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ABSTRACT

Background. Local features are essential components of modern computer vision
systems, such as SLAM and 3D reconstruction. Traditional evaluation protocols for
keypoint detection mainly focus on geometric accuracy and repeatability, often neglecting
the spatial structure of the point distribution. This complicates algorithm selection for
applications where uniform image coverage and the absence of excessive local clustering
are important. This work aims to conduct a comprehensive comparison of keypoint
detectors using an extended set of metrics that account for both geometric accuracy and
the spatial properties of features.

Materials and Methods. The study was conducted on the HPatches dataset using six
detectors: SIFT, SURF, ORB, BRISK, KAZE, and AKAZE. Keypoint filtering and geometric
verification of correspondences were performed using USAC. Matching quality was
assessed through the geometric metrics MMA, Repeatability, and Verification Ratio. Spatial
analysis used the metrics CUI, RI, and SCS. To compare keypoint detection methods, a
quality index Q was introduced that integrates geometric and spatial indicators.

Results and Discussion. The study showed that selecting points by response strength
significantly improves matching accuracy for SIFT, ORB, and BRISK, but may lead to local
redundancy of keypoints. KAZE and AKAZE demonstrated the best overall balance,
achieving high accuracy along with more uniform scene coverage. ORB tended to form
dense clusters in high-contrast regions, thereby reducing its structural effectiveness,
whereas SURF consistently delivered high performance regardless of the keypoint selection
strategy.

Conclusion. The proposed evaluation method allows a consistent analysis of the
geometric and spatial properties of keypoint detectors. It shows that, for a fixed number of
keypoints, the performance of the final method depends not only on the geometric accuracy
of matches but also on the features of the spatial point distribution. It was observed that the
keypoint selection process, especially response-based selection, systematically affects both
geometric and spatial characteristics. The Q quality index combines these aspects into a
single metric. It can be used to compare detection methods in scenarios that require both
reliable matches and well-balanced scene coverage.

Keywords: feature detection, spatial distribution, geometric metrics, image matching.

INTRODUCTION
Computer vision systems are widely used in navigation, 3D scene reconstruction,

visual tracking, and augmented reality [1-5]. In many of these applications, keypoints and
their descriptors play a central role in establishing correspondences between images. The
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quality of matching directly affects the accuracy of geometric model estimation, tracking
stability, and the reliability of subsequent processing stages. Therefore, objective
comparison of keypoint detectors remains relevant despite the large body of research in
this area.

Traditionally, detector performance is evaluated using repeatability, matching
accuracy, the inlier ratio after geometric verification, and the homography estimation error.
These measures characterize the stability of feature localization and the geometric
correctness of matches. At the same time, the spatial properties of keypoint sets are often
considered only to a limited extent: non-uniform image coverage, local clustering, or the
presence of “blind zones” can reduce the robustness of geometric estimates even when
the classical metrics remain acceptable. Some studies introduce coverage or uniformity
indicators; however, they are typically analyzed in isolation and not consistently linked to
geometric validation outcomes [6, 7].

An additional practical factor is the keypoint selection strategy when the number of
keypoints is limited. Selecting the “strongest” features by detector response can improve
matching accuracy, but it may also change the spatial profile of the keypoint set and its
structural consistency with the scene. A coherent set of metrics that simultaneously
accounts for geometric correctness and spatial-structural properties is therefore essential
for a well-grounded comparison of detection methods.

In this study, we propose a comprehensive evaluation scheme for keypoint detectors
that combines traditional geometric measures, namely MMA, Repeatability, Verification
Ratio, with spatial-structural metrics: Coverage Uniformity Index (CUI), Redundancy Index
(RI), and Scene Consistency Score (SCS). For an overall comparison, we introduce a
quality index Q that integrates geometric and spatial characteristics. Experiments are
performed on the HPatches dataset [8, 9] using detectors such as SIFT [10], SURF [11],
KAZE [12], AKAZE [13], ORB [14], and BRISK [15], with geometric correspondence
validation utilizing USAC [16].

MATERIALS AND METHODS

The experimental study was conducted on the HPatches dataset [8, 9]. This dataset
contains images of planar scenes with varying levels of geometric distortion, for which
ground-truth  homography matrices are available, enabling precise verification of
correspondences. HPatches provides two main types of sequences: viewpoint and
illumination. In this work, we analyze the viewpoint sequences. Twelve sequences were
selected: apprentices, azzola, busstop, cartooncity, dirtywall, london, posters, samples,
sunseason, tabletop, talent, and vitro, which contain enough keypoints for all considered
methods. For each image sequence, the original image and five images of the same scene
with progressively increasing viewpoint changes were used. The ground-truth
transformation between the reference image and each target image is a 3x3 projective
homography, which was used for overlap computation and geometric evaluation. For each
sequence, "reference image - current viewpoint" pairs were formed. Examples of image
sequences are presented in Fig. 1a, and the first images of all used sequences are shown
in Fig. 1b.

