieved
Threshold 114 Boundary between normal and anomalous
data
F1@val 0.936 High validation consistency
F1@test 0.975 High classification accuracy
Recall (attacks) 0.959 ~96% of attacks detected
Precision (attacks) 0.991 Only ~1% false alarms

Reconstruction Error vs Threshold

Fig. 2 illustrates the results of the VAEGMM (Variational Autoencoding Gaussian
Mixture Model) after training on normal data and testing on a mixed set (normal + attack).
X-axis: indices of test samples (~70,000 examples). Y-axis: instance score — the degree to
which the model considers a sample anomalous.

The dashed line represents the selected threshold th = 11.406; if score > 11.406, the
sample is classified as an anomaly.

Most points have score = 0-5, corresponding to normal samples (the model confidently
identifies them as similar to training data). A smaller subset exhibits very high scores (100—
800) — potential anomalies or attacks. These lie above the threshold and are thus marked
as is_outlier = 1. A threshold of 11.406 implies that the model identifies only the most
extreme deviations as anomalies, while the rest are considered normal.

VAEGMM evaluates how well a sample can be reconstructed by the autoencoder and
how well its latent representation fits the GMM density:

score=ReconLoss(x, X) + MahalanobisDistance(z, u).

VAEGMM: instance score vs threshold (GT)
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Fig. 2. Reconstruction error vs threshold.
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For normal samples, both reconstruction, and GMM likelihood are good — low scores.

For anomalous samples, reconstruction is poor and the point lies far from cluster
centers — high scores.

Hence, the model clearly distinguishes normal and anomalous data — high-score
clusters are visible above the threshold. The chosen threshold (=11.4) efficiently isolates
strong outliers. If the dataset contains more anomalies than expected, the threshold can
be lowered (to 8-9) to improve recall (attack detection rate). Conversely, if false positives
are excessive, it can be raised (to 15-20).

The model is stable, free of NaN issues, and learns correctly. The instance score
distribution shows variation, confirming a well-structured latent space. Since the optimal
threshold is > 0, the GMM is properly calibrated. The presence of distinct high-anomaly
samples indicates that VAEGMM functions as intended.

Comparative Analysis of AEGMM and VAEGMM Models

Based on the results obtained, the AEGMM model outperformed VAEGMM on the
given dataset. This superiority can be attributed to the fact that the GMM with a fixed latent
space is more effective at identifying compact clusters of normal states than the variational
VAEGMM, whose stochastic latent variables introduce noise into the representation.

Reasons for AEGMM Superiority
Let us examine in more detail why the AEGMM (Autoencoding Gaussian Mixture
Model) demonstrated better performance than the VAEGMM (Variational Autoencoding
Gaussian Mixture Model) in this study — despite the latter being considered a more
“advanced” architecture (Table 7).

Table 7. Key Differences Between AEGMM and VAEGMM

Characteristic

AEGMM

VAEGMM

Encoder type

Latent space

Source of regularization

Reconstruction

Training stability

Optimization

Standard autoencoder
(deterministic)

Fixed, deterministic
Only GMM in the latent
space

Minimizes L2 reconstruction
error

High (minimal loss
oscillations)

Simple gradient descent on
deterministic loss

Variational autoencoder
(stochastic)

Stochastic distribution
q(z)a(z)a(z)

GMM + KL divergence to
N(0,1)N(0,1)N(0,1)
Balances reconstruction and
distribution alignment

May fluctuate due to latent
noise

More complex, with two
stochastic terms

Interpretation

In AEGMM, the latent vector z = f(x) is a fixed, deterministic representation that
directly encodes the pattern of normal data. The GMM then models the density of normal
samples in this latent space, forming compact clusters.

e For normal samples: p(z) is high = score = —log p (2) is low (= —5..0).

e For attacks: z is distant from GMM centers = p(z) is low = score is high (= 0..5).

In VAEGMM, stochasticity is introduced in the latent representation:
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z ~ N(u(x),0%(x)).

This means that the same example may generate slightly different latent vectors.
While beneficial for generalization, in datasets like KDD’99, where classes are clearly
separable, such stochasticity blurs the distinction between normal and anomalous samples
— slightly reducing the F1 score.

