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ABSTRACT  

Background. The development of artificial intelligence and machine learning models 
has significantly influenced financial analytics and credit decision-making. These models 
provide high predictive accuracy but often operate as “black boxes,” which complicates the 
interpretation of their internal mechanisms. In the context of open banking, where decisions 
directly affect users’ access to financial resources, such opacity is a substantial drawback. 
This creates a need for explainable and interpretable approaches that make it possible to 
establish causal relationships between input features and output predictions. 

Materials and Methods. The research methods are based on a multi-level approach to 
ML model interpretation. Feature Importance is applied for a statistical assessment of 
feature contributions; LIME is used to provide local interpretability; and SHAP (SHapley 
Additive exPlanations) is employed to capture nonlinear dependencies. Structural 
interpretability is ensured by DNFS (Deep Neuro-Fuzzy System) through the formation of 
fuzzy rules, while BRB-ER (Belief Rule Base with Evidential Reasoning) adds logically 
consistent explanations of decisions based on a rule base. 

Results and Discussion. It is shown that, after hyperparameter optimization of credit 
risk models trained on open banking data, the accuracy of the DNFS model becomes 4 
percentage points higher than that of the Random Forest model. A global analysis of feature 
importance scores obtained using Feature Importance, SHAP, and DNFS demonstrates a 
high correlation between them (above 88%), indicating model stability. At the local level, 
instances that reduce model accuracy are identified. Visualizations using SHAP graphs 
reveal regions of linear and nonlinear feature interactions and their influence on decision-
making. 

Conclusion. In contrast to the traditional use of individual XAI methods to explain 
machine learning model outputs, this work combines global and local feature importance 
metrics (Feature Importance, SHAP, LIME), fuzzy rule–based metrics from DNFS, and 
aggregated coefficients from BRB-ER. The proposed approach makes it possible to localize 
the causes of accuracy degradation, identify nonlinear feature dependencies, and assess 
the consistency of explanations through correlation analysis across methods. 

Keywords: explainable artificial intelligence, machine learning, BRB, DNFS, fuzzy logic.  

INTRODUCTION 

Over the past few years, machine learning (ML) models have been widely used to 
solve a variety of tasks. However, the limited transparency of their results creates obstacles 
to practical deployment, especially in domains where the explainability of outcomes is of 

http://publications.lnu.edu.ua/collections/index.php/electronics/index
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0002-0185-6364
mailto:markiyanfostyak@gmail.com
https://orcid.org/0000-0003-4670-5834
mailto:lidia.demkiv@gmail.com
https://doi.org/10.30970/eli.32.6


 Markiyan Fostyak & Lidiia Demkiv 

88 Electronics and Information Technologies • 2025 • Issue 32 

critical importance. This primarily concerns medicine, financial analytics, and decision 
support systems, where trust in algorithmic predictions directly depends on the ability to 
interpret their internal logic. For this reason, there is growing interest in such areas as 
Explainable Artificial Intelligence (XAI) and the development of interpretable models. 
Reviews [1–3] present more than ten methods used to construct explainable models in the 
financial domain. In finance, XAI has the highest priority due to the complex and often 
opaque structure of ML models used for credit rating assessment, bankruptcy prediction, 
fraud detection, and credit portfolio optimization. 

To explain such models, the following methods are commonly employed: LIME (Local 
Interpretable Model-agnostic Explanations), which builds local linear approximations to 
explain the behavior of complex models in the vicinity of an individual prediction; SHAP 
(SHapley Additive exPlanations), a method based on Shapley value theory that 
decomposes the model output into contributions of each feature according to its marginal 
importance; TreeSHAP or TreeExplainer, a modification of SHAP optimized for tree-based 
models (Random Forest, XGBoost), which provides exact analytical values without the 
need for simulations; PDP (Partial Dependence Plot), a graphical tool that visualizes the 
average effect of one or several features on the model prediction; Anchors (High-Precision 
Model-Agnostic Explanations), a technique that constructs interpretable “anchor” rules 
providing high-precision local explanations; Counterfactual Explanations (CF), which 
identify minimal changes in the input data that would lead to an alternative model output; 
Permutation Feature Importance (PFI), a simple global metric that measures the drop in 
model accuracy after random permutation of a specific feature; and Surrogate Models 
(SM), which approximate the behavior of a complex model with an interpretable structure, 
such as a decision tree or linear regression, among others. 