The study covers six algorithms for local feature detection and description: the floating-
point methods SIFT, SURF, and KAZE, and the binary methods ORB, BRISK, and AKAZE.
For each detector, the performance dependence on the number of keypoints is examined,
with the number of keypoints ranging from 500 to 4000 in increments of 500. To evaluate
how feature selection influences subsequent matching quality, two selection strategies
were compared:

e raw-order: Selection of the first N points in the order returned by the detection

method.
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Ref (1) Image 2

(b)
Fig. 1. Examples from the HPatches dataset: (a) the ‘vitro’ image sequence; (b) all scenes used in the
experiments.

e top-response: Sorting points by detector response strength, then selecting the top
N features with the highest response. This simulates a scenario where, under a
limited keypoint budget, priority is given to the strongest local structures. The
response for each method was calculated as follows [17]:
— SIFT: The amplitude of the extremum in the Difference of Gaussians (DoG)
pyramid, which correlates with contrast.

— SURF: The determinant of the Hessian matrix used for detecting "blob-like"
structures.

— ORB and BRISK: Metrics based on the Harris corner detector for ORB and on
AGAST for BRISK.

— KAZE and AKAZE: The determinant of the Hessian matrix calculated in a
nonlinear scale space, which better preserves object boundaries than traditional
Gaussian blurring.

Matching was performed using the Brute-Force method, searching for the two nearest
neighbors in descriptor space. Euclidean distance was used for SIFT, SURF, and KAZE
descriptors, while Hamming distance was applied for ORB, BRISK, and AKAZE.
Preliminary filtering involved Lowe’s ratio test with a threshold of 0.75 [10].

Geometric verification was conducted using the USAC_DEFAULT method with a
homography model and a 3-pixel threshold [16, 18]. Based on the USAC results, an inlier
mask was extracted, allowing the separation of points consistent with the global projection.
In this experiment, spatial metrics were computed for all detected points and inliers after
filtering, enabling comparison of detector properties before and after geometric verification
of correspondences.

The Coverage Uniformity Index quantitatively assessed the uniformity with which
points covered the image plane. The image plane was divided into a regular grid of M =
8 X 8 = 64 rectangular cells. For each set of points, the number of keypoints Nj in the i cell
was counted, and a normalized distribution was formed.

N;
—_ 1
pl N; ( )
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where N is the total number of points.
The obtained empirical distribution is compared with a perfectly uniform distribution,
representing a scenario where each cell contains an equal proportion of keypoints:

u; = M (2)

The total variation distance measures the deviation between p; and u;, and the CUI
is defined as:

M
1
cUIl =1 _Ele" —w;|, culelo,1]. (3)
i=1

CUI values close to 1 correspond to almost uniform image coverage, while low values
indicate an intense concentration of keypoints in a few cells. Conceptually, this metric is
based on the coverage evaluation method proposed in [6], in which the spatial distribution
of keypoints complements repeatability in assessing detector quality.

The Redundancy Index was used to measure the local redundancy of keypoints. The
need to control redundancy is driven by the fact that traditional detector quality metrics can
be biased toward methods that produce spatially overlapping or overly dense detections
[19, 20]. Such behavior can result in misleadingly high precision values. Additionally, recent
research on redundancy removal techniques has demonstrated that explicitly considering
local density and distances between points helps reduce descriptor duplication and
improves overall image registration efficiency [20, 21], supporting the goal of the proposed
evaluation.

The RI calculation was performed for the set of points P = (xi,yl-)’iv_l on the image of
size W X H. To eliminate the dependence on the resolution, the coordinates of the points

were normalized to the unit square [0, 1]2:

X _ Vi
“w V7w )

Next, for each point (X, 3,), the number of neighbors within a normalized radius r was
counted. The radius is defined as a fraction of the unit square diagonal:

r=pV2, )]

where p = 0.02, and the factor V2 represents the diagonal of the unit square [0.1]?, giving
an interpretable definition of the local neighborhood. The choice of the p coefficient is based
on its representing the typical size of a descriptor's support region, which helps identify
points with strongly correlated vector descriptions due to significant spatial overlap.

