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ABSTRACT

Background. The development of artificial intelligence and machine learning models
has significantly influenced financial analytics and credit decision-making. These models
provide high predictive accuracy but often operate as “black boxes,” which complicates the
interpretation of their internal mechanisms. In the context of open banking, where decisions
directly affect users’ access to financial resources, such opacity is a substantial drawback.
This creates a need for explainable and interpretable approaches that make it possible to
establish causal relationships between input features and output predictions.

Materials and Methods. The research methods are based on a multi-level approach to
ML model interpretation. Feature Importance is applied for a statistical assessment of
feature contributions; LIME is used to provide local interpretability; and SHAP (SHapley
Additive exPlanations) is employed to capture nonlinear dependencies. Structural
interpretability is ensured by DNFS (Deep Neuro-Fuzzy System) through the formation of
fuzzy rules, while BRB-ER (Belief Rule Base with Evidential Reasoning) adds logically
consistent explanations of decisions based on a rule base.

Results and Discussion. It is shown that, after hyperparameter optimization of credit
risk models trained on open banking data, the accuracy of the DNFS model becomes 4
percentage points higher than that of the Random Forest model. A global analysis of feature
importance scores obtained using Feature Importance, SHAP, and DNFS demonstrates a
high correlation between them (above 88%), indicating model stability. At the local level,
instances that reduce model accuracy are identified. Visualizations using SHAP graphs
reveal regions of linear and nonlinear feature interactions and their influence on decision-
making.

Conclusion. In contrast to the traditional use of individual XAl methods to explain
machine learning model outputs, this work combines global and local feature importance
metrics (Feature Importance, SHAP, LIME), fuzzy rule—based metrics from DNFS, and
aggregated coefficients from BRB-ER. The proposed approach makes it possible to localize
the causes of accuracy degradation, identify nonlinear feature dependencies, and assess
the consistency of explanations through correlation analysis across methods.

Keywords: explainable artificial intelligence, machine learning, BRB, DNFS, fuzzy logic.

INTRODUCTION

Over the past few years, machine learning (ML) models have been widely used to
solve a variety of tasks. However, the limited transparency of their results creates obstacles
to practical deployment, especially in domains where the explainability of outcomes is of
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critical importance. This primarily concerns medicine, financial analytics, and decision
support systems, where trust in algorithmic predictions directly depends on the ability to
interpret their internal logic. For this reason, there is growing interest in such areas as
Explainable Artificial Intelligence (XAl) and the development of interpretable models.
Reviews [1-3] present more than ten methods used to construct explainable models in the
financial domain. In finance, XAl has the highest priority due to the complex and often
opaque structure of ML models used for credit rating assessment, bankruptcy prediction,
fraud detection, and credit portfolio optimization.

To explain such models, the following methods are commonly employed: LIME (Local
Interpretable Model-agnostic Explanations), which builds local linear approximations to
explain the behavior of complex models in the vicinity of an individual prediction; SHAP
(SHapley Additive exPlanations), a method based on Shapley value theory that
decomposes the model output into contributions of each feature according to its marginal
importance; TreeSHAP or TreeExplainer, a modification of SHAP optimized for tree-based
models (Random Forest, XGBoost), which provides exact analytical values without the
need for simulations; PDP (Partial Dependence Plot), a graphical tool that visualizes the
average effect of one or several features on the model prediction; Anchors (High-Precision
Model-Agnostic Explanations), a technique that constructs interpretable “anchor” rules
providing high-precision local explanations; Counterfactual Explanations (CF), which
identify minimal changes in the input data that would lead to an alternative model output;
Permutation Feature Importance (PFI), a simple global metric that measures the drop in
model accuracy after random permutation of a specific feature; and Surrogate Models
(SM), which approximate the behavior of a complex model with an interpretable structure,
such as a decision tree or linear regression, among others.

