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ABSTRACT  

Background. Local features are essential components of modern computer vision 
systems, such as SLAM and 3D reconstruction. Traditional evaluation protocols for 
keypoint detection mainly focus on geometric accuracy and repeatability, often neglecting 
the spatial structure of the point distribution. This complicates algorithm selection for 
applications where uniform image coverage and the absence of excessive local clustering 
are important. This work aims to conduct a comprehensive comparison of keypoint 
detectors using an extended set of metrics that account for both geometric accuracy and 
the spatial properties of features. 

Materials and Methods. The study was conducted on the HPatches dataset using six 
detectors: SIFT, SURF, ORB, BRISK, KAZE, and AKAZE. Keypoint filtering and geometric 
verification of correspondences were performed using USAC. Matching quality was 
assessed through the geometric metrics MMA, Repeatability, and Verification Ratio. Spatial 
analysis used the metrics CUI, RI, and SCS. To compare keypoint detection methods, a 
quality index Q was introduced that integrates geometric and spatial indicators. 

Results and Discussion. The study showed that selecting points by response strength 
significantly improves matching accuracy for SIFT, ORB, and BRISK, but may lead to local 
redundancy of keypoints. KAZE and AKAZE demonstrated the best overall balance, 
achieving high accuracy along with more uniform scene coverage. ORB tended to form 
dense clusters in high-contrast regions, thereby reducing its structural effectiveness, 
whereas SURF consistently delivered high performance regardless of the keypoint selection 
strategy. 

Conclusion. The proposed evaluation method allows a consistent analysis of the 
geometric and spatial properties of keypoint detectors. It shows that, for a fixed number of 
keypoints, the performance of the final method depends not only on the geometric accuracy 
of matches but also on the features of the spatial point distribution. It was observed that the 
keypoint selection process, especially response-based selection, systematically affects both 
geometric and spatial characteristics. The Q quality index combines these aspects into a 
single metric. It can be used to compare detection methods in scenarios that require both 
reliable matches and well-balanced scene coverage. 

Keywords: feature detection, spatial distribution, geometric metrics, image matching. 

INTRODUCTION  

Computer vision systems are widely used in navigation, 3D scene reconstruction, 
visual tracking, and augmented reality [1-5]. In many of these applications, keypoints and 
their descriptors play a central role in establishing correspondences between images. The 
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quality of matching directly affects the accuracy of geometric model estimation, tracking 
stability, and the reliability of subsequent processing stages. Therefore, objective 
comparison of keypoint detectors remains relevant despite the large body of research in 
this area. 

Traditionally, detector performance is evaluated using repeatability, matching 
accuracy, the inlier ratio after geometric verification, and the homography estimation error. 
These measures characterize the stability of feature localization and the geometric 
correctness of matches. At the same time, the spatial properties of keypoint sets are often 
considered only to a limited extent: non-uniform image coverage, local clustering, or the 
presence of “blind zones” can reduce the robustness of geometric estimates even when 
the classical metrics remain acceptable. Some studies introduce coverage or uniformity 
indicators; however, they are typically analyzed in isolation and not consistently linked to 
geometric validation outcomes [6, 7]. 

An additional practical factor is the keypoint selection strategy when the number of 
keypoints is limited. Selecting the “strongest” features by detector response can improve 
matching accuracy, but it may also change the spatial profile of the keypoint set and its 
structural consistency with the scene. A coherent set of metrics that simultaneously 
accounts for geometric correctness and spatial-structural properties is therefore essential 
for a well-grounded comparison of detection methods. 

In this study, we propose a comprehensive evaluation scheme for keypoint detectors 
that combines traditional geometric measures, namely MMA, Repeatability, Verification 
Ratio, with spatial-structural metrics: Coverage Uniformity Index (CUI), Redundancy Index 
(RI), and Scene Consistency Score (SCS). For an overall comparison, we introduce a 
quality index Q that integrates geometric and spatial characteristics. Experiments are 
performed on the HPatches dataset [8, 9] using detectors such as SIFT [10], SURF [11], 
KAZE [12], AKAZE [13], ORB [14], and BRISK [15], with geometric correspondence 
validation utilizing USAC [16]. 

MATERIALS AND METHODS  

The experimental study was conducted on the HPatches dataset [8, 9]. This dataset 
contains images of planar scenes with varying levels of geometric distortion, for which 
ground-truth homography matrices are available, enabling precise verification of 
correspondences. HPatches provides two main types of sequences: viewpoint and 
illumination. In this work, we analyze the viewpoint sequences. Twelve sequences were 
selected: apprentices, azzola, busstop, cartooncity, dirtywall, london, posters, samples, 
sunseason, tabletop, talent, and vitro, which contain enough keypoints for all considered 
methods. For each image sequence, the original image and five images of the same scene 
with progressively increasing viewpoint changes were used. The ground-truth 
transformation between the reference image and each target image is a 3×3 projective 
homography, which was used for overlap computation and geometric evaluation. For each 
sequence, "reference image - current viewpoint" pairs were formed. Examples of image 
sequences are presented in Fig. 1a, and the first images of all used sequences are shown 
in Fig. 1b. 