Local redundancy was evaluated with the saturation function:

. <ni —1 1> ©)
C; = min , 1,
' Kref

where K. = 15, reflecting the empirical limit of information saturation: a concentration of
more than 15 points within a single patch does not enhance the geometric model
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estimation, for which 4-8 points are enough, but it only adds unnecessary computational
load during the matching process.
The global RI score was calculated by averaging the local values:

N
1
RI:NZ c;, RI€J0,1]. (7)
i=1

High RI values indicate strong local clustering, while low values suggest sparse and
unique point arrangements.

In addition to evaluating spatial uniformity, an essential aspect of the analysis is the
detector's ability to adapt to the scene's semantic content, as shown in Fig. 2. Traditional
methods often exhibit a bias toward certain feature types, such as corners, while neglecting
other informative elements in the image; this can lead to data loss when reconstructing
scenes with complex geometry. To examine this criterion, an automatic image
segmentation procedure was developed to categorize the image into three structural
classes: high-contrast corner/texture regions T, contour/edge regions C, and
homogeneous regions F. Reference masks are generated from gradient analysis [22-24].
The corner mask T is generated using the Harris detector, followed by Gaussian blur and
thresholding at the 97.5th percentile of response. The Canny detector produces the edge
mask C and excludes pixels already included in mask T. The mask F consists of pixels with
low Sobel gradient magnitude = below the 25th percentile that do not intersect with T and
C. This method ensures the mutual exclusivity of these sets, enabling the unique
classification of each image region.

Original Gray

T Mask (Corners/High-Tex)

0 - D)

Fig. 2. Structural masks for scene analysis: (A) original image; (B) texture/corner mask T; (C) contour/edge mask
C; (D) homogeneous (flat) mask F.
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Based on the obtained masks, the relative areas were calculated:

VRN L S ) I Ll ®)
T7HwW "¢ HW TFT HW
where H and W represent the image size, and | - | is the number of pixels in the corres-

ponding mask. Then, the areas were normalized within the structural part of the image:

ar ac ar
T YT g ap =g 9
Str Str Str

AStT‘ =ar + aC + ar, ar =

For a given set of keypoints, the number of points falling into each mask (nr, ng, ng)
was counted, and then the proportions were calculated:

nr ne ng
Be=—" Br=— 10
Nger Nty (10)

Ngtr = Np + N¢ + N, BT:n )
str

The consistency score of the keypoint distribution with the scene structure was defined
as the complement of the total variation distance between a and g [71:

1
SCsS =1 _E(lﬁT —ar| + B¢ —acl + |Br —agl), SCS €[0,1]. (11)

Scene Consistency Score values close to 1 indicate that keypoints appropriately cover
structural types in proportion to their actual presence in the scene. In contrast, lower values
indicate a systematic bias, such as an excessive concentration on contours or a dominance
of detections in texture or corner regions.

To evaluate classical performance metrics, standard protocols used in the HPatches
benchmark [8, 9] were applied.

Repeatability was only calculated within the common overlap region of the images. A
point x in the first image was considered repeatable if, after being projected through
homography H,_,, into the second image, there was a point x within € = 3 pixels of the
projected position n(H;_,,Xx). To prevent multiple counts of the duplicate detection, "one-
to-one" matching was employed [25, 26].

Mean Matching Accuracy was calculated on the set of points that passed Lowe's ratio
test [10]. The MMA value was defined as the ratio of correct matches, with a reprojection
error T = 3 in pixels, relative to the Ground Truth homography among all detected pairs
[8].

To evaluate the efficiency of keypoint use, the Verification Ratio was employed. Unlike
MMA, it is not based on the true homography, but on the results of filtering using the USAC
method.

VR = Ninliers, (12)
Ntotal

where N, iiers i the number of points consistent with the found geometric model, N¢ytq; is
the total number of detected points.

For a comprehensive comparison of detectors based on geometric and spatial-
structural quality, an integral Quality Index (Q) was formulated. Its construction is based on
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a weighted linear combination of two aggregated components: the geometric component
G and the structural-spatial component S.

The geometric component G characterizes the accuracy of correspondence
establishment. It is defined as the arithmetic mean of the normalized values of repeatability,
matching accuracy, and verification ratio obtained after the filtering stage:

1
G =5 (MMA._s + Rep.—; + VR). (13)

The structural-spatial component S evaluates scene coverage quality and the
detector's adaptation to scene content by combining metrics such as structural consistency,
distribution uniformity, and local redundancy:

1
S = §(CU1filt + (1 = Rlgye)? + SCSpuy ), (14)

where (1 — Rlﬂlt)2 indicates a preference for low local redundancy on a [0, 1]? scale, and
its quadratic form emphasizes differences between sets with moderate and high local
redundancy while also diminishing the influence of small RI values in the low redundancy
range.