The theoretical foundations and prospects of Explainable Artificial Intelligence (XAl)
are discussed in [4,5]. The practical application of XAl in various types of financial models
is examined in [6-9]. All these studies confirm that integrating XAl approaches into financial
analytics increases trust in automated systems and helps maintain a balance between
model accuracy and interpretability. In [6], the SHAP method is used to explain the results
of a LightGBM model in a credit scoring task, which made it possible to identify key factors
influencing loan approval decisions. In [7], XGBoost, LightGBM, and Random Forest
algorithms are applied for predictive analysis of loan default risk in combination with XAl
methods SHAP and LIME. Study [8] presents a method for credit card default prediction
based on a combination of deep learning and explainable artificial intelligence (XAl)
techniques.

Another direction in the development of explainable artificial intelligence is hybrid
interpretable approaches. One such approach is the Belief Rule Base with Evidential
Reasoning (BRB-ER). BRB-ER ensures transparency and interpretability of decision-
making, since each prediction is formed based on an intelligible system of logical rules. In
[9], the hierarchical BRB structure incorporates both factual and heuristic rules and can
explain the chain of events leading to a decision on a loan application. In addition,
performance indicators for evaluating the rule base are proposed, including quantitative,
qualitative, and visual metrics in the form of a rule interaction graph [9,10]. Another line of
development for interpretable models is Deep Neuro-Fuzzy Systems (DNFS). In DNFS,
the hidden layers implement the fuzzification process, creating fuzzy sets for input features,
after which the system automatically generates and tunes “if-then” rules that reflect causal
relationships in the data [11,12]. Unlike BRB, DNFS does not require prior specification of
expert rules, but instead learns them during training, which provides data-driven adaptive
interpretability. The importance of each feature can be computed based on the activation
strength of the corresponding rules or on the weights of neural connections.

This study aims to compare the effectiveness of interpreting ML models using BRB-
ER and DNFS approaches with XAl methods, in particular SHAP and LIME, in terms of
their ability to determine feature importance, and to define a consistent approach to
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constructing explainable and interpretable models for financial analysis in open banking
systems.

MATERIALS AND METHODS

Explaining and interpreting the results of machine learning models, as well as
analyzing the characteristics of the data on which these models are trained, requires a
combination of classical XAl methods, hybrid neuro-fuzzy systems, and rule-based logical
approaches. To this end, this study implements an integration of global and local XAl
techniques with hybrid approaches and fuzzy logic, which makes it possible to analyze both
the overall patterns captured by the model and individual decisions for specific instances.

The SHAP (SHapley Additive exPlanations) method quantifies how important each
input variable is for the model. SHAP values are derived from Shapley values in cooperative
game theory, where each feature is treated as a “player” contributing to the collective
outcome, i.e., the model prediction. The key idea behind SHAP is that the Shapley value is
expressed as an additive feature attribution method via a linear explanation model.

In the Python implementation of SHAP, a specialized algorithm called TreeSHAP is
provided, which is optimized for tree-based ML models, in particular Decision Trees,
Random Forests, and Gradient Boosted Trees (XGBoost, LightGBM, CatBoost).
TreeSHAP is a computationally efficient variant of SHAP that does not compute Shapley
values via exhaustive enumeration of all feature subsets, but instead relies on an analytical
analysis of the tree structure [13]. The algorithm exploits the fact that a tree prediction is a
deterministic function of the split conditions at its internal nodes. By analyzing all possible
decision paths, it is therefore possible to determine exactly which features actually
influence the model output. When SHAP values are used to explain real-world outcomes,
it must be recognized that SHAP only shows what the model does in the context of the data
on which it was trained. The method does not necessarily uncover the true causal
relationships between variables and outcomes in the real world.

The LIME (Local Interpretable Model-agnostic Explanations) method implements the
concept of local interpretability by constructing a simplified local regression model (typically
linear) that approximates the predictions of the base model in the immediate neighborhood
of a selected instance for a subset of points close to the observation of interest. To construct
such an explanation, LIME generates a synthetic local dataset by randomly sampling points
around the instance, and then fits a linear regression model whose coefficients are used
as local feature attributions. The effectiveness of LIME depends strongly on the choice of
its parameters: the kernel width defining the locality, the number of generated neighboring
points, and the regularization parameter controlling the number of features in the local
model [14]. At the same time, the fidelity of the explanation depends on the adequacy of
the local linear approximation: if the global model exhibits strong nonlinearity or complex
feature interactions, the fitted linear model may capture only a very small, highly local
fragment of its behavior.