The study covers six algorithms for local feature detection and description: the floating-
point methods SIFT, SURF, and KAZE, and the binary methods ORB, BRISK, and AKAZE. 
For each detector, the performance dependence on the number of keypoints is examined, 
with the number of keypoints ranging from 500 to 4000 in increments of 500. To evaluate 
how feature selection influences subsequent matching quality, two selection strategies 
were compared: 

• raw-order: Selection of the first N points in the order returned by the detection 
method. 
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 (a) 

 (b) 

Fig. 1. Examples from the HPatches dataset: (a) the ‘vitro’ image sequence; (b) all scenes used in the 
experiments.  

• top-response: Sorting points by detector response strength, then selecting the top 
N features with the highest response. This simulates a scenario where, under a 
limited keypoint budget, priority is given to the strongest local structures. The 
response for each method was calculated as follows [17]: 
‒ SIFT: The amplitude of the extremum in the Difference of Gaussians (DoG) 

pyramid, which correlates with contrast. 
‒ SURF: The determinant of the Hessian matrix used for detecting "blob-like" 

structures. 
‒ ORB and BRISK: Metrics based on the Harris corner detector for ORB and on 

AGAST for BRISK. 
‒ KAZE and AKAZE: The determinant of the Hessian matrix calculated in a 

nonlinear scale space, which better preserves object boundaries than traditional 
Gaussian blurring. 

Matching was performed using the Brute-Force method, searching for the two nearest 
neighbors in descriptor space. Euclidean distance was used for SIFT, SURF, and KAZE 
descriptors, while Hamming distance was applied for ORB, BRISK, and AKAZE. 
Preliminary filtering involved Lowe’s ratio test with a threshold of 0.75 [10]. 

Geometric verification was conducted using the USAC_DEFAULT method with a 
homography model and a 3-pixel threshold [16, 18]. Based on the USAC results, an inlier 
mask was extracted, allowing the separation of points consistent with the global projection. 
In this experiment, spatial metrics were computed for all detected points and inliers after 
filtering, enabling comparison of detector properties before and after geometric verification 
of correspondences. 

The Coverage Uniformity Index quantitatively assessed the uniformity with which 
points covered the image plane. The image plane was divided into a regular grid of 𝑀 =

8 × 8 = 64 rectangular cells. For each set of points, the number of keypoints 𝑁𝑖 in the 𝑖 cell 

was counted, and a normalized distribution was formed. 

𝑝𝑖 =
𝑁𝑖

𝑁
, (1) 
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where 𝑁 is the total number of points. 

The obtained empirical distribution is compared with a perfectly uniform distribution, 
representing a scenario where each cell contains an equal proportion of keypoints: 

𝑢𝑖 =
1

𝑀
 (2) 

The total variation distance measures the deviation between 𝑝𝑖 and 𝑢𝑖, and the 𝐶𝑈𝐼 

is defined as: 

𝐶𝑈𝐼 = 1 −
1

2
∑|𝑝𝑖 − 𝑢𝑖|

𝑀

𝑖=1

,     𝐶𝑈𝐼 ∈ [0, 1]. (3) 

𝐶𝑈𝐼 values close to 1 correspond to almost uniform image coverage, while low values 

indicate an intense concentration of keypoints in a few cells. Conceptually, this metric is 
based on the coverage evaluation method proposed in [6], in which the spatial distribution 
of keypoints complements repeatability in assessing detector quality. 

The Redundancy Index was used to measure the local redundancy of keypoints. The 
need to control redundancy is driven by the fact that traditional detector quality metrics can 
be biased toward methods that produce spatially overlapping or overly dense detections 
[19, 20]. Such behavior can result in misleadingly high precision values. Additionally, recent 
research on redundancy removal techniques has demonstrated that explicitly considering 
local density and distances between points helps reduce descriptor duplication and 
improves overall image registration efficiency [20, 21], supporting the goal of the proposed 
evaluation. 

The RI calculation was performed for the set of points 𝑃 = (𝑥𝑖, 𝑦𝑖)𝑖−1
𝑁  on the image of 

size 𝑊 × 𝐻. To eliminate the dependence on the resolution, the coordinates of the points 

were normalized to the unit square [0, 1]2: 

𝑥̅ =
𝑥𝑖

𝑊
,     𝑦̅ =

𝑦𝑖

𝐻
. (4) 

Next, for each point (𝑥𝑖̅, 𝑦𝑖̅), the number of neighbors within a normalized radius r was 

counted. The radius is defined as a fraction of the unit square diagonal: 

𝑟 = 𝑝√2, (5) 

where 𝑝 = 0.02, and the factor √2 represents the diagonal of the unit square [0.1]2, giving 

an interpretable definition of the local neighborhood. The choice of the p coefficient is based 
on its representing the typical size of a descriptor's support region, which helps identify 
points with strongly correlated vector descriptions due to significant spatial overlap. 