The weighting coefficients were assigned according to the golden ratio principle [27].
Since geometric accuracy is essential for most computer vision tasks, it was assigned a
higher weight of 0.62, whereas structural-spatial quality is an additional important factor
with a weight of 0.38.

Q=062-G+0.38-5S. (15)

The validation of the quality index is performed by analyzing the correlation between
the Q values and the first principal component PC1, obtained via PCA [28] for all metrics,
which allowed verifying the consistency of the proposed integral indicator with the
multidimensional data structure.

The standard HPatches protocol is used for Repeatability, MMA, and Verification Ratio
[8,9]. CUI adopts the coverage concept from [6] in a grid-based form. RI, SCS, and the
Quality Index are introduced in this study. Masks are computed using classical Harris,
Sobel, and Canny operators [22-24], whereas T/C/F partitioning and normalization are
defined in this work.

RESULTS AND DISCUSSION

The analysis of the Coverage Uniformity Index in Fig. 3 shows that, for all detectors,
coverage uniformity improves as the quantity of keypoint N increases. After USAC
geometric validation, CUls;;; values are consistently lower than CUI,, because inliers
form a more selective subset of correspondences. For KAZE and AKAZE, top_response
provides noticeably more uniform coverage even at low keypoint counts; as N increases,
both modes converge, reaching high CUI,.,,, values of about 0.65-0.70 at N = 4000. After
filtering, these two methods maintain some of the best CUIy;;; values among the detectors,
around 0.40-0.45 for large N.

For SIFT and BRISK, selecting the strategy has the most significant impact: switching
to top_response significantly increases CUI, even for small N. For SIFT at N = 500, CUI,.,,,
the value rises from 0.16 to 0.47, and this improvement persists across the entire keypoint
range. After USAC filtering, CUI values decrease, but the difference between methods
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CUI Analysis: Raw vs Filtered
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Fig. 3. Average CUI vs. the number of keypoints for raw sets (left) and filtered (right) across detectors under two
selection strategies: A) AKAZE; B) BRISK; C) KAZE; D) ORB; E) SIFT; F) SURF.

remains steady, showing a more uniform spatial distribution of inliers with the top_response
approach.

A different pattern appears for ORB: on unfiltered points, the raw_order mode yields
a higher CUI, but after filtering, the difference between modes diminishes and shifts in
favor of top_response. SURF shows the most consistent behavior: CUI is independent
of the selection mode, indicating that the detector returns values already sorted by
top_response, with CUI,,,, values staying high at around 0.6 or above for all N. After
filtering, SURF also maintains some of the highest CUI;;, values, approximately 0.47 at
N = 4000. In conclusion, SURF offers the best average uniform coverage, followed by
KAZE and AKAZE. SIFT and BRISK rank next, for which the top_response mode is
essential for achieving high CUI.

The results of the Redundancy Index metric in Fig. 4 show that as the number of
keypoints increases, local redundancy tends to grow for most detectors in the unfiltered set
RI, 4, This indicates a tendency for points to densify within the "strongest" local structures.
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RI Analysis: Raw vs Filtered
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Fig. 4. Average RI vs. the number of keypoints for raw sets (left) and filtered (right) across detectors under two
selection strategies: A) AKAZE; B) BRISK; C) KAZE; D) ORB; E) SIFT; F) SURF.

The highest RI,.,,, values are observed for SIFT and BRISK in raw_order mode, averaging
approximately 0.94 and 0.93 across the entire range, which suggests pronounced
clustering. Switching to top_response for these methods significantly changes RI values,
reducing redundancy to around 0.72 for SIFT and 0.77 for BRISK. This indicates that
selecting keypoints based on response produces a “sparser” point distribution.

For AKAZE, KAZE, and SURF, the unfiltered RI,,,, values are lower, generally
ranging from 0.65 to 0.75. The effect of top_response is weaker and depends on the
method: for KAZE, changes are minimal, while for AKAZE, selecting by response slightly
decreases redundancy. In contrast, for ORB, the opposite trend occurs: top_response
increases local clustering even at the Rl,,,, level, averaging about 0.89 versus 0.80 for
raw_order, which is consistent with ORB's tendency to concentrate points in a limited set
of corner or high-contrast regions.