The theoretical foundations and prospects of Explainable Artificial Intelligence (XAI) 
are discussed in [4,5]. The practical application of XAI in various types of financial models 
is examined in [6–9]. All these studies confirm that integrating XAI approaches into financial 
analytics increases trust in automated systems and helps maintain a balance between 
model accuracy and interpretability. In [6], the SHAP method is used to explain the results 
of a LightGBM model in a credit scoring task, which made it possible to identify key factors 
influencing loan approval decisions. In [7], XGBoost, LightGBM, and Random Forest 
algorithms are applied for predictive analysis of loan default risk in combination with XAI 
methods SHAP and LIME. Study [8] presents a method for credit card default prediction 
based on a combination of deep learning and explainable artificial intelligence (XAI) 
techniques. 

Another direction in the development of explainable artificial intelligence is hybrid 
interpretable approaches. One such approach is the Belief Rule Base with Evidential 
Reasoning (BRB-ER). BRB-ER ensures transparency and interpretability of decision-
making, since each prediction is formed based on an intelligible system of logical rules. In 
[9], the hierarchical BRB structure incorporates both factual and heuristic rules and can 
explain the chain of events leading to a decision on a loan application. In addition, 
performance indicators for evaluating the rule base are proposed, including quantitative, 
qualitative, and visual metrics in the form of a rule interaction graph [9,10]. Another line of 
development for interpretable models is Deep Neuro-Fuzzy Systems (DNFS). In DNFS, 
the hidden layers implement the fuzzification process, creating fuzzy sets for input features, 
after which the system automatically generates and tunes “if–then” rules that reflect causal 
relationships in the data [11,12]. Unlike BRB, DNFS does not require prior specification of 
expert rules, but instead learns them during training, which provides data-driven adaptive 
interpretability. The importance of each feature can be computed based on the activation 
strength of the corresponding rules or on the weights of neural connections. 

This study aims to compare the effectiveness of interpreting ML models using BRB-
ER and DNFS approaches with XAI methods, in particular SHAP and LIME, in terms of 
their ability to determine feature importance, and to define a consistent approach to 
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constructing explainable and interpretable models for financial analysis in open banking 
systems. 

MATERIALS AND METHODS  

Explaining and interpreting the results of machine learning models, as well as 
analyzing the characteristics of the data on which these models are trained, requires a 
combination of classical XAI methods, hybrid neuro-fuzzy systems, and rule-based logical 
approaches. To this end, this study implements an integration of global and local XAI 
techniques with hybrid approaches and fuzzy logic, which makes it possible to analyze both 
the overall patterns captured by the model and individual decisions for specific instances. 

The SHAP (SHapley Additive exPlanations) method quantifies how important each 
input variable is for the model. SHAP values are derived from Shapley values in cooperative 
game theory, where each feature is treated as a “player” contributing to the collective 
outcome, i.e., the model prediction. The key idea behind SHAP is that the Shapley value is 
expressed as an additive feature attribution method via a linear explanation model. 

In the Python implementation of SHAP, a specialized algorithm called TreeSHAP is 
provided, which is optimized for tree-based ML models, in particular Decision Trees, 
Random Forests, and Gradient Boosted Trees (XGBoost, LightGBM, CatBoost). 
TreeSHAP is a computationally efficient variant of SHAP that does not compute Shapley 
values via exhaustive enumeration of all feature subsets, but instead relies on an analytical 
analysis of the tree structure [13]. The algorithm exploits the fact that a tree prediction is a 
deterministic function of the split conditions at its internal nodes. By analyzing all possible 
decision paths, it is therefore possible to determine exactly which features actually 
influence the model output. When SHAP values are used to explain real-world outcomes, 
it must be recognized that SHAP only shows what the model does in the context of the data 
on which it was trained. The method does not necessarily uncover the true causal 
relationships between variables and outcomes in the real world. 