Local redundancy was evaluated with the saturation function: 

𝑐𝑖 = min (
𝑛𝑖 − 1

𝐾𝑟𝑒𝑓
, 1), (6) 

where 𝐾𝑟𝑒𝑓 = 15, reflecting the empirical limit of information saturation: a concentration of 

more than 15 points within a single patch does not enhance the geometric model 
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estimation, for which 4-8 points are enough, but it only adds unnecessary computational 
load during the matching process. 

The global RI score was calculated by averaging the local values:  

𝑅𝐼 =
1

𝑁
∑ 𝑐𝑖

𝑁

𝑖=1

,     𝑅𝐼 ∈ [0, 1]. (7) 

High RI values indicate strong local clustering, while low values suggest sparse and 
unique point arrangements. 

In addition to evaluating spatial uniformity, an essential aspect of the analysis is the 
detector's ability to adapt to the scene's semantic content, as shown in Fig. 2. Traditional 
methods often exhibit a bias toward certain feature types, such as corners, while neglecting 
other informative elements in the image; this can lead to data loss when reconstructing 
scenes with complex geometry. To examine this criterion, an automatic image 
segmentation procedure was developed to categorize the image into three structural 
classes: high-contrast corner/texture regions T, contour/edge regions C, and 
homogeneous regions F. Reference masks are generated from gradient analysis [22-24]. 
The corner mask T is generated using the Harris detector, followed by Gaussian blur and 
thresholding at the 97.5th percentile of response. The Canny detector produces the edge 
mask C and excludes pixels already included in mask T. The mask F consists of pixels with 
low Sobel gradient magnitude = below the 25th percentile that do not intersect with T and 
C. This method ensures the mutual exclusivity of these sets, enabling the unique 
classification of each image region. 

 
Fig. 2. Structural masks for scene analysis: (A) original image; (B) texture/corner mask T; (C) contour/edge mask 

C; (D) homogeneous (flat) mask F. 
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Based on the obtained masks, the relative areas were calculated: 

𝛼𝑇 =
|𝑇|

𝐻𝑊
,     𝛼𝐶 =

|𝐶|

𝐻𝑊
,     𝛼𝐹 =

|𝐹|

𝐻𝑊
, (8) 

where 𝐻 and 𝑊 represent the image size, and | ∙ | is the number of pixels in the corres-

ponding mask. Then, the areas were normalized within the structural part of the image: 

𝐴𝑠𝑡𝑟 = 𝛼𝑇 + 𝛼𝐶 + 𝛼𝐹 ,     𝛼𝑇 =
𝛼𝑇

𝐴𝑠𝑡𝑟
,     𝛼𝐶 =

𝛼𝐶

𝐴𝑠𝑡𝑟
,     𝛼𝐹 =

𝛼𝐹

𝐴𝑠𝑡𝑟
. (9) 

For a given set of keypoints, the number of points falling into each mask (𝑛𝑇 , 𝑛𝐶 , 𝑛𝐹) 

was counted, and then the proportions were calculated: 

𝑛𝑠𝑡𝑟 = 𝑛𝑇 + 𝑛𝐶 + 𝑛𝐹 ,     𝛽𝑇 =
𝑛𝑇

𝑛𝑠𝑡𝑟
,     𝛽𝐶 =

𝑛𝐶

𝑛𝑠𝑡𝑟
,     𝛽𝐹 =

𝑛𝐹

𝑛𝑠𝑡𝑟
. (10) 

The consistency score of the keypoint distribution with the scene structure was defined 

as the complement of the total variation distance between 𝛼 and 𝛽 [7]: 

𝑆𝐶𝑆 = 1 −
1

2
(|𝛽𝑇 − 𝑎𝑇| + |𝛽𝐶 − 𝑎𝐶| + |𝛽𝐹 − 𝑎𝐹|),     𝑆𝐶𝑆 ∈ [0, 1]. (11) 

Scene Consistency Score values close to 1 indicate that keypoints appropriately cover 
structural types in proportion to their actual presence in the scene. In contrast, lower values 
indicate a systematic bias, such as an excessive concentration on contours or a dominance 
of detections in texture or corner regions. 

To evaluate classical performance metrics, standard protocols used in the HPatches 
benchmark [8, 9] were applied. 