After filtering, Rl decreases significantly and shifts to a range characteristic of

moderate inlier density, mainly between 0.2 and 0.4, indicating the selection of more
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structurally consistent and spatially "cleaned" matches. AKAZE and SURF show the lowest
inlier values, approximately 0.24 for raw_order and 0.24 for SURF in both modes. For
AKAZE, top_response increases Rlg;; by about 0.32, indicating that inliers remain
relatively sparse. Conversely, for ORB, the top_response mode substantially increases
inlier redundancy: Rlg;;, rises from approximately 0.20 to 0.43, indicating denser local
clusters even after geometric verification. Overall, the RI results suggest that the keypoint
selection strategy can significantly alter the local structure of the set: for SIFT and BRISK,
top_response reduces redundancy, whereas for ORB it enhances clustering, particularly at
the inlier level.

Fig. 5 shows the dependencies of the Scene Consistency Score. For the selected
HPatches scenes, the average area proportions of structural zones ar = 0.083, ar =
0.278, and ar = 0.639, indicating that low-texture regions are predominant on average.
Under these conditions, SURF exhibits the highest consistency in the inlier distribution
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Fig. 5. Average SCS vs. the number of keypoints for raw sets (Ieft) and filtered (right) across detectors under two
selection strategies: A) AKAZE; B) BRISK; C) KAZE; D) ORB; E) SIFT; F) SURF.
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aligned with the scene structure: SCS values remain high, at approximately 0.83 before
filtering and 0.79 after filtering. High values are also typical of KAZE and AKAZE, especially
in the top_response mode, where SCS;;, stays around 0.73-0.74.

In contrast, ORB and BRISK have the lowest SCS values, averaging 0.3 and 0.4
before filtering, and 0.2-0.25 after USAC processing, indicating a significant discrepancy
between scene structure and the actual inlier distribution. For SIFT, a pronounced
dependence on the selection strategy is observed: in raw_order, SCS,,,, it remains
relatively high at approximately 0.65, whereas top_response reduces consistency to
approximately 0.4, and the advantage of raw_order persists after filtering.

The interpretation of these differences is supported by the structural analysis in
Fig. 6, where the proportions 1, ¢, Br are compared before and after filtering and for
the two keypoint selection strategies. For ORB and BRISK, inliers are sharply skewed
toward corner/texture zones: 31 reaches approximately 0.8-0.9, while the contribution of
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Fig. 6. Average Structure Composition vs. the number of keypoints for raw sets (left) and filtered (right) across
detectors under two selection strategies: A) SIFT; B) ORB; C) AKAZE; D) BRISK; E) KAZE; F) SURF.
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homogeneous regions S is minimal; this effect is more potent in top_response, and for
ORB, it persists even after USAC processing. For SIFT, the top_response mode also
causes a shift toward corner structures, which is consistent with the decline in SCS
values. In contrast, KAZE, AKAZE, and SURF produce values with a significant
proportion of low-texture regions Sz and moderate contributions from fSr and B, with
their proportions changing only slightly after filtering. It is precisely this stability and
structural "neutrality” that corresponds to the high SCS values observed across a wide
range of keypoint counts.

Fig. 7 presents the MMA values, which indicate the percentage of matches that agree
with the Ground Truth homography within a 3-pixel threshold. Two main patterns are
observed across most detectors: in raw_order mode, MMA values increase with the
number of keypoints, and switching to top_response consistently yields higher MMA values
at lower keypoint counts than raw_order.

SIFT and ORB show the most substantial reliance on top_response. Even at N = 500,
MMA scores increase from 0.27 to 0.75 for SIFT and from 0.41 to 0.66 for ORB,
demonstrating that selecting by response significantly boosts the number of geometrically
correct matches at low keypoint counts. When averaged across all N, this is reflected in an
increase in MMA from approximately 0.55 to 0.75 for SIFT and from 0.54 to 0.71 for ORB.
For AKAZE, KAZE, and BRISK, this effect is also present but less marked. Their mean
values climb from roughly 0.64 to 0.76 for AKAZE, from 0.71 to 0.76 for KAZE, and from
0.72 to 0.80 for BRISK. The MMA scores for SURF stay around the 0.7 range.
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Fig. 7. Average MMA vs. the number of keypoints across detectors under two selection strategies: A) SIFT;
B) ORB; C) AKAZE; D) BRISK; E) KAZE; F) SURF.
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Overall, the MMA results confirm that selecting keypoints by response enhances the
geometric correctness of matches across all methods, with SIFT and ORB showing the
greatest sensitivity to the selection strategy.

Fig. 8 shows the Repeatability values, which measure the proportion of keypoints with
a matching detection in the paired image within a 3-pixel threshold in the overlap region.
Across all detectors, repeatability increases with the number of keypoints; most methods
show the most significant improvements at low N values, then gradually level off.