Why KDD’99 “Favors” AEGMM

The KDD’99 dataset (and its 10% subset) possesses the following characteristics:

¢ High-dimensional tabular data (~120 features);

e Strong inter-feature correlations;

e Clearly separable “attack” and “normal” classes in latent space.

Under these conditions, a deterministic autoencoder (AE) better preserves the
geometry of the normal data subspace, while the GMM accurately models the density
boundaries. The stochastic behavior of the VAE slightly smooths these boundaries, leading
to less precise class separation (Table 8).

Table 8. Summary Comparison

Criterion Superior Model Rationale
Loss stability AEGMM No stochastic latent variables
Accuracy (F1) AEGMM Deterministic latent representation
Generalization on Stochasticity improves performance
- VAEGMM .
noisy/incomplete data on complex or unstructured inputs
Optimization/convergence AEGMM Fewer parameters, more stable
speed convergence
Cluster interpretability AEGMM Latent clusters are easily visualized

AEGMM outperformed VAEGMM because:
1. In the KDD’99 task, clusters are well separated, so VAE stochasticity only blurs
these boundaries.
2. The latent dimensionality is relatively small (3-5), sufficient for the precise
reconstruction of normal patterns.
3. AEGMM gradients are more stable, as there is no noise introduced by sampling
€~N(0,1), resulting in smoother loss convergence.
Therefore, for structured, low-noise tabular data (e.g., network packets, 10T logs,
system records), AEGMM is the optimal choice. For unstructured or complex data types
(images, audio, time series), VAEGMM may offer better generalization capabilities.

Deep Autoencoder

Dataset and Model Characteristics

Label distribution:

e Attacks (1): 396,743 samples

e Normal (0): 97,278 samples

A substantial class imbalance is observed, since normal activity constitutes only ~20%
of all records. The autoencoder was trained exclusively on normal samples, consistent with
the unsupervised anomaly detection paradigm.
Data splits:

e Train normals: 58,366
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e Validation normals: 19,456

e Test mix: 38,912 (contains both normal and anomalous samples)

After one-hot encoding (OHE) and feature scaling (StandardScaler / MinMaxScaler),
all splits have an identical feature dimensionality of 75:

e X train: (58,366, 75)

e X _ val: (19,456, 75)

e X test: (38,912, 75)

This confirms correct preprocessing: all categorical variables were converted to
numeric form, and features were brought to a consistent scale.

Model Architecture
¢ Model: DeepAutoencoder
e Total parameters: 14,223
— Trainable params: 14,223
— Non-trainable params: 0
Thus, all parameters are trainable; there are no frozen layers. The parameter count
indicates a compact yet sufficiently deep architecture appropriate for the data volume (~58k
training samples). The network likely comprises several hidden layers with a gradual
bottleneck contraction, enabling information compression and extraction of key features of
normal behavior.

Training Methodology
Although the dataset contains a large number of attack records, the autoencoder is
trained only on normal data, forming a “model of normality.” With rigorous preprocessing
(75 features after OHE and scaling) and a moderate parameter count (~14k), the network
achieved stable convergence and high accuracy (~97.5%) on the test set. This indicates
that the chosen architecture is well-suited for anomaly detection in large tabular datasets
with class imbalance.

Implementation
A program was developed wusing the 10% subset of KDD99 (file
kddcup.data_10_percent_corrected from Kaggle), implementing:

1. Preprocessing:
— Label mapping (normal — 0, others — 1);
— Construction of a training set using only normal records;
— One-hot encoding for categorical variables (protocol_type, service, flag);
— Standardization of numeric features with StandardScaler.

2. Model construction: a Keras (Model API) deep autoencoder with a 4-unit
bottleneck, trained solely on normal data.

3. Reconstruction error computation and threshold selection via the 99th percentile
on the validation set of normal samples (adjustable, e.g., 98.5% or to a target FPR).