A separate line of XAl research concerns the construction of hybrid solutions in which
interpretable or explainable models are combined with optimization algorithms. In hybrid
systems of the type ML + BRB + Optimizer, the ML component is responsible for predictive
accuracy, the BRB component ensures transparency via a rule base, and the optimization
algorithm adjusts the structure and parameters of the rules to align them with the outputs
of the “black-box” model [15]. Such an approach is used, for example, in credit scoring,
where predictive accuracy must be combined with the ability to explain the result to the end
user and to regulators. In [16], we described in detail a hybrid decision-support system that
combines a Belief Rule Base (BRB) model, a machine learning (ML) model, and Particle
Swarm Optimization (PSO). At the first stage, reference values of the input features are
defined to represent the linguistic states of the parameters. At the second stage, based on
these reference values, a BRB rule base is constructed, where each rule encodes the
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relationship between a combination of input attribute states and the corresponding class.
Each rule is characterized by a rule weight and attribute weights. The Evidential Reasoning
(ER) mechanism is used to aggregate the activated rules into a final output. At the third
stage, the machine learning model (ML) is trained. At the final stage, Particle Swarm
Optimization (PSO) is applied to automatically tune the parameters. Analyzing the
parameters learned makes it possible to identify which rules or attributes have the greatest
influence on the result. Consequently, the BRB-ML-PSO system produces not only a
numerical output, but also a logical interpretation of this output via the rule base.

Deep Neuro-Fuzzy System (DNFS) is a hybrid approach that combines fuzzy rules
(fuzzy logic) with deep neural networks (deep learning). Unlike BRB, DNFS does not
explicitly store all possible rules. Instead, a neural network automatically learns the
relevance of rules, prunes insignificant combinations (through the weights), and
generalizes, so that the effective number of rules does not grow exponentially.

Structurally, DNFS consists of several interconnected layers [17]. At the first level,
each feature passes through a separate fuzzification layer, where it is transformed into
fuzzy terms representing the linguistic states of the variable. This is implemented via
sigmoidal activation functions. As a result, fuzzy features are formed that represent fuzzy
intervals of the values of each input variable. The generated fuzzy features are
concatenated into a vector in a fuzzy feature space, which is fed into the rule layer, a layer
of neurons. Each neuron corresponds to a single fuzzy IF-THEN rule, and its weights
determine the importance of individual terms in the rule combination. During training, the
parameters of the fuzzy terms and the rule weights are optimized using a gradient-based
method (the Adam optimizer). After computing rule activation degrees, they are normalized
using the Softmax function, which transforms them into a distribution of influence weights
over the rules. The final output layer aggregates these normalized rule contributions and,
in the case of classification, again applies Softmax to produce a probabilistic class
prediction.

As a result, we obtain an interpretable output in the form of rules that are generated
automatically based on the network’s learned parameters, as well as rule activation
degrees and normalized rule weights. Feature importance in DNFS is computed from the
aggregate influence of the weights connecting fuzzy terms to the rule layer. Since each
feature is represented by several terms, its integral importance is defined as the sum of the
absolute weights linking its terms to all rules. This approach makes it possible to quantify
the contribution of each feature to the system’s decisions and to identify which rules
determined the outcome and why. In this way, the learned parameters can be used for
explainability (XAl), analogous to SHAP or BRB. Thus, the DNFS architecture combines
the high predictive accuracy of a neural model with the interpretability of fuzzy logic, which
makes it effective for financial and medical applications where not only predictive accuracy
but also an explanation of the underlying reasons is crucial.