The LIME (Local Interpretable Model-agnostic Explanations) method implements the 
concept of local interpretability by constructing a simplified local regression model (typically 
linear) that approximates the predictions of the base model in the immediate neighborhood 
of a selected instance for a subset of points close to the observation of interest. To construct 
such an explanation, LIME generates a synthetic local dataset by randomly sampling points 
around the instance, and then fits a linear regression model whose coefficients are used 
as local feature attributions. The effectiveness of LIME depends strongly on the choice of 
its parameters: the kernel width defining the locality, the number of generated neighboring 
points, and the regularization parameter controlling the number of features in the local 
model [14]. At the same time, the fidelity of the explanation depends on the adequacy of 
the local linear approximation: if the global model exhibits strong nonlinearity or complex 
feature interactions, the fitted linear model may capture only a very small, highly local 
fragment of its behavior. 

A separate line of XAI research concerns the construction of hybrid solutions in which 
interpretable or explainable models are combined with optimization algorithms. In hybrid 
systems of the type ML + BRB + Optimizer, the ML component is responsible for predictive 
accuracy, the BRB component ensures transparency via a rule base, and the optimization 
algorithm adjusts the structure and parameters of the rules to align them with the outputs 
of the “black-box” model [15]. Such an approach is used, for example, in credit scoring, 
where predictive accuracy must be combined with the ability to explain the result to the end 
user and to regulators. In [16], we described in detail a hybrid decision-support system that 
combines a Belief Rule Base (BRB) model, a machine learning (ML) model, and Particle 
Swarm Optimization (PSO). At the first stage, reference values of the input features are 
defined to represent the linguistic states of the parameters. At the second stage, based on 
these reference values, a BRB rule base is constructed, where each rule encodes the 
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relationship between a combination of input attribute states and the corresponding class. 
Each rule is characterized by a rule weight and attribute weights. The Evidential Reasoning 
(ER) mechanism is used to aggregate the activated rules into a final output. At the third 
stage, the machine learning model (ML) is trained. At the final stage, Particle Swarm 
Optimization (PSO) is applied to automatically tune the parameters. Analyzing the 
parameters learned makes it possible to identify which rules or attributes have the greatest 
influence on the result. Consequently, the BRB–ML–PSO system produces not only a 
numerical output, but also a logical interpretation of this output via the rule base. 

Deep Neuro-Fuzzy System (DNFS) is a hybrid approach that combines fuzzy rules 
(fuzzy logic) with deep neural networks (deep learning). Unlike BRB, DNFS does not 
explicitly store all possible rules. Instead, a neural network automatically learns the 
relevance of rules, prunes insignificant combinations (through the weights), and 
generalizes, so that the effective number of rules does not grow exponentially. 

Structurally, DNFS consists of several interconnected layers [17]. At the first level, 
each feature passes through a separate fuzzification layer, where it is transformed into 
fuzzy terms representing the linguistic states of the variable. This is implemented via 
sigmoidal activation functions. As a result, fuzzy features are formed that represent fuzzy 
intervals of the values of each input variable. The generated fuzzy features are 
concatenated into a vector in a fuzzy feature space, which is fed into the rule layer, a layer 
of neurons. Each neuron corresponds to a single fuzzy IF–THEN rule, and its weights 
determine the importance of individual terms in the rule combination. During training, the 
parameters of the fuzzy terms and the rule weights are optimized using a gradient-based 
method (the Adam optimizer). After computing rule activation degrees, they are normalized 
using the Softmax function, which transforms them into a distribution of influence weights 
over the rules. The final output layer aggregates these normalized rule contributions and, 
in the case of classification, again applies Softmax to produce a probabilistic class 
prediction. 