4. Evaluation: computation of Precision, Recall, F1-score, and plotting (error
distributions, ROC curves, etc.).

5. Export of encoded (bottleneck) features in .npy format for downstream analysis.

Technical Notes

e OneHotEncoder converts the three categorical columns into binary indicator
columns (one per category). For unseen categories in the test set,
handle_unknown='ignore' is used.

e StandardScaler is applied only to numerical features; OHE binaries are left
unchanged.

e Training exclusively on normal data is key for unsupervised anomaly detection with
an autoencoder.
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e The anomaly threshold is set by the quantile of reconstruction errors (99th
percentile on normal validation data).
e A 4-unit bottleneck enforces compact representations and encourages learning
salient patterns (akin to PCA).
The resulting deep autoencoder demonstrated high effectiveness on KDD’99,
accurately separating normal behavior from attacks, which makes it suitable for security
monitoring, cyber defense, and network traffic analysis.

Overall Model Characterization
The autoencoder was trained to detect anomalies based on reconstruction error
(MSE). The anomaly threshold was set at the 99th percentile of validation errors:
threshold = 2.94781
Samples with MSE above this threshold are interpreted as anomalies (attacks); lower
values indicate normal behavior.
Training Dynamics (Fig. 3 — “AE training loss”)
¢ A rapid decrease in training loss over the first ~5 epochs, followed by stabilization
around 0.39.
¢ Validation loss likewise decreases but remains slightly higher (~0.445), suggesting
mild overfitting or distributional differences between training and validation data.
e Overall, training is stable and convergent, with no signs of degradation or oscillation
(a clear stability plateau).

AE training loss

0.46 4 — train
val
0.45 A

0.44 A

0.43 A
w

S

= 0.42 -
0.41 1
0.40 -

0.39 A

0 5 10 15 20 25 30 35
epoch

Fig. 3. AE training loss. Blue curve: training set, orange — validation set.

Fig. 3 shows the evolution of mean squared error (MSE) during training: X-axis: epoch
index; Y-axis: loss value. An initial sharp drop in training loss (=0.45 — =0.39) is followed
by stabilization. Validation loss also declines, remaining slightly higher (~0.445), indicating
good convergence with minor overfitting. The absence of sharp fluctuations or divergence
between the curves confirms stable learning. Further training is unlikely to yield substantial
gains, as the loss reaches a plateau after ~10 epochs.

Reconstruction Error Analysis on the Test Set
Fig. 4 (“Reconstruction Error vs Threshold”) displays reconstruction errors for test
samples:
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e Most samples have MSE « 2.94, indicating high-quality reconstruction of normal
cases.

e A small number of points far exceed the threshold (MSE > 500-2000),
corresponding to pronounced anomalies (attacks).

Autoencoder: reconstruction error vs threshold
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Fig. 4. Reconstruction error vs threshold.

Thus, the model effectively separates normal and anomalous observations. In Fig. 4,
X-axis denotes the sample index; Y-axis shows MSE. Blue points indicate individual
reconstruction errors. The orange dashed line marks the threshold th=2.948 (99th
percentile on validation normals). Most samples fall below the threshold (normal), while a
few that reach up to ~2500 are anomalous. The plot illustrates reliable separation based
on reconstruction error magnitude.

Fig. 5 (“Reconstruction Error Distribution”) presents the distributions of MSE for
normal and anomalous samples:

¢ Normal (blue bars) concentrate near zero, evidencing accurate reconstruction.

e Attacks (orange bars) shift toward higher MSE, indicating substantially worse

reconstruction.

The vertical dashed line (th = 2.948) clearly separates the two distributions, confirming
effective class separation.

Since the threshold th=2.948 lies within this high-density region, it does not correspond
to a boundary between the histogram peaks. Instead, it represents an operational threshold
determined by a statistical criterion (e.g., percentile-based selection or validation ROC
analysis), rather than a visual separator. Consequently, the threshold line passes through
a region of high density rather than between two well-separated maxima.

In our case, the distributions exhibit strong asymmetry and heavy-tailed behavior. The
majority of normal samples and a substantial fraction of attack samples have very small
MSE values (=0), whereas a limited number of attack instances produce extremely large
reconstruction errors, reaching hundreds or even thousands. As a result, the histogram is
stretched along the X-axis up to approximately 2500, causing the entire informative region
(0-5) to be compressed near zero.