Repeatability was only calculated within the common overlap region of the images. A 

point 𝑥 in the first image was considered repeatable if, after being projected through 

homography 𝐻1→2 into the second image, there was a point 𝑥́ within 𝜀 = 3 pixels of the 

projected position 𝑛(𝐻1→2𝑥́). To prevent multiple counts of the duplicate detection, "one-

to-one" matching was employed [25, 26].  
Mean Matching Accuracy was calculated on the set of points that passed Lowe's ratio 

test [10]. The MMA value was defined as the ratio of correct matches, with a reprojection 

error 𝜏 = 3 in pixels, relative to the Ground Truth homography among all detected pairs 

[8].  
To evaluate the efficiency of keypoint use, the Verification Ratio was employed. Unlike 

MMA, it is not based on the true homography, but on the results of filtering using the USAC 
method. 

𝑉𝑅 =
𝑁𝑖𝑛𝑙𝑖𝑒𝑟𝑠

𝑁𝑡𝑜𝑡𝑎𝑙
, (12) 

where 𝑁𝑖𝑛𝑙𝑖𝑒𝑟𝑠 is the number of points consistent with the found geometric model, 𝑁𝑡𝑜𝑡𝑎𝑙 is 

the total number of detected points. 
For a comprehensive comparison of detectors based on geometric and spatial-

structural quality, an integral Quality Index (Q) was formulated. Its construction is based on 
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a weighted linear combination of two aggregated components: the geometric component 
G and the structural-spatial component S. 

The geometric component G characterizes the accuracy of correspondence 
establishment. It is defined as the arithmetic mean of the normalized values of repeatability, 
matching accuracy, and verification ratio obtained after the filtering stage: 

𝐺 =
1

3
(𝑀𝑀𝐴𝜏=3 + 𝑅𝑒𝑝𝜀=3 + 𝑉𝑅). (13) 

The structural-spatial component S evaluates scene coverage quality and the 
detector's adaptation to scene content by combining metrics such as structural consistency, 
distribution uniformity, and local redundancy: 

𝑆 =
1

3
(𝐶𝑈𝐼𝑓𝑖𝑙𝑡 + (1 − 𝑅𝐼𝑓𝑖𝑙𝑡)2 + 𝑆𝐶𝑆𝑓𝑖𝑙𝑡), (14) 

where (1 − 𝑅𝐼𝑓𝑖𝑙𝑡)2 indicates a preference for low local redundancy on a [0, 1]2 scale, and 

its quadratic form emphasizes differences between sets with moderate and high local 
redundancy while also diminishing the influence of small RI values in the low redundancy 
range. 

The weighting coefficients were assigned according to the golden ratio principle [27]. 
Since geometric accuracy is essential for most computer vision tasks, it was assigned a 
higher weight of 0.62, whereas structural-spatial quality is an additional important factor 
with a weight of 0.38. 

𝑄 = 0.62 ∙ 𝐺 + 0.38 ∙ 𝑆. (15) 

The validation of the quality index is performed by analyzing the correlation between 
the Q values and the first principal component PC1, obtained via PCA [28] for all metrics, 
which allowed verifying the consistency of the proposed integral indicator with the 
multidimensional data structure.  

The standard HPatches protocol is used for Repeatability, MMA, and Verification Ratio 
[8,9]. CUI adopts the coverage concept from [6] in a grid-based form. RI, SCS, and the 
Quality Index are introduced in this study. Masks are computed using classical Harris, 
Sobel, and Canny operators [22-24], whereas T/C/F partitioning and normalization are 
defined in this work. 

RESULTS AND DISCUSSION  

The analysis of the Coverage Uniformity Index in Fig. 3 shows that, for all detectors, 
coverage uniformity improves as the quantity of keypoint N increases. After USAC 

geometric validation, 𝐶𝑈𝐼𝑓𝑖𝑙𝑡 values are consistently lower than 𝐶𝑈𝐼𝑟𝑎𝑤 because inliers 

form a more selective subset of correspondences. For KAZE and AKAZE, top_response 
provides noticeably more uniform coverage even at low keypoint counts; as N increases, 

both modes converge, reaching high 𝐶𝑈𝐼𝑟𝑎𝑤 values of about 0.65-0.70 at N = 4000. After 

filtering, these two methods maintain some of the best 𝐶𝑈𝐼𝑓𝑖𝑙𝑡 values among the detectors, 

around 0.40-0.45 for large N. 
For SIFT and BRISK, selecting the strategy has the most significant impact: switching 

to top_response significantly increases CUI, even for small N. For SIFT at N = 500, 𝐶𝑈𝐼𝑟𝑎𝑤 

the value rises from 0.16 to 0.47, and this improvement persists across the entire keypoint 
range. After USAC filtering, CUI values decrease, but the difference between methods  
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Fig. 3. Average CUI vs. the number of keypoints for raw sets (left) and filtered (right) across detectors under two 
selection strategies: A) AKAZE; B) BRISK; C) KAZE; D) ORB; E) SIFT; F) SURF. 

remains steady, showing a more uniform spatial distribution of inliers with the top_response 
approach. 