As a result, we obtain an interpretable output in the form of rules that are generated 
automatically based on the network’s learned parameters, as well as rule activation 
degrees and normalized rule weights. Feature importance in DNFS is computed from the 
aggregate influence of the weights connecting fuzzy terms to the rule layer. Since each 
feature is represented by several terms, its integral importance is defined as the sum of the 
absolute weights linking its terms to all rules. This approach makes it possible to quantify 
the contribution of each feature to the system’s decisions and to identify which rules 
determined the outcome and why. In this way, the learned parameters can be used for 
explainability (XAI), analogous to SHAP or BRB. Thus, the DNFS architecture combines 
the high predictive accuracy of a neural model with the interpretability of fuzzy logic, which 
makes it effective for financial and medical applications where not only predictive accuracy 
but also an explanation of the underlying reasons is crucial. 

With the development of financial technologies (FinTech) and the digitalization of 
banking services, the role of ML models in decision-making related to lending, risk 
assessment, and forecasting clients’ financial behavior has increased significantly. One of 
the modern approaches to building credit rating models is the use of open banking API 
data, which contains detailed information on client transactions. At the data preparation 
stage, the raw open banking API data are preprocessed and transformed into features such 
as income stability (SI), mandatory spending (MS), non-mandatory (discretionary) 
spending (DS), risky spending (RS), and account balance [18,19]. To reduce the total 
number of BRB rules, further categorization of financial features is performed, which we 
described in detail in [16]. As a result, four features are obtained and expressed in relative 
units: stability of income (SI), stability of discretionary spending (SDS = 1 − SD), stability of 
risky spending (SRS = 1 − RS), and the difference between income and expenditure (Diff) 

Achieving high classification accuracy on open banking data is a challenging task due 
to the nature of transactional data itself [20], which is characterized by high variability and 
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low correlation between individual features and the target variable (Fail). Here, Fail = 1 
corresponds to the highest credit risk level. Analysis of the correlation matrix shows that 
the maximum correlation of 0.52 is observed between Diff and Fail, while all other 
correlation values between variables are below 0.40.  

All experiments were implemented in Python 3.8.6. The following libraries were used: 
NumPy [1.24.3], pandas [1.5.3], matplotlib [3.7.5], scikit-learn [1.3.2], SHAP [0.44.1], LIME 
[0.2.0], and TensorFlow/Keras [2.13.0]. In addition to using these established packages for 
model training and explainability, custom Python scripts were implemented for the core 
study workflow, including: data loading from CSV and preprocessing (feature 
extraction/ordering for SI, SDS, SRS, DiFF and label handling), training and evaluation of 
a Random Forest classifier (train/test split, confusion matrix, accuracy, classification report, 
ROC-AUC, and partial dependence plots), generation of explanation artifacts (SHAP global 
summaries and dependence plots, SHAP waterfall plots for individual instances, and LIME 
local surrogate explanations), implementation of a Belief Rule Base inference engine 
comprising triangular fuzzification (Low/Medium/High on [0,1]), a complete rule base with 
belief degrees and optional rule weights, rule activation and belief aggregation using 
weighted averaging and an Evidential Reasoning style combination, and development of a 
DNFS (Deep Neuro-Fuzzy System) model in TensorFlow/Keras, including fuzzification 
layers, a rule layer, softmax-based normalization, and rule extraction from learned weights 
for interpretability. 

RESULTS AND DISCUSSION 

Table 1 presents the classification accuracy of the Random Forest (RF) and Deep 
Neuro-Fuzzy System (DNFS) models before and after hyperparameter optimization. The 
analysis is performed on open banking data containing four key financial parameters of 
clients (SD, SDS, SRS, Diff) and a binary target variable (Fail) that characterizes the level 
of credit risk. Among the ensemble machine learning models considered — Gradient 
Boosting (XGBClassifier), AdaBoostClassifier, and CatBoostClassifier — the Random 
Forest model demonstrated the highest classification accuracy. 

Particle Swarm Optimization (PSO) was used to determine the optimal 
hyperparameter values for both RF and DNFS. For RF, the following hyperparameters were 
optimized: the number of trees (n_estimators), maximum tree depth (max_depth), minimum 
number of samples required to split an internal node (min_samples_split), and minimum 
number of samples at a leaf node (min_samples_leaf). For DNFS, the optimized 
parameters included the number of terms per feature (terms_per_feature), the number of 
rules (number_of_rules), the learning rate, and the dropout rate. 