Confusion Matrix

e TN (19,230): correctly classified normal samples

e FP (226): normal samples misclassified as anomalies
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e FN (735): attacks not detected

e TP (18,721): correctly identified anomalous samples (attacks)

Thus, the overall classification accuracy is 97.5% (Table 9), which is exceptionally
high. Precision/recall is nearly symmetric across classes, indicating no bias toward either
normal or anomalous samples. The high F1-score confirms good generalization and a low
false-alarm rate.

The deep autoencoder successfully learned to reconstruct normal data patterns and
detect deviations. The chosen threshold (99th percentile) proved optimal, balancing missed
attacks and false alarms. The average accuracy of ~97.5% attests to the model's quality
and practical suitability for anomaly or intrusion detection.

Reconstruction error distribution
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Fig. 5. Reconstruction error distribution.
Table 9. Classification Metrics
Metric Class 0 (Normal) Class 1 (Attack) Average
Precision 0.9632 0.9881 0.9756
Recall 0.9884 0.9622 0.9753
F1-score 0.9756 0.9750 0.9753
Accuracy — — 0.9753

Training was stable, with no signs of overfitting; training and validation losses are
aligned, reflecting a well-chosen architecture and hyperparameters. The anomaly threshold
(2.94781) cleanly separated normal from attack samples. Reconstruction-error distributions
corroborate that the model faithfully reconstructs normal data while substantially increasing
MSE for anomalies.

The obtained metrics (accuracy = 97.5%, F1 = 0.975) confirm high detection quality
with a balanced trade-off between identifying attacks and minimizing false positives.
Consequently, the autoencoder effectively models normal system behavior and is well-
suited for intrusion and anomaly detection in cybersecurity, industrial monitoring, and
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related domains. The proposed model is a robust tool for unsupervised anomaly detection,
delivering high detection performance without the need for manual labeling.

CONCLUSION

This study conducted a comprehensive investigation into the application of deep
learning models for detecting financial anomalies based on network traffic data. Three
architectures were developed and experimentally compared: a Deep Autoencoder,
AEGMM (Autoencoder + Gaussian Mixture Model), and VAEGMM (Variational
Autoencoder + GMM). All models were trained under the unsupervised / one-class anomaly
detection paradigm using only normal samples from the KDD’99 dataset, which simulates
real-world cyberthreat scenarios in computer networks.

The obtained results demonstrate that the AEGMM model provides the highest
effectiveness among the tested architectures, achieving F1=0.9936 and
Accuracy = 0.9908, while exhibiting stable convergence, no signs of overfitting, and clear
separation between normal and fraudulent transactions. The VAEGMM model, though
slightly less accurate (F1 =0.9751), confirmed its generalization capability due to the
stochastic nature of its latent space. The Deep Autoencoder, even without an additional
GMM component, achieved strong performance (Accuracy = 97.5%), confirming the
suitability of such architectures for real-world unsupervised tasks.

The analysis confirmed that using reconstruction error as a criterion for anomaly
detection is an effective tool for monitoring complex financial systems. The selected
threshold at the 99th percentile (threshold = 2.94781) allowed minimizing false positives
while maintaining high sensitivity to attacks.

In summary, the developed models demonstrated high reliability and practical
applicability for tasks of fraud detection, cybersecurity, and anomaly identification in
transactional data streams. Future research should focus on integrating the proposed
methods with Graph Neural Networks, transformer-based architectures, and Federated
Learning and Explainable Al (XAl) technologies to enhance the transparency, scalability,
and adaptability of artificial intelligence systems in real-world financial environments.

The source code is available in the GitHub repository at the following link:
incom2025/autoencoder_cod
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AHOTALIA