With the development of financial technologies (FinTech) and the digitalization of
banking services, the role of ML models in decision-making related to lending, risk
assessment, and forecasting clients’ financial behavior has increased significantly. One of
the modern approaches to building credit rating models is the use of open banking API
data, which contains detailed information on client transactions. At the data preparation
stage, the raw open banking API data are preprocessed and transformed into features such
as income stability (Sl), mandatory spending (MS), non-mandatory (discretionary)
spending (DS), risky spending (RS), and account balance [18,19]. To reduce the total
number of BRB rules, further categorization of financial features is performed, which we
described in detail in [16]. As a result, four features are obtained and expressed in relative
units: stability of income (SI), stability of discretionary spending (SDS = 1 - SD), stability of
risky spending (SRS =1 - RS), and the difference between income and expenditure (Diff)

Achieving high classification accuracy on open banking data is a challenging task due
to the nature of transactional data itself [20], which is characterized by high variability and

90 Electronics and Information Technologies ¢ 2025 « Issue 32



Explainable and Interpretable Machine Learning...

low correlation between individual features and the target variable (Fail). Here, Fail = 1
corresponds to the highest credit risk level. Analysis of the correlation matrix shows that
the maximum correlation of 0.52 is observed between Diff and Fail, while all other
correlation values between variables are below 0.40.

All experiments were implemented in Python 3.8.6. The following libraries were used:
NumPy [1.24.3], pandas [1.5.3], matplotlib [3.7.5], scikit-learn [1.3.2], SHAP [0.44.1], LIME
[0.2.0], and TensorFlow/Keras [2.13.0]. In addition to using these established packages for
model training and explainability, custom Python scripts were implemented for the core
study workflow, including: data loading from CSV and preprocessing (feature
extraction/ordering for Sl, SDS, SRS, DiFF and label handling), training and evaluation of
a Random Forest classifier (train/test split, confusion matrix, accuracy, classification report,
ROC-AUC, and partial dependence plots), generation of explanation artifacts (SHAP global
summaries and dependence plots, SHAP waterfall plots for individual instances, and LIME
local surrogate explanations), implementation of a Belief Rule Base inference engine
comprising triangular fuzzification (Low/Medium/High on [0,1]), a complete rule base with
belief degrees and optional rule weights, rule activation and belief aggregation using
weighted averaging and an Evidential Reasoning style combination, and development of a
DNFS (Deep Neuro-Fuzzy System) model in TensorFlow/Keras, including fuzzification
layers, a rule layer, softmax-based normalization, and rule extraction from learned weights
for interpretability.

RESULTS AND DISCUSSION

Table 1 presents the classification accuracy of the Random Forest (RF) and Deep
Neuro-Fuzzy System (DNFS) models before and after hyperparameter optimization. The
analysis is performed on open banking data containing four key financial parameters of
clients (SD, SDS, SRS, Diff) and a binary target variable (Fail) that characterizes the level
of credit risk. Among the ensemble machine learning models considered — Gradient
Boosting (XGBClassifier), AdaBoostClassifier, and CatBoostClassifier — the Random
Forest model demonstrated the highest classification accuracy.

Particle Swarm Optimization (PSO) was used to determine the optimal
hyperparameter values for both RF and DNFS. For RF, the following hyperparameters were
optimized: the number of trees (n_estimators), maximum tree depth (max_depth), minimum
number of samples required to split an internal node (min_samples_split), and minimum
number of samples at a leaf node (min_samples_leaf). For DNFS, the optimized
parameters included the number of terms per feature (terms_per_feature), the number of
rules (number_of rules), the learning rate, and the dropout rate.

Table 1. Accuracy of Random Forest (RF) and Deep Neuro-Fuzzy System (DNFS)
models before and after the optimization procedure

RF RF (opt) DNFS DNFS (opt)
Accuracy 0.84 0.88 0.83 0.91

As can be seen from Table 1, both models exhibit an increase in accuracy after
optimization. The DNFS model shows a more pronounced improvement in accuracy, which
can be attributed to the structural alignment of its rules with the data.

Global explanation

Table 2 presents the feature importance coefficients for the variables SD, SDS, SRS,
and Diff, computed using three different approaches (Feature Importance, SHAP, DNFS).
The Feature Importance coefficients capture the global statistical contribution of each
feature to classification accuracy over the entire dataset. They are obtained from the
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Random Forest model using the feature_importances__ attribute, which calculates the mean
decrease in impurity (Gini importance) across the decision trees.
Global SHAP coefficients are derived by aggregating local SHAP values for each data
instance using shap.Explainer(model), which makes it possible to estimate the average
effect of each feature on the model prediction. Global feature importance in DNFS is
determined based on the weights of fuzzy terms in the learned rules. Example rules for
different classes have the following form:
¢ Rule 4: IF Diff Low (w = —-0.69) AND SI_High (w = —0.54) AND SD_High (w =
-0.45) AND SI_Low (w = 0.35) AND SR_High (w =0.31) AND SR_Low (w = 0.24
THEN — Class 1;

¢ Rule 5: IF Diff_High (w = 0.56) AND Diff_Low (w = 0.47) AND SI_Low (w = 0.42)
AND SI_High (w =0.40) AND SD_High (w=0.39) AND SD_Low (w =-0.39) THEN
— Class 0.