Table 1. Accuracy of Random Forest (RF) and Deep Neuro-Fuzzy System (DNFS) 
models before and after the optimization procedure  

 RF RF (opt) DNFS DNFS (opt) 

Accuracy 0.84 0.88 0.83 0.91 

 
As can be seen from Table 1, both models exhibit an increase in accuracy after 

optimization. The DNFS model shows a more pronounced improvement in accuracy, which 
can be attributed to the structural alignment of its rules with the data. 

Global explanation 
Table 2 presents the feature importance coefficients for the variables SD, SDS, SRS, 

and Diff, computed using three different approaches (Feature Importance, SHAP, DNFS). 
The Feature Importance coefficients capture the global statistical contribution of each 
feature to classification accuracy over the entire dataset. They are obtained from the 
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Random Forest model using the feature_importances_ attribute, which calculates the mean 
decrease in impurity (Gini importance) across the decision trees. 

Global SHAP coefficients are derived by aggregating local SHAP values for each data 
instance using shap.Explainer(model), which makes it possible to estimate the average 
effect of each feature on the model prediction. Global feature importance in DNFS is 
determined based on the weights of fuzzy terms in the learned rules. Example rules for 
different classes have the following form: 

• Rule 4: IF Diff_Low (w = −0.69) AND SI_High (w = −0.54) AND SD_High (w = 
−0.45) AND SI_Low (w = 0.35) AND SR_High (w = 0.31) AND SR_Low (w = 0.24) 
THEN → Class 1;  

• Rule 5: IF Diff_High (w = 0.56) AND Diff_Low (w = 0.47) AND SI_Low (w = 0.42) 
AND SI_High (w = 0.40) AND SD_High (w = 0.39) AND SD_Low (w = −0.39) THEN 
→ Class 0. 

For each rule, the absolute values of the weights of the terms associated with a given 
feature were summed, and these sums were then aggregated across the entire rule set. 
Subsequent normalization of the resulting values made it possible to obtain an integral rule-
based estimate of the importance of each attribute. The resulting aggregate coefficients 
reflect the degree of influence of each feature on the final model decision. 

The DNFS architecture consists of four sequential layers: the input layer, the fuzzy 
layer (12 neurons, sigmoid), the rule layer (45 neurons, sigmoid), and the decision layer (2 
neurons, softmax). The results show that the obtained DNFS-based importance 
coefficients are highly correlated with the global SHAP values, which confirms the 
methodological consistency of the different levels of explanation. 

A three-component Pearson correlation matrix was computed for the feature 
importance coefficients. The high correlation between the results of all three approaches 
(greater than 0.88) indicates that the overall pattern of how influence is distributed across 
features remains consistent. 

Table 2. Global feature importance coefficients 

 Feature importance SHAP DNFS 

Diff 0.56 0.36 0.37 

SRS 0.19 0.08 0.23 

SDS 0.17 0.05 0.21 

SI 0.06 0.02 0.19 

 
For a more detailed interpretation of the global impact of the features, a beeswarm 

plot (Fig. 1) was constructed to visualize the distribution of local SHAP values for each 
feature. The Y-axis lists the features in descending order of their SHAP-based importance, 
while the X-axis shows the SHAP values, which reflect the direction and magnitude of their 
influence on the probability of the class Fail = 1. Each point corresponds to an individual 
data instance, and its color encodes the actual value of the feature. The plot clearly shows 
that low values of all variables (except for SDS) increase credit risk in a more linear manner 
and much more rapidly than high values of these variables. For high values of all features, 
the interactions are more strongly nonlinear than for low values. 

The feature SDS exhibits a strongly nonlinear effect across its entire range of values. 
The atypical influence of SDS (discretionary spending) on credit risk at low spending levels 
is associated with the borrower’s limited ability to redirect these expenditures towards loan 
repayment. 
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Fig. 1. Distribution of local SHAP values for each feature. 