Bctyn. CipiMke 3pOCTaHHS €eneKTPOHHWMX NNaTexiB ChpUYMHWNO iHTeHcudikalilo
LWaxXpancbkoi aKTMBHOCTI, WO BMMarae BMNPOBAMKEHHS adanTUBHUX iHTENeKTyanbHUX
cucteM. TpaguuinHi MeToaun, 3acHOBaHi Ha (hikcoBaHMX MpaBunax, He 3abesnevyloTb
[OCTaTHbOI FHYYKOCTIi, TOAi 9K Mogeni rmMbOoKOro HaBYaHHs, 30KpemMa aBTOKOAEPW, 3A4aTHI
BUSIBMATM HeBIigOMi abo HOBi TMNK aTak 6e3 nonepeAHbOro MapKyBaHHS. Y AaHin poboTi
OLiHeHO ebeKTUBHICTE TPbOX apxiTekTyp 6e3 Harmnsgy — AEGMM, VAEGMM Ta rnubokoro
aBTOKOAEpa — AN 3ajadi BUSIBNEHHS aHOManil Ha OCHOBI BiOKPUTOro Habopy AaHWX
KDD’99.
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Martepianu ta metoaun. BukopuctaHo etanoHHuin nigHabip KDD'99 (10%), y skomy
KaTeropianbHi o3Haku Bynu 3akogoBaHi MeTogom one-hot, a YMCrnoBi — cTaH4ApPTU30BaHi.
Yci Mogeni HaB4Yanucsa BUKIIOYHO Ha HOpMarbHUX 3paskax BignoBigHO 4O OAHO-KMacoBOI
napagurmun. EkcnepmmeHTansHU KOHBEED BKMOYaB nonepeaHio o6pobky aaHmx, nobyaosy
mogenen y Python (TensorFlow + Alibi Detect), Bubip noporoBoro 3Ha4yeHHsi Ha OCHOBI
nepueHTUNbLHOI Kanibpauii Ta ouiHIBaHHA AKOCTi 3a meTpukamm F1, TouHicTio, precision,
recall Ta MmaTpuUsaMK 3MiLLlyBaHHS.

PesynbTtatn. Mogens AEGMM npogemoHcTpyBana Hamsuili nokasHukm (F1 = 0,9936,
ToyHicTe = 0,9908), 3abesneuvBlUM Malke igeanbHe PpO3MEXYBaHHA HOPMarbHUX i
wkignmeux Bubipok. Mogens VAEGMM pocsrna F1 = 0,9751, nokasaBwu cTabinbHy
36iKHICTb, ane AeLL0 HUXKYY TOYHICTb Yepes CTOXaCTUYHWIA XapaKTep NaTeHTHOro NpocTopy.
Mmunbokun aBToKOA4EP NPOLEMOHCTPYBAB TOYHICTb 6Mnn3bko 97,5%, WO NigTBEPOKYE MOro
e(eKTMBHICTb HaBiTb 6e3 komnoHeHTa GMM. OnTumManbHUI NOpir aHoManin, BU3Ha4YeHUN
Ha piBHI 99-r0 MPOLEHTMNA 3Ha4YeHb PEKOHCTPYKUii abo ryctuHu, 3abesneyvs HaginHe
PO3Pi3HEHHA HOPManbHUX | aTakyBanbHUX CTaHIB.

BucHoBKkWU. Mogeni Ha OCHOBI aBTOKOAEPIB € e(PEKTUBHUMWN AN BUABMEHHS aHOManin
y Benukux, po3banaHcoBaHux TabnunyHux Habopax gavux. AEGMM npogemoHcTpyBana
HalKpally npOAYKTUBHICTb 3aBAAKM CTabiNnbHOMY maTEHTHOMY TNPEACTaBMEHHID Ta
JeTepMiHOBaHOMY npoLecy onTuMisauii. 3anponoHoBaHWi Niaxig € NepcnekTUBHUM Ans
MOHITOPUHrY (piHaHCOBMX NOTOKIB, Kibepbesnekn Ta BUMABMNEHHA MPOMUCIIOBUX aHOMarin.
Mopanblwi gocnigxeHHs Gyae CnNpsAMOBAHO Ha PO3BUTOK rpadhoBux i TpaHCOPMEpPHMX
apxiTekTyp, a TakoXx iHTerpauito nosicHioBaHoro LUl Ta degepatuBHoro HaBYaHHA ANS
NigBULLEHHS NPO30POCTi N HAZIMHOCTI Moaenen.

Knro4oei cnoea: WTy4YHUI iHTENEKT; rMMboke HaBYaHHS; aBTOKOAEP; MOAENb rayCcCoBOl
CyMiLLi; hiHaHCcOBe LuaxpancTBo; Kibepbeaneka
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