A different pattern appears for ORB: on unfiltered points, the raw_order mode yields 
a higher CUI, but after filtering, the difference between modes diminishes and shifts in 
favor of top_response. SURF shows the most consistent behavior: CUI is independent 
of the selection mode, indicating that the detector returns values already sorted by 

top_response, with 𝐶𝑈𝐼𝑟𝑎𝑤 values staying high at around 0.6 or above for all N. After 

filtering, SURF also maintains some of the highest 𝐶𝑈𝐼𝑓𝑖𝑙𝑡 values, approximately 0.47 at 

N = 4000. In conclusion, SURF offers the best average uniform coverage, followed by 
KAZE and AKAZE. SIFT and BRISK rank next, for which the top_response mode is 
essential for achieving high CUI. 

The results of the Redundancy Index metric in Fig. 4 show that as the number of 
keypoints increases, local redundancy tends to grow for most detectors in the unfiltered set 

𝑅𝐼𝑟𝑎𝑤. This indicates a tendency for points to densify within the "strongest" local structures.  
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Fig. 4. Average RI vs. the number of keypoints for raw sets (left) and filtered (right) across detectors under two 
selection strategies: A) AKAZE; B) BRISK; C) KAZE; D) ORB; E) SIFT; F) SURF. 

The highest 𝑅𝐼𝑟𝑎𝑤 values are observed for SIFT and BRISK in raw_order mode, averaging 

approximately 0.94 and 0.93 across the entire range, which suggests pronounced 
clustering. Switching to top_response for these methods significantly changes RI values, 
reducing redundancy to around 0.72 for SIFT and 0.77 for BRISK. This indicates that 
selecting keypoints based on response produces a “sparser” point distribution. 

For AKAZE, KAZE, and SURF, the unfiltered 𝑅𝐼𝑟𝑎𝑤 values are lower, generally 

ranging from 0.65 to 0.75. The effect of top_response is weaker and depends on the 
method: for KAZE, changes are minimal, while for AKAZE, selecting by response slightly 
decreases redundancy. In contrast, for ORB, the opposite trend occurs: top_response 

increases local clustering even at the 𝑅𝐼𝑟𝑎𝑤 level, averaging about 0.89 versus 0.80 for 

raw_order, which is consistent with ORB's tendency to concentrate points in a limited set 
of corner or high-contrast regions. 

After filtering, 𝑅𝐼𝑓𝑖𝑙𝑡 decreases significantly and shifts to a range characteristic of 

moderate inlier density, mainly between 0.2 and 0.4, indicating the selection of more 
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structurally consistent and spatially "cleaned" matches. AKAZE and SURF show the lowest 
inlier values, approximately 0.24 for raw_order and 0.24 for SURF in both modes. For 

AKAZE, top_response increases 𝑅𝐼𝑓𝑖𝑙𝑡 by about 0.32, indicating that inliers remain 

relatively sparse. Conversely, for ORB, the top_response mode substantially increases 

inlier redundancy: 𝑅𝐼𝑓𝑖𝑙𝑡 rises from approximately 0.20 to 0.43, indicating denser local 

clusters even after geometric verification. Overall, the RI results suggest that the keypoint 
selection strategy can significantly alter the local structure of the set: for SIFT and BRISK, 
top_response reduces redundancy, whereas for ORB it enhances clustering, particularly at 
the inlier level. 

Fig. 5 shows the dependencies of the Scene Consistency Score. For the selected 

HPatches scenes, the average area proportions of structural zones 𝑎𝑇 = 0.083 , 𝑎𝑇 =
0.278, and 𝑎𝐹 = 0.639, indicating that low-texture regions are predominant on average. 

Under these conditions, SURF exhibits the highest consistency in the inlier distribution  

 

Fig. 5. Average SCS vs. the number of keypoints for raw sets (left) and filtered (right) across detectors under two 
selection strategies: A) AKAZE; B) BRISK; C) KAZE; D) ORB; E) SIFT; F) SURF. 
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aligned with the scene structure: SCS values remain high, at approximately 0.83 before 
filtering and 0.79 after filtering. High values are also typical of KAZE and AKAZE, especially 
in the top_response mode, where 𝑆𝐶𝑆𝑓𝑖𝑙𝑡 stays around 0.73-0.74. 