For each rule, the absolute values of the weights of the terms associated with a given
feature were summed, and these sums were then aggregated across the entire rule set.
Subsequent normalization of the resulting values made it possible to obtain an integral rule-
based estimate of the importance of each attribute. The resulting aggregate coefficients
reflect the degree of influence of each feature on the final model decision.

The DNFS architecture consists of four sequential layers: the input layer, the fuzzy
layer (12 neurons, sigmoid), the rule layer (45 neurons, sigmoid), and the decision layer (2
neurons, softmax). The results show that the obtained DNFS-based importance
coefficients are highly correlated with the global SHAP values, which confirms the
methodological consistency of the different levels of explanation.

A three-component Pearson correlation matrix was computed for the feature
importance coefficients. The high correlation between the results of all three approaches
(greater than 0.88) indicates that the overall pattern of how influence is distributed across
features remains consistent.

Table 2. Global feature importance coefficients

Feature importance SHAP DNFS
Diff 0.56 0.36 0.37
SRS 0.19 0.08 0.23
SDS 0.17 0.05 0.21
Si 0.06 0.02 0.19

For a more detailed interpretation of the global impact of the features, a beeswarm
plot (Fig. 1) was constructed to visualize the distribution of local SHAP values for each
feature. The Y-axis lists the features in descending order of their SHAP-based importance,
while the X-axis shows the SHAP values, which reflect the direction and magnitude of their
influence on the probability of the class Fail = 1. Each point corresponds to an individual
data instance, and its color encodes the actual value of the feature. The plot clearly shows
that low values of all variables (except for SDS) increase credit risk in a more linear manner
and much more rapidly than high values of these variables. For high values of all features,
the interactions are more strongly nonlinear than for low values.

The feature SDS exhibits a strongly nonlinear effect across its entire range of values.
The atypical influence of SDS (discretionary spending) on credit risk at low spending levels
is associated with the borrower’s limited ability to redirect these expenditures towards loan
repayment.
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Fig. 1. Distribution of local SHAP values for each feature.

To further assess the global behavior of the model, Partial Dependence Plots (PDPs)
(Fig. 2) were constructed for the four input features. PDPs make it possible to visually
examine how changes in the value of a single feature affect the model’s prediction while
holding the remaining variables at their average levels. The X-axis represents the values
of the corresponding feature, and the Y-axis shows the mean predicted value of the target
variable, averaged over all observations.
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Fig. 2. Partial Dependence Plot: a — Partial Dependence-Si, b — Partial Dependence-SDS, c — Partial
Dependence-SRS, d — Partial Dependence-Diff.

As income stability (SI) and stability of risky spending risky spending (SRS) increases,
an almost smooth reduction in credit risk is observed. For SDS, two distinct regions of small
and large values (i.e., very low and very high discretionary spending) can be seen, both of
which are associated with an increase in credit risk. For the difference between income and
expenditure (Fig. 2d), two distinct dependence regions are observed. For Diff > 12, credit
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risk decreases in an almost exponential manner up to a point beyond which further
increases in the income—expenditure gap no longer improve the risk level. This behavior
reflects a zone of financial stability, beyond which additional resources do not increase the
probability of loan approval.

For Diff < 12, a threshold-type relationship between Diff and credit risk is observed,
namely, a decrease in risk as the difference decreases. Such atypical behavior may be
driven by various underlying factors, which require more detailed investigation at the local
level.