To further assess the global behavior of the model, Partial Dependence Plots (PDPs) 
(Fig. 2) were constructed for the four input features. PDPs make it possible to visually 
examine how changes in the value of a single feature affect the model’s prediction while 
holding the remaining variables at their average levels. The X-axis represents the values 
of the corresponding feature, and the Y-axis shows the mean predicted value of the target 
variable, averaged over all observations.  

 

Fig. 2. Partial Dependence Plot: a – Partial Dependence–Si, b – Partial Dependence–SDS, c – Partial 
Dependence–SRS, d – Partial Dependence–Diff.  

As income stability (SI) and stability of risky spending risky spending (SRS) increases, 
an almost smooth reduction in credit risk is observed. For SDS, two distinct regions of small 
and large values (i.e., very low and very high discretionary spending) can be seen, both of 
which are associated with an increase in credit risk. For the difference between income and 
expenditure (Fig. 2d), two distinct dependence regions are observed. For Diff > 12, credit 
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risk decreases in an almost exponential manner up to a point beyond which further 
increases in the income–expenditure gap no longer improve the risk level. This behavior 
reflects a zone of financial stability, beyond which additional resources do not increase the 
probability of loan approval. 

For Diff < 12, a threshold-type relationship between Diff and credit risk is observed, 
namely, a decrease in risk as the difference decreases. Such atypical behavior may be 
driven by various underlying factors, which require more detailed investigation at the local 
level. 

Local explanation 
To conduct a detailed analysis of the local, instance-specific effects of features on the 

model’s predictions, the Individual Conditional Expectation (ICE) method was employed. In 
contrast to global dependencies (Fig. 2), the ICE plot in Fig. 3 depicts the trajectory of the 
model’s predicted value for a single observation when only one selected feature is varied, 
while all other characteristics are held fixed. One of the characteristics of the average ICE 
curve is its mean slope. The largest mean slope, 0.023, corresponds to the feature Diff 
(Fig. 3d).; identical mean slopes of 0.019 are observed for the SI (Fig. 3a) and SRS 
(Fig. 3c) features, and the smallest mean slope, 0.010, is obtained for the SDS feature 
(Fig. 3b). 

The application of ICE in the context of credit risk assessment made it possible to 
detect local nonlinearities that are not apparent in the PDPs (Fig. 2) or in the average curve 
(Fig. 3). The presence of an S-shaped structure in the ICE plot for Diff indicates that even 
small increases or decreases in Diff substantially change the level of credit risk. This 
behavior suggests that the model responds to this feature in a non-linear, threshold-like 
manner. 

 

Fig. 3. Individual Conditional Expectation (ICE): a – SI, b – SDS, c – SRS, d – Diff. 
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Analysis of the ICE curves for SDS revealed two distinct types of client behavior in the 
region of medium SDS values. For the first group, an upward kink in the curve is observed, 
where even a slight increase in SDS immediately amplifies credit risk. In contrast, the 
second group exhibits a downward kink, where a small increase in spending instability 
improves the prediction, which may indicate the activation of positive behavioral patterns. 
As a result of averaging, the peak that is clearly visible on the corresponding SDS curve in 
the PDP plot (Fig. 2b) disappears from the average ICE curve. This behavior highlights the 
heterogeneity of borrowers’ spending strategies and the nonlinear nature of the impact of 
SDS on credit risk. This relationship can be seen in more detail in the SHAP dependence 
plot in Fig. 4. 

The SHAP dependence plot illustrates the relationship between the actual value of a 
feature and its local contribution to the model’s prediction, represented through SHAP 
coefficients (Fig. 4). The X-axis shows the feature values, while the Y-axis shows the 
corresponding SHAP values, which indicate the extent to which this feature increases or 
decreases the predicted credit risk. The color of the points encodes the value of a second 
interacting feature, allowing nonlinear and context-dependent interactions between factors 
to be visualized. SHAP dependence plots were obtained and analyzed for all pairs of 
features. Fig. 4 presents the dependence on Diff, as this feature exhibits the strongest 
nonlinear interactions with other variables. 