In contrast, ORB and BRISK have the lowest SCS values, averaging 0.3 and 0.4 
before filtering, and 0.2-0.25 after USAC processing, indicating a significant discrepancy 
between scene structure and the actual inlier distribution. For SIFT, a pronounced 

dependence on the selection strategy is observed: in raw_order, 𝑆𝐶𝑆𝑟𝑎𝑤 it remains 

relatively high at approximately 0.65, whereas top_response reduces consistency to 
approximately 0.4, and the advantage of raw_order persists after filtering. 

The interpretation of these differences is supported by the structural analysis in 

Fig. 6, where the proportions 𝛽𝑇, 𝛽𝐶, 𝛽𝐹 are compared before and after filtering and for 

the two keypoint selection strategies. For ORB and BRISK, inliers are sharply skewed 

toward corner/texture zones: 𝛽𝑇 reaches approximately 0.8-0.9, while the contribution of  

 

Fig. 6. Average Structure Composition vs. the number of keypoints for raw sets (left) and filtered (right) across 
detectors under two selection strategies: A) SIFT; B) ORB; C) AKAZE; D) BRISK; E) KAZE; F) SURF. 
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homogeneous regions 𝛽𝐹 is minimal; this effect is more potent in top_response, and for 

ORB, it persists even after USAC processing. For SIFT, the top_response mode also 
causes a shift toward corner structures, which is consistent with the decline in SCS 
values. In contrast, KAZE, AKAZE, and SURF produce values with a significant 

proportion of low-texture regions 𝛽𝐹 and moderate contributions from 𝛽𝑇 and 𝛽𝐶, with 

their proportions changing only slightly after filtering. It is precisely this stability and 
structural "neutrality" that corresponds to the high SCS values observed across a wide 
range of keypoint counts. 

Fig. 7 presents the MMA values, which indicate the percentage of matches that agree 
with the Ground Truth homography within a 3-pixel threshold. Two main patterns are 
observed across most detectors: in raw_order mode, MMA values increase with the 
number of keypoints, and switching to top_response consistently yields higher MMA values 
at lower keypoint counts than raw_order. 

SIFT and ORB show the most substantial reliance on top_response. Even at N = 500, 
MMA scores increase from 0.27 to 0.75 for SIFT and from 0.41 to 0.66 for ORB, 
demonstrating that selecting by response significantly boosts the number of geometrically 
correct matches at low keypoint counts. When averaged across all N, this is reflected in an 
increase in MMA from approximately 0.55 to 0.75 for SIFT and from 0.54 to 0.71 for ORB. 
For AKAZE, KAZE, and BRISK, this effect is also present but less marked. Their mean 
values climb from roughly 0.64 to 0.76 for AKAZE, from 0.71 to 0.76 for KAZE, and from 
0.72 to 0.80 for BRISK. The MMA scores for SURF stay around the 0.7 range. 

 
Fig. 7. Average MMA vs. the number of keypoints across detectors under two selection strategies: A) SIFT; 

B) ORB; C) AKAZE; D) BRISK; E) KAZE; F) SURF. 
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Overall, the MMA results confirm that selecting keypoints by response enhances the 
geometric correctness of matches across all methods, with SIFT and ORB showing the 
greatest sensitivity to the selection strategy. 

Fig. 8 shows the Repeatability values, which measure the proportion of keypoints with 
a matching detection in the paired image within a 3-pixel threshold in the overlap region. 
Across all detectors, repeatability increases with the number of keypoints; most methods 
show the most significant improvements at low N values, then gradually level off. 

KAZE exhibits the most consistent behavior, maintaining high repeatability levels 
around 0.55-0.60 across nearly all values of N, with minimal dependence on the point 
selection method. This suggests strong keypoint repeatability in viewpoint change tasks. 
BRISK and AKAZE achieve similar performance levels, although the effect of the selection 
strategy is more pronounced for BRISK. Switching to top_response consistently boosts 
repeatability, particularly at lower keypoint counts, reaching about 0.58-0.62 at larger N. 
SURF shows moderate yet highly stable repeatability, roughly in the range of 0.48-0.52. 

In raw order mode, SIFT exhibits lower Repeatability, with values ranging from 0.25 
to 0.38 across the entire set of keypoints. Nevertheless, selection based on the top 
response consistently improves the metric, raising it to approximately 0.42-0.50. Regarding 
ORB, the influence of top response is most significant at low keypoint counts, with a 
noticeable increase between N=500 and N=1500. Conversely, at higher keypoint counts, 
the disparity between the modes diminishes substantially, with both curves converging to 
approximately 0.57-0.59. 

 
Fig. 8. Average Repeatability vs. the number of keypoints across detectors under two selection strategies: 

A) SIFT; B) ORB; C) AKAZE; D) BRISK; E) KAZE; F) SURF. 
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Overall, KAZE demonstrates the highest repeatability. Additionally, top_response 
primarily improves repeatability for SIFT, AKAZE, and BRISK at low keypoint counts, 
without altering the overall ranking of the methods. 