Local explanation

To conduct a detailed analysis of the local, instance-specific effects of features on the
model’s predictions, the Individual Conditional Expectation (ICE) method was employed. In
contrast to global dependencies (Fig. 2), the ICE plot in Fig. 3 depicts the trajectory of the
model’s predicted value for a single observation when only one selected feature is varied,
while all other characteristics are held fixed. One of the characteristics of the average ICE
curve is its mean slope. The largest mean slope, 0.023, corresponds to the feature Diff
(Fig. 3d).; identical mean slopes of 0.019 are observed for the SI (Fig. 3a) and SRS
(Fig. 3c) features, and the smallest mean slope, 0.010, is obtained for the SDS feature
(Fig. 3b).

The application of ICE in the context of credit risk assessment made it possible to
detect local nonlinearities that are not apparent in the PDPs (Fig. 2) or in the average curve
(Fig. 3). The presence of an S-shaped structure in the ICE plot for Diff indicates that even
small increases or decreases in Diff substantially change the level of credit risk. This
behavior suggests that the model responds to this feature in a non-linear, threshold-like
manner.
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Fig. 3. Individual Conditional Expectation (ICE): a — SI, b — SDS, c — SRS, d - Diff.
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Analysis of the ICE curves for SDS revealed two distinct types of client behavior in the
region of medium SDS values. For the first group, an upward kink in the curve is observed,
where even a slight increase in SDS immediately amplifies credit risk. In contrast, the
second group exhibits a downward kink, where a small increase in spending instability
improves the prediction, which may indicate the activation of positive behavioral patterns.
As a result of averaging, the peak that is clearly visible on the corresponding SDS curve in
the PDP plot (Fig. 2b) disappears from the average ICE curve. This behavior highlights the
heterogeneity of borrowers’ spending strategies and the nonlinear nature of the impact of
SDS on credit risk. This relationship can be seen in more detail in the SHAP dependence
plotin Fig. 4.

The SHAP dependence plot illustrates the relationship between the actual value of a
feature and its local contribution to the model’'s prediction, represented through SHAP
coefficients (Fig. 4). The X-axis shows the feature values, while the Y-axis shows the
corresponding SHAP values, which indicate the extent to which this feature increases or
decreases the predicted credit risk. The color of the points encodes the value of a second
interacting feature, allowing nonlinear and context-dependent interactions between factors
to be visualized. SHAP dependence plots were obtained and analyzed for all pairs of
features. Fig. 4 presents the dependence on Diff, as this feature exhibits the strongest
nonlinear interactions with other variables.

The nonlinear dependence observed for SDS shows that very high and very low
discretionary spending led to a sharp increase in credit risk only for samples with relatively
small values of Diff. The slight decrease in credit risk at the smallest Diff values is related
to the fact that the data do not uniformly populate the feature space. In the region of the
smallest Diff values, there are few data samples, and the available samples are
characterized by high values of Sl, SDS, and SRS, which contribute to a reduction in credit
risk. A joint analysis of all SHAP dependence plots makes it possible to capture both the
overall trend of how each feature affects the model and the individual behavior of specific
instances through their interactions with other features.
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In this work, a local analysis of feature importance coefficients was carried out for all
samples in the test set, taking into account the distribution of their credit risk levels. Table 3
presents the local feature importance values obtained using SHAP, LIME, DNFS, and BRB-
ER for two different data samples.

Table 3. Local feature importance coefficients for two samples

Sample 1 Sample 2
Fealure | \ME f’_';(f;'? DNFS  O08 LivE Is_g;ﬁ’ DNFS B8O
Dif  -0.03 014 026 014 050 031 021 024
SRS  -022 -001 -012 008 020 011 008 0412
sDS  -0.10 -008 002 01 003 001 005 002
sI 009 009 01 008 008 008 011 014

In Fig. 5 on the right, the numerical feature values for these two samples are shown,
while the corresponding credit risk levels are shown on the left. The central LIME plot
illustrates the local contribution of each feature to the model prediction for the selected
sample. Fig. 6 shows SHAP waterfall plots for sample 1 (Fig. 6a) and sample 2 (Fig. 6b).
The SHAP waterfall plot represents the stepwise construction of the model prediction,
starting from the baseline (expected value) and adding the contributions of individual
features that shift the prediction towards higher or lower credit risk.