The nonlinear dependence observed for SDS shows that very high and very low 
discretionary spending led to a sharp increase in credit risk only for samples with relatively 
small values of Diff. The slight decrease in credit risk at the smallest Diff values is related 
to the fact that the data do not uniformly populate the feature space. In the region of the 
smallest Diff values, there are few data samples, and the available samples are 
characterized by high values of SI, SDS, and SRS, which contribute to a reduction in credit 
risk. A joint analysis of all SHAP dependence plots makes it possible to capture both the 
overall trend of how each feature affects the model and the individual behavior of specific 
instances through their interactions with other features. 

 

Fig. 4. SHAP dependence plots: a – Diff, b – SRS, c – SDS, d – Si. 
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In this work, a local analysis of feature importance coefficients was carried out for all 
samples in the test set, taking into account the distribution of their credit risk levels. Table 3 
presents the local feature importance values obtained using SHAP, LIME, DNFS, and BRB-
ER for two different data samples. 

Table 3. Local feature importance coefficients for two samples 

Feature 

Sample 1 Sample 2 

LIME 
SHAP 
Local 

DNFS 
BRB 
ER 

LIME 
SHAP 
Local 

DNFS 
BRB 
ER 

Diff –0.03 0.14 0.26 0.14 0.50 0.31 0.21 0.24 

SRS –0.22 –0.01 –0.12 0.08 0.20 0.11 0.08 0.12 

SDS –0.10 –0.08 0.02 0.1 0.03 0.01 0.05 0.02 

SI 0.09 0.09 0.1 0.08 0.08 0.08 0.11 0.14 

 
In Fig. 5 on the right, the numerical feature values for these two samples are shown, 

while the corresponding credit risk levels are shown on the left. The central LIME plot 
illustrates the local contribution of each feature to the model prediction for the selected 
sample. Fig. 6 shows SHAP waterfall plots for sample 1 (Fig. 6a) and sample 2 (Fig. 6b). 
The SHAP waterfall plot represents the stepwise construction of the model prediction, 
starting from the baseline (expected value) and adding the contributions of individual 
features that shift the prediction towards higher or lower credit risk. 

 

Fig.5. LIME-based local feature importance: a – sample 1, b – sample 2. 

 

Fig.6. SHAP waterfall plots: a – sample 1, b – sample 2. 
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Both DNFS and BRB also provide local feature contribution coefficients. In DNFS, 
these are derived from the activations of fuzzy terms and the corresponding rules in the 
deep neural structure for each sample, whereas in BRB they result from the combination 
of rule matching degrees, belief weights, and aggregated belief levels. The results obtained 
using all methods are summarized in Table 3. 

For sample 1, the local effects of the features act in different directions (Fig. 5 and 
Fig. 6). Some features increase the prediction in LIME, whereas in SHAP they exhibit the 
opposite effect. In particular, the feature Diff has the strongest positive contribution to credit 
risk in SHAP, while in LIME it has only a minor contribution in the direction of reducing 
credit risk. The numerical value of Diff for sample 1 is 14.26. As follows from Fig. 2d and 
Fig. 3d, this value lies in a region where credit risk changes rapidly. Such rapid variation in 
credit risk indicates nonlinear local feature interactions and reduced model stability in the 
neighborhood of this instance, making it an important candidate for further analysis as a 
potentially unstable or borderline (between-class) case. Correlation analysis of the feature 
importance coefficients for sample 1 (Table 3) shows only moderate agreement between 
methods (0.58–0.76). 

For sample 2, the directions of the local feature effects in LIME and SHAP are 
consistent (Fig. 5 and Fig. 6), with a high pairwise correlation of 0.98 between them. In 
contrast to sample 1, the model clearly assigns sample 2 to a particular class. This is 
reflected in the consistency and high correlation of the feature importance coefficients 
(0.88–0.98) obtained from all local methods reported in Table 3.  