Fig. 9 shows the dependencies of the Verification Ratio (VR). For most detectors, VR 
rises with the number of keypoints in the raw_order mode, while top_response consistently 
yields higher values even at small N, causing the curves to saturate early. 

The highest VR values are observed for KAZE and SIFT in the top_response mode, 
at approximately 0.21-0.23. AKAZE also exhibits a comparable top_response of 
approximately 0.2, whereas in raw_order, the values are noticeably lower.  For BRISK, 
the effect of selection by response is particularly pronounced at small N values: VR 
increases from about 0.09 to 0.17, after which the difference between the selection 
methods gradually decreases as N increases. ORB remains the least effective according 
to the VR metric; even in top_response, values are around 0.11–0.12, indicating a smaller 
proportion of points supporting a common homography under the conditions of various 
HPatches scenes. SURF stands out, with VR values remaining relatively high, though 
they show a moderate downward trend as the number of keypoints increases, from 
approximately 0.20 to 0.17. Overall, the best results under top_response are achieved 
by KAZE and AKAZE, whereas ORB exhibits the lowest proportion of geometrically 
verified points. 

 

 
Fig. 9. Average Verification Ratio vs. the number of keypoints across detectors under two selection strategies: 

A) SIFT; B) ORB; C) AKAZE; D) BRISK; E) KAZE; F) SURF. 
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Fig. 10 illustrates the dependencies of the Quality Index, which includes the geometric 
and spatial components. The overall trend is moderate: the influence of the number of 
keypoints on the Q value is less significant than that of the detector choice and the point 
selection strategy. 

 
Fig. 10. Average Quality Index vs. the number of keypoints across detectors under two selection strategies: 

A) SIFT; B) ORB; C) AKAZE; D) BRISK; E) KAZE; F) SURF. 

The highest Q values are achieved by the KAZE and AKAZE methods in the 
top_response mode, with averages of 0.526 and 0.524, respectively. The next best method 
is SURF, with an accuracy of approximately 0.51. For SIFT, the transition from raw_order 
to top_response yields a substantial increase in Q, from approximately 0.37 to 0.46, 
consistent with the simultaneous improvement in geometric and spatial characteristics in 
this mode. BRISK achieves an intermediate quality level of approximately 0.4 for raw_order 
and 0.45 for top_response. In contrast, ORB has the lowest Q values of approximately 0.36 
and 0.39, respectively, reflecting limitations in both the proportion of geometrically verified 
correspondences and instructural-spatial metrics. 

To verify the consistency of the Q, Principal Component Analysis (PCA) [28] was 

conducted on the MMA, Repeatability, VR, 𝐶𝑈𝐼𝑓𝑖𝑙𝑡, 𝑆𝐶𝑆𝑓𝑖𝑙𝑡, and 𝑅𝐼𝑓𝑖𝑙𝑡 metrics. The first 

principal component, PC1, accounted for approximately 56% of the total variance and 
had positive loadings of similar magnitude across all measures, with the largest 
contributions from VR, CUI, and MMA. The correlation between Q and PC1 was 
approximatelyFinal_5_Article_text r = 0.91, suggesting that the proposed index 
effectively captures the main latent "axis" of quality derived by the principal component 
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method. This further confirms the correctness of the selected metrics and their weights 
in the Q formula. 

The results obtained show that evaluating detectors solely on standard geometric 
metrics does not always capture differences in the spatial organization of keypoints, which 
significantly affect the suitability of the correspondence set. Spatial metrics reveal 
additional patterns: an increase in geometric performance may be accompanied by 
changes in coverage uniformity, local redundancy, and the structural consistency of 
keypoints with the scene; therefore, for a comprehensive comparison, it is advisable to 
consider both groups of characteristics together. This focus on spatial structure aligns with 
modern approaches that examine keypoint stability and quality through clustering 
characteristics and spatial patterns; relevant studies highlight the importance of assessing 
detector properties beyond matching accuracy [19-21, 29]. 

The analysis of point selection strategies is also fundamental [30]. An exception is the 
SURF detector, where both strategies yielded nearly identical results. This occurs due to 
the specifics of the OpenCV implementation, which returns keypoints already sorted by the 
response magnitude linked to the Hessian measure 17]. 

The proposed metric Q enables comparison of detectors while accounting for the 
factors mentioned earlier. PCA was used as an initial validation tool and verified that the 
Q index aligns with the dominant direction of variability in the normalized metrics. A more 
detailed analysis of the component structure and loading stability is planned for future 
work.  