KAZE exhibits the most consistent behavior, maintaining high repeatability levels
around 0.55-0.60 across nearly all values of N, with minimal dependence on the point
selection method. This suggests strong keypoint repeatability in viewpoint change tasks.
BRISK and AKAZE achieve similar performance levels, although the effect of the selection
strategy is more pronounced for BRISK. Switching to top_response consistently boosts
repeatability, particularly at lower keypoint counts, reaching about 0.58-0.62 at larger N.
SURF shows moderate yet highly stable repeatability, roughly in the range of 0.48-0.52.

In raw order mode, SIFT exhibits lower Repeatability, with values ranging from 0.25
to 0.38 across the entire set of keypoints. Nevertheless, selection based on the top
response consistently improves the metric, raising it to approximately 0.42-0.50. Regarding
ORB, the influence of top response is most significant at low keypoint counts, with a
noticeable increase between N=500 and N=1500. Conversely, at higher keypoint counts,
the disparity between the modes diminishes substantially, with both curves converging to
approximately 0.57-0.59.
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Fig. 8. Average Repeatability vs. the number of keypoints across detectors under two selection strategies:
A) SIFT; B) ORB; C) AKAZE; D) BRISK; E) KAZE; F) SURF.

EnekTpoHika Ta iHpopmaUinHi TexHonorii « 2025 « Bunyck 32 79



Andriy Fesiuk & Yuriy Furgala

Overall, KAZE demonstrates the highest repeatability. Additionally, top_response
primarily improves repeatability for SIFT, AKAZE, and BRISK at low keypoint counts,
without altering the overall ranking of the methods.

Fig. 9 shows the dependencies of the Verification Ratio (VR). For most detectors, VR
rises with the number of keypoints in the raw_order mode, while top_response consistently
yields higher values even at small N, causing the curves to saturate early.

The highest VR values are observed for KAZE and SIFT in the top_response mode,
at approximately 0.21-0.23. AKAZE also exhibits a comparable top_response of
approximately 0.2, whereas in raw_order, the values are noticeably lower. For BRISK,
the effect of selection by response is particularly pronounced at small N values: VR
increases from about 0.09 to 0.17, after which the difference between the selection
methods gradually decreases as N increases. ORB remains the least effective according
to the VR metric; even in top_response, values are around 0.11-0.12, indicating a smaller
proportion of points supporting a common homography under the conditions of various
HPatches scenes. SURF stands out, with VR values remaining relatively high, though
they show a moderate downward trend as the number of keypoints increases, from
approximately 0.20 to 0.17. Overall, the best results under top_response are achieved
by KAZE and AKAZE, whereas ORB exhibits the lowest proportion of geometrically
verified points.
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Fig. 9. Average Verification Ratio vs. the number of keypoints across detectors under two selection strategies:
A) SIFT; B) ORB; C) AKAZE; D) BRISK; E) KAZE; F) SURF.
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Fig. 10 illustrates the dependencies of the Quality Index, which includes the geometric
and spatial components. The overall trend is moderate: the influence of the number of
keypoints on the Q value is less significant than that of the detector choice and the point
selection strategy.
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Fig. 10. Average Quality Index vs. the number of keypoints across detectors under two selection strategies:
A) SIFT; B) ORB; C) AKAZE; D) BRISK; E) KAZE; F) SURF.

The highest Q values are achieved by the KAZE and AKAZE methods in the
top_response mode, with averages of 0.526 and 0.524, respectively. The next best method
is SURF, with an accuracy of approximately 0.51. For SIFT, the transition from raw_order
to top_response yields a substantial increase in Q, from approximately 0.37 to 0.46,
consistent with the simultaneous improvement in geometric and spatial characteristics in
this mode. BRISK achieves an intermediate quality level of approximately 0.4 for raw_order
and 0.45 for top_response. In contrast, ORB has the lowest Q values of approximately 0.36
and 0.39, respectively, reflecting limitations in both the proportion of geometrically verified
correspondences and instructural-spatial metrics.

To verify the consistency of the Q, Principal Component Analysis (PCA) [28] was
conducted on the MMA, Repeatability, VR, CUlf;;, SCSgi¢, and Rlg;, metrics. The first
principal component, PC1, accounted for approximately 56% of the total variance and
had positive loadings of similar magnitude across all measures, with the largest
contributions from VR, CUI, and MMA. The correlation between Q and PC1 was
approximatelyFinal_5 Article_text r=0.91, suggesting that the proposed index
effectively captures the main latent "axis" of quality derived by the principal component
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method. This further confirms the correctness of the selected metrics and their weights
in the Q formula.