Prediction probabilities Class 0 Class 1 Feature Value
91.22 < SRS <= 100.00,
Class 0 022 a) zigi
56.83 < SDS <= 65.32 *
Class 1 o

0.00

SI<=57.21
0.09
12.23 <Diff <= 19.24
0.03
Prediction probabilities Class 0 Class 1
Diff <= 12.23 :
Class 0 050 b)
Class 1 [ .87 SRS <=9122 68.71

021 0.00

42.45

0.02

Fig.5. LIME-based local feature importance: a — sample 1, b — sample 2.

SRS -0.01 ' a) SDS ' +0.03 b)

025 030 035 040 045 " 04 05 06 07 08 09
SHAP value SHAP value

Fig.6. SHAP waterfall plots: a — sample 1, b — sample 2.
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Both DNFS and BRB also provide local feature contribution coefficients. In DNFS,
these are derived from the activations of fuzzy terms and the corresponding rules in the
deep neural structure for each sample, whereas in BRB they result from the combination
of rule matching degrees, belief weights, and aggregated belief levels. The results obtained
using all methods are summarized in Table 3.

For sample 1, the local effects of the features act in different directions (Fig. 5 and
Fig. 6). Some features increase the prediction in LIME, whereas in SHAP they exhibit the
opposite effect. In particular, the feature Diff has the strongest positive contribution to credit
risk in SHAP, while in LIME it has only a minor contribution in the direction of reducing
credit risk. The numerical value of Diff for sample 1 is 14.26. As follows from Fig. 2d and
Fig. 3d, this value lies in a region where credit risk changes rapidly. Such rapid variation in
credit risk indicates nonlinear local feature interactions and reduced model stability in the
neighborhood of this instance, making it an important candidate for further analysis as a
potentially unstable or borderline (between-class) case. Correlation analysis of the feature
importance coefficients for sample 1 (Table 3) shows only moderate agreement between
methods (0.58-0.76).

For sample 2, the directions of the local feature effects in LIME and SHAP are
consistent (Fig. 5 and Fig. 6), with a high pairwise correlation of 0.98 between them. In
contrast to sample 1, the model clearly assigns sample 2 to a particular class. This is
reflected in the consistency and high correlation of the feature importance coefficients
(0.88-0.98) obtained from all local methods reported in Table 3.

CONCLUSION

This study proposes a multi-level approach to explaining credit scoring models based
on open banking data, which combines global XAl methods (Feature Importance, SHAP)
with interpretable DNFS and BRB-ER structures. The classification models for credit risk
assessment (Random Forest and Deep Neuro-Fuzzy System) demonstrate that, after
hyperparameter optimization, classification accuracy increases to 0.88 for RF and 0.91 for
DNFS, with DNFS providing a better trade-off between predictive performance and
structural interpretability due to its automatically generated fuzzy rules.

The global feature importance analysis shows a high correlation between the
coefficients obtained using different methods (Feature Importance, SHAP, and DNFS).
This indicates consistent model behavior and confirms that the key features drive the
prediction irrespective of the explanation technique used. In addition, DNFS produces a set
of fuzzy rules that allows the prediction to be interpreted in a logically transparent form,
combining quantitative importance scores with textual rule-based explanations.

The analysis of local feature importance coefficients obtained with LIME, local SHAP,
DNFS, and BRB-ER shows that interpretable models can adequately capture local feature
contributions while providing enriched explanations through rule bases, belief degrees, and
fuzzy term activations. A comparison of local feature importance for two test samples
demonstrates that, in regions of strong nonlinearity and feature interactions, local
discrepancies between methods may arise. This highlights the need to combine global and
local explanations to achieve a robust and reliable interpretation of model decisions.
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AHOTALIA