CONCLUSION  

This study offers a comprehensive evaluation of the SIFT, SURF, ORB, BRISK, 
KAZE, and AKAZE keypoint detectors on the HPatches dataset, using USAC to validate 
matches geometrically. It shows that assessing methods solely based on traditional 
geometric metrics - such as MMA, Repeatability, and Verification Ratio - does not fully 
capture the differences among detectors because it overlooks the spatial arrangement of 
keypoints. The proposed spatial-structural metrics, CUI, RI, and SCS, provide a 
quantitative description of frame coverage uniformity, local redundancy, and the 
consistency of keypoint distribution with scene structure, thereby enhancing standard 
accuracy analyses. 

The results showed that the selection strategy had a greater impact on detector 
behavior than the number of keypoints. Selecting keypoints by response strength 
consistently increased MMA, Repeatability, and Verification Ratio across all methods, with 
the strongest effects observed for SIFT, ORB, and BRISK. At the same time, the analysis 
of spatial characteristics demonstrated that not all detectors consistently achieve uniform 
scene coverage and structural consistency. The most balanced CUI, RI, and SCS values 
were recorded for KAZE and AKAZE; high values were also obtained for SURF, whereas 
ORB and BRISK were found to be more specialized toward corner-like structures and 
tended to form redundant, clustered point sets. 

The proposed Quality Index, which combines spatial and geometric metrics, enables 
the generalization of evaluation and comparison across detection methods. The KAZE and 
AKAZE detectors achieved the highest average Q values, with SURF ranked second. The 
high scores of these methods simultaneously ensure acceptable geometric accuracy, 
sufficient repeatability, and a spatial distribution of keypoints that is close to uniform. The 
performance of SIFT and BRISK was competitive in terms of Q values when keypoints 
were selected by response strength. The ORB method remained the least balanced 
according to the generalized Q indicator, despite significant improvements in matching 
accuracy after sorting keypoints by response. 

Principal component analysis indicated that the first component effectively 
summarized the variability of the metrics and was strongly correlated with the Q index, 
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thereby providing additional validation of the chosen approach. This result suggests that 
the proposed indicator accurately aggregates inlier-set properties and can serve as a 
general criterion for detector comparison in computer-vision tasks where both homography 
accuracy and scene coverage are essential. In future work, the conclusions should be 
verified on additional datasets and geometric models – notably the fundamental matrix – 
and the analysis should be extended to a broader range of imaging conditions, including 
illumination changes. 
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АНОТАЦІЯ 

Вступ. Локальні ознаки є важливими компонентами сучасних систем 
комп’ютерного зору, таких як SLAM та 3D-реконструкція. Традиційні підходи до 
оцінювання методів детекції зосереджуються переважно на геометричній точності та 
повторюваності, часто не враховуючи просторову структуру розподілу точок. Це 
ускладнює вибір алгоритму для задач, де важливими є рівномірність покриття кадру 
та відсутність надлишкової локальної кластеризації. Метою роботи є комплексне 
порівняння детекторів із використанням розширеного набору метрик, що враховують 
як геометричну коректність, так і просторові властивості ознак. 

Матеріали та методи. Дослідження проведено на наборі даних HPatches для 
шести детекторів: SIFT, SURF, ORB, BRISK, KAZE, AKAZE. Фільтрація особливих 
точок виконана методом USAC. Якість зіставлення оцінено за геометричними 
метриками MMA, Repeatability, Verification Ratio. Для просторового аналізу 
використано метрики CUI, RI та SCS. Для узагальненого порівняння методів детекції 
ключових точок запропоновано індекс якості Q, який об’єднує геометричні та 
просторові показники. 

Результати. Результати показали, що стратегія відбору точок за силою відгуку 
суттєво підвищує точність зіставлення для SIFT, ORB та BRISK, проте призводить 
до локальної надлишковості ключових точок. Результати методів KAZE та AKAZE 
продемонстрували найкращий баланс, забезпечуючи високу точність при 
рівномірному покритті сцени. Метод ORB виявився схильним до формування 
щільних скупчень у контрастних зонах, що знижує його структурну ефективність, тоді 
як SURF показав стабільно високі результати незалежно від стратегії відбору 
ключових точок. 

Висновки. Запропонований підхід до оцінювання забезпечує узгоджений аналіз 
геометричних і просторових властивостей детекторів ключових точок та показує, що 
за фіксованої кількості ключових точок на підсумкову якість методу істотно впливають 
не лише показники геометричної коректності відповідностей, а й характеристики 
просторового розподілу точок. Встановлено, що спосіб вибору особливих точок, 
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зокрема відбір точок за силою відгуку, систематично змінює як геометричні, так і 
просторові властивості. Індекс якості Q узагальнює ці аспекти в єдиному показнику та 
може застосовуватися для порівняння методів детекції у сценаріях, де потрібні 
одночасно надійні відповідності та збалансоване покриття сцени. 

Ключові слова: виявлення ознак, просторовий розподіл, геометричні метрики, 
співпадіння. 
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