The results obtained show that evaluating detectors solely on standard geometric
metrics does not always capture differences in the spatial organization of keypoints, which
significantly affect the suitability of the correspondence set. Spatial metrics reveal
additional patterns: an increase in geometric performance may be accompanied by
changes in coverage uniformity, local redundancy, and the structural consistency of
keypoints with the scene; therefore, for a comprehensive comparison, it is advisable to
consider both groups of characteristics together. This focus on spatial structure aligns with
modern approaches that examine keypoint stability and quality through clustering
characteristics and spatial patterns; relevant studies highlight the importance of assessing
detector properties beyond matching accuracy [19-21, 29].

The analysis of point selection strategies is also fundamental [30]. An exception is the
SURF detector, where both strategies yielded nearly identical results. This occurs due to
the specifics of the OpenCV implementation, which returns keypoints already sorted by the
response magnitude linked to the Hessian measure 17].

The proposed metric Q enables comparison of detectors while accounting for the
factors mentioned earlier. PCA was used as an initial validation tool and verified that the
Q index aligns with the dominant direction of variability in the normalized metrics. A more
detailed analysis of the component structure and loading stability is planned for future
work.

CONCLUSION

This study offers a comprehensive evaluation of the SIFT, SURF, ORB, BRISK,
KAZE, and AKAZE keypoint detectors on the HPatches dataset, using USAC to validate
matches geometrically. It shows that assessing methods solely based on traditional
geometric metrics - such as MMA, Repeatability, and Verification Ratio - does not fully
capture the differences among detectors because it overlooks the spatial arrangement of
keypoints. The proposed spatial-structural metrics, CUI, RI, and SCS, provide a
quantitative description of frame coverage uniformity, local redundancy, and the
consistency of keypoint distribution with scene structure, thereby enhancing standard
accuracy analyses.

The results showed that the selection strategy had a greater impact on detector
behavior than the number of keypoints. Selecting keypoints by response strength
consistently increased MMA, Repeatability, and Verification Ratio across all methods, with
the strongest effects observed for SIFT, ORB, and BRISK. At the same time, the analysis
of spatial characteristics demonstrated that not all detectors consistently achieve uniform
scene coverage and structural consistency. The most balanced CUI, RI, and SCS values
were recorded for KAZE and AKAZE; high values were also obtained for SURF, whereas
ORB and BRISK were found to be more specialized toward corner-like structures and
tended to form redundant, clustered point sets.

The proposed Quality Index, which combines spatial and geometric metrics, enables
the generalization of evaluation and comparison across detection methods. The KAZE and
AKAZE detectors achieved the highest average Q values, with SURF ranked second. The
high scores of these methods simultaneously ensure acceptable geometric accuracy,
sufficient repeatability, and a spatial distribution of keypoints that is close to uniform. The
performance of SIFT and BRISK was competitive in terms of Q values when keypoints
were selected by response strength. The ORB method remained the least balanced
according to the generalized Q indicator, despite significant improvements in matching
accuracy after sorting keypoints by response.

Principal component analysis indicated that the first component effectively
summarized the variability of the metrics and was strongly correlated with the Q index,
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thereby providing additional validation of the chosen approach. This result suggests that
the proposed indicator accurately aggregates inlier-set properties and can serve as a
general criterion for detector comparison in computer-vision tasks where both homography
accuracy and scene coverage are essential. In future work, the conclusions should be
verified on additional datasets and geometric models — notably the fundamental matrix —
and the analysis should be extended to a broader range of imaging conditions, including
illumination changes.
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KOMIMJIEKCHE NPOCTOPOBO-TrEOMETPUYHE OLIHIOBAHHA
AETEKTOPIB KNOYOBUX TOYOK

AHOpiii ®ecrok* 0O, IOpiii ®ypeana 2O

®DaKyrnbmem efekmpoHiKU ma KOMITIomepHUX mexHonoait
JibeiecbKuli HayioHanbHUl yHieepcumem iMeHi IsaHa ®paHka,
syn. [pazomaHosa 50, 79005 Jibeie, YkpaiHa