Bcryn. Po3sutok mMogernen LWTY4YHOro iHTENeKTy Ta MAaLUMHHOrO HaBYaHHS 3HA4YHO
BNIMHYB Ha (hiHAHCOBY aHaniTUKY | NMPUAHATTSA KpeauTHUX pilleHb. Mogeni 3abesneyyoTb
BMCOKY TOYHICTb, MPOTE PYHKLIIOHYIOTb K «HOPHI CKPUHBKMY, LLIO YCKMaAHIOE iIHTepnpeTaLito
BHYTPILLHIX MexaHi3aMiB ix pobotn. Y cdepi BigkpuToro 06aHKiHry, Ae pilueHHs
6esnocepeaHbO BMNUBAKOTbL HA [OCTYM KOPWUCTYBaudiB [0 (hiHAHCOBMX pecypciB, Taka
Henpo30pIiCTb € CYTTEBUM HeAOMIKOM. TOMy BUHMKAE NoTpeda y po3BUTKY NOSICHIOBANbHUX
Ta iHTenpeToBaHUX NigX0AiB, SKi 4O3BONAKOTb BCTAHOBUTM MPUYNHHO-HACNIAKOBI 3B’S13KN MiXK
BXiZHUMU O3HaKaMu Ta BUXIQHMMW NPOrHO3aMu.

MaTtepianu Ta MeToau. Metoam gocnigXeHb FPYHTYIOTbCSA Ha GaraTopiBHEBOMY MiaxoAi
po iHtepnpeTauii ML-mogeni. 3actocoBaHo Feature Importance ans cTaTMCTUYHOI OLHKM
BHecky o3Hak, LIME pgns nokanbHOi iHTepnpeTtoBaHocTi, SHAP (SHapley Additive
exPlanations) gns BUSBNEHHS HENiHIMHUX 3anexHocten. CTPYKTYpHY iHTepnpeTauito
3abe3nedyye DNFS (Deep Neuro-Fuzzy System) uepes chopmMyBaHHA HEYiTKMX npasui, a
BRB-ER (Belief Rule Base with Evidential Reasoning) noaae noriyHo y3rogxeHe nosiCHeHHs!
piLleHb Ha ocHoBi 6a3n npaswn.
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Markiyan Fostyak & Lidiia Demkiv

Pe3ynbTaTu. NMokasaHo, Wo nicns onTumisawii rinepnapaMeTpis Moaenen KpeanTHoro
PU3MKYy Ha OCHOBI AaHWX BigKpUTOro 6aHkiHry TouHicTb mogeni DNFS 3pocTae Ha 4% Ginblue
Hix ana mopeni Random Forest. moGanbHuin nigxia 00 BM3HAYeHHs1 koedilieHTiB
Ba)XNMBOCTi O3HaK, OTpuMaHux 3a ponomorotw Feature Importence, SHAP Tta DNFS,
nokasaB iX BUCOKY kopensuijto (6inbwe 88%), wo ceigumtb Npo crabinbHicte Mogeni. Ha
nokanbHOMY PiBHi BU3HaYE€HO 3pas3ku, SKi 3MEHLLYIOTb TOYHICTb MoAeni. Bisyanisauis SHAP
rpadikis poskpuna obnacti MiHINHOI Ta HeniHiHOI B3aemodii 0o3Hak Ta iX BMAMB Ha
NPUAHATTS PilleHb.

BucHoBkn. Ha BiamiHy Bif TpaguuinHoro BukopuctaHHa okpemux XAl-meTtonis ans
MOSICHEHHS pe3ynbTaTiB MoAEeNen MalMHHOIO HaBYaHHs, Y poboTi NnoeaHaHo rnobanbHi Ta
nokanbHi MeTpuku BaxnueocTi o3Hak (Feature Importance, SHAP, LIME), HeuiTko-
npasunosi meTpukn DNFS Ta arperosaHni koediuieHTn BRB-ER. 3anponoHoBanui nigxig
[ae 3Mory nokanidyBatv NPUYMHU 3HWKEHHSA TOYHOCTI, BU3HAYaTW HEMiHiVHI 3anexHOCTi
O3HaK, a TaKoX OUHUTU Y3rofXeHiCTb MNOSICHEHb 4Yepe3 KOopemnsAuilHWUI aHania Mix
mMeToaamu.

Knro4oei croea: nosicHeHHS LWITY4YHOro iHTenekTty (XAl), maluvHHe HaB4vaHHsA, 6asa
npaBun nepekoHaHb (BRB), rmuboka HewpoHHa HediTka cuctema (DNFS),
HeviTka norika.
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