CONCLUSION 

This study proposes a multi-level approach to explaining credit scoring models based 
on open banking data, which combines global XAI methods (Feature Importance, SHAP) 
with interpretable DNFS and BRB-ER structures. The classification models for credit risk 
assessment (Random Forest and Deep Neuro-Fuzzy System) demonstrate that, after 
hyperparameter optimization, classification accuracy increases to 0.88 for RF and 0.91 for 
DNFS, with DNFS providing a better trade-off between predictive performance and 
structural interpretability due to its automatically generated fuzzy rules. 

The global feature importance analysis shows a high correlation between the 
coefficients obtained using different methods (Feature Importance, SHAP, and DNFS). 
This indicates consistent model behavior and confirms that the key features drive the 
prediction irrespective of the explanation technique used. In addition, DNFS produces a set 
of fuzzy rules that allows the prediction to be interpreted in a logically transparent form, 
combining quantitative importance scores with textual rule-based explanations. 

The analysis of local feature importance coefficients obtained with LIME, local SHAP, 
DNFS, and BRB-ER shows that interpretable models can adequately capture local feature 
contributions while providing enriched explanations through rule bases, belief degrees, and 
fuzzy term activations. A comparison of local feature importance for two test samples 
demonstrates that, in regions of strong nonlinearity and feature interactions, local 
discrepancies between methods may arise. This highlights the need to combine global and 
local explanations to achieve a robust and reliable interpretation of model decisions. 
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АНОТАЦІЯ  

Вступ. Розвиток моделей штучного інтелекту та машинного навчання значно 
вплинув на фінансову аналітику і прийняття кредитних рішень. Моделі забезпечують 
високу точність, проте функціонують як «чорні скриньки», що ускладнює інтерпретацію 
внутрішніх механізмів їх роботи. У сфері відкритого банкінгу, де рішення 
безпосередньо впливають на доступ користувачів до фінансових ресурсів, така 
непрозорість є суттєвим недоліком. Тому виникає потреба у розвитку пояснювальних 
та інтепретованих підходів, які дозволяють встановити причинно-наслідкові зв’язки між 
вхідними ознаками та вихідними прогнозами. 

Матеріали та методи. Методи досліджень ґрунтуються на багаторівневому підході 
до інтерпретації ML-моделі. Застосовано Feature Importance для статистичної оцінки 
внеску ознак, LIME для локальної інтерпретованості,  SHAP (SHapley Additive 
exPlanations) для виявлення нелінійних залежностей. Структурну інтерпретацію 
забезпечує DNFS (Deep Neuro-Fuzzy System) через формування нечітких правил, а 
BRB-ER (Belief Rule Base with Evidential Reasoning) додає логічно узгоджене пояснення 
рішень на основі бази правил. 
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Результати. Показано, що після оптимізації гіперпараметрів моделей кредитного 
ризику на основі даних відкритого банкінгу точність моделі DNFS зростає на 4% більше 
ніж для моделі Random Forest. Глобальний підхід до визначення коефіцієнтів 
важливості ознак, отриманих за допомогою Feature Importence, SHAP та DNFS, 
показав їх високу кореляцію (більше 88%), що свідчить про стабільність моделі. На 
локальному рівні визначено зразки, які зменшують точність моделі. Візуалізація SHAP 
графіків розкрила області лінійної та нелінійної взаємодії ознак та їх вплив на 
прийняття рішень. 

Висновки. На відміну від традиційного використання окремих XAI-методів для 
пояснення результатів моделей машинного навчання, у роботі поєднано глобальні та 
локальні метрики важливості ознак (Feature Importance, SHAP, LIME), нечітко-
правилові метрики DNFS та агреговані коефіцієнти BRB-ER. Запропонований підхід 
дає змогу локалізувати причини зниження точності, визначати нелінійні залежності 
ознак, а також оцінити узгодженість пояснень через кореляційний аналіз між 
методами.  

Ключові слова: пояснення штучного інтелекту (XAI), машинне навчання, база 
правил переконань (BRB), глибока нейронна нечітка система (DNFS), 
нечітка логіка. 
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