AHOTALIA

Bectyn. JlokanbHi 0O3Hakm € BaXIMBUMU KOMMOHEHTaMM Cy4aCHUX CUCTEM
KOMM'toTepHoro 3opy, Takmx sk SLAM Ta 3D-pekoHcTpykuis. TpaguuiniHi nigxogn Ao
OUiHIOBaHHA MeToAiB AeTeKUil 30cepeaxytoTbCa NepeBaXHO Ha reOMeTPUYHIN TOYHOCTI Ta
NMOBTOPIOBAHOCTI, 4acTo He BPaxOBYKUW MPOCTOPOBY CTPYKTYpYy po3noginy Touok. Lle
ycknagHioe B1Gip anropuTmy Ans 3agad, Ae BaXNMBMMM € PiIBHOMIPHICTb MOKPUTTS Kaapy
Ta BIACYTHICTb HaAMMWLLKOBOI FOKanbHOI knactepusadii. Metoo pobotn € komnnekcHe
MOPIBHAHHSA OETEKTOPIB i3 BUKOPUCTAHHAM PO3LUMPEHOro Habopy MEeTpPUK, Lo BPaxoByloTb
SIK FEOMETPUYHY KOPEKTHICTb, TaK i NPOCTOPOBi BTACTUBOCTI O3HAK.

Matepianu Ta metoau. [ocnigxeHHs npoBedeHo Ha Habopi gaHux HPatches gns
wectn getektopie: SIFT, SURF, ORB, BRISK, KAZE, AKAZE. ®inbTpauis ocobnusmx
TOYOK BMKOHaHa MeTogom USAC. AkicTb 3icTaBneHHS OUIHEHO 3a reoMEeTPUYHUMU
meTpukamu MMA, Repeatability, Verification Ratio. [Ona npoctopoBoro aHanisy
BukopuctaHo metpuku CUI, Rl ta SCS. [Ins y3aranbHeHOro nopiBHAHHA METOAIB AeTekuii
KITFOYOBMX TOYOK 3arporoHOBaHO iHOEKC sKOoCTi Q, skui o6’eaHye reoMeTpudHi Ta
NPOCTOPOBI NOKa3HUKN.

Pe3ynbtatu. Pesynbtaty nokasanu, wo ctpareris Bigbopy TO4OK 3a CUINO BiAryky
CYTTEBO NiABULLYE TOYHICTb 3icTaBneHHa ana SIFT, ORB ta BRISK, npote npussoantb
[0 nokanbHOI HaAMULKOBOCTI Krto4oBUX Todok. Pesynbtatu metoais KAZE ta AKAZE
NPOAEMOHCTPYBanu Haulkpawmi GanaHc, 3abe3nedyouM BUCOKY TOYHICTb  Npwu
piBHOMipHOMY nokpuTTi cueHn. Metog ORB BuSIBUBCS CXUMbHUM A0 (pOpMyBaHHS
LLMTbHUX CKYNMY€EHb Y KOHTPACTHUX 30HaX, LLIO 3HUXKYE MOro CTPYKTYPHY €(PEKTUBHICTb, TOAI
sk SURF nokasaB cTabinbHO BMCOKI pe3ynbTaTu He3amnexHo Big cTpaTterii Biabopy
KITHOYOBMX TOYOK.

BucHoBkN. 3anponoHoBaHWUi Nigxia 4O OUiHOBaHHSA 3abe3nevye y3romKeHUn aHania
reoMeTpU4HUX i MPOCTOPOBMX BNACTUBOCTEN OETEKTOPIB KNIOYOBMX TOYOK Ta Mokasye, Lo
3a (hiKCOBaHOI KifbKOCTi KNKOYOBUX TOYOK Ha NiACYMKOBY SIKICTb MeToAy iCTOTHO BMMMBaOThb
He nuLie NOKa3HWKU reoMeTpUYHOI KOPEKTHOCTI BiANOBiAHOCTEN, a N XapaKTepUCTUKK
NPOCTOPOBOrO pPo3rnoginy To4yok. BcTaHoBneHo, wo cnocié BuGopy ocobnmMBux TOYOK,
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30Kpema Bigbip TOYOK 3a CuUIOK BiAryKy, CUCTEMATUYHO 3MIHIOE SIK rEeOMETPUYHI, TaK i
NPOCTOPOBi BNAaCTMBOCTI. IHAEKC AKOCTi Q y3aranbHIE Ui acnekTu B €AMHOMY MOKa3HUKY Ta
MOXe 3acCTOCOBYBaTWUCSl AN MOPIBHSHHA METOAIB AeTeKuii y cueHapisx, e NoTpibHi
O[HOYaCHO HafilnHi BigNoBIAHOCTI Ta 36anaHcoBaHe NOKPUTTS CLEHN.

Knro4oei crioga: BUABMEHHA O3HaK, MPOCTOPOBUM PO3NOAiN, reOMETPUYHI MEeTPUKU,
cniBnagiHHs.
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