
Electronics and Information Technologies, 2025, 32, 39–54
http://publications.lnu.edu.ua/collections/index.php/electronics/index

© 2025 Vasyl Lyaskevych. Published by the Ivan Franko National University of Lviv on behalf of
Електроніка та інформаційні технології / Electronics and Information Technologies. This is an Open
Access article distributed under the terms of the Creative Commons Attribution 4.0 License which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly
cited.

ISSN 2224-088X (print) • ISSN 2224-0888 (on-line) 39

UDC: 004.04

SUSTAINABLE OPTIMIZATION OF CONSOLIDATED DATA PROCESSING

ALGORITHMS BASED ON MACHINE LEARNING AND GENETIC

ALGORITHMS

Vasyl Lyashkevych
Ivan Franko National University of Lviv,

50 Drahomanova St., 79005 Lviv, Ukraine

Lyashkevych, V.Y. (2025). Sustainable Optimization of Consolidated Data Processing Algorithms
Based on Machine Learning and Genetic Algorithms. Electronics and Information Technologies, 32,
39–54. https://doi.org/10.30970/eli.32.3

ABSTRACT

Background. Automation of analytical report generation in industrial companies is
gaining strategic importance due to the variety of document formats, increasing data
volumes, and growing requirements for the rapid generation of multi-component analytical
materials. Traditional ETL pipelines cannot cope with the complexity of modern information
flows, especially when machine learning (ML), large language models (LLMs), and agent
systems are integrated into the process. Due to the rapid progress of code generation and
autonomous agent capability to perform complex analytical procedures, the task of
automatically constructing reporting pipelines is becoming increasingly promising and
scientifically sound.

Materials and Methods. An evolutionary model for constructing algorithms for
processing consolidated reports based on genetic algorithms (GA) is proposed. For report
generation, the algorithm defines a pipeline for constructing a visual component. The
population grows as a tensor, enabling parallel evolution of a set of independent workflows.
The operations are classified into four groups: ETL, ML, LLM, and VIS. The fitness function
evaluates the constant length of the pipeline, the coverage of key types of operations, and
their structural consistency.

Results and Discussion. Experimental results have shown that GAs rapidly evolve from
random NOP-dominated structures to stable, logically consistent, and functional pipelines
with a duration of 10-14 operations. The best chromosomes formed three full-fledged visual
components: a predictive regression model, semantic clustering represented by
embeddings, and a categorical diagram. This evolutionary pattern confirms that combined
pipelines can be built automatically and adaptively, and the increase in the complexity of
operations in the “meaning” space, which is the vector space of embedding, along with the
development of code generation and agent architectures.

Conclusion. The proposed model demonstrates an effective mechanism for automated
synthesis of multi-visual reports based on evolutionary pipelines. The method's prospects
grow with the development of AI agent systems and the increase in the number of operations
in the content space, which paves the way for a complete system of autonomous analytical
reporting of a new generation.

Keywords: consolidated data, sustainable optimization, machine learning, genetic
algorithms, LLM, data analytics

http://publications.lnu.edu.ua/collections/index.php/electronics/index
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.30970/eli.32.3
https://orcid.org/0000-0003-2810-6061
mailto:vasyl.liashkevych@lnu.edu.ua

 Vasyl Lyashkevych

40 Electronics and Information Technologies • 2025 • Issue 32

INTRODUCTION

In modern information ecosystems, where industrial companies operate with large
volumes of heterogeneous data, there is a growing need not only for the automation of
analytical processes, but also for sustainable approaches to optimizing consolidated data
(CD) processing. The sustainability of algorithms refers to their ability to remain effective
as formats change, workload increases, data sources expand, and business requirements
evolve [1-2]. CD processing includes extraction, transformation, semantic structuring, and
information integration that requires adaptive intelligent mechanisms capable of
maintaining long-term stability, minimizing costs, and ensuring scalability in dynamic
environments [3].

In this context, a combination of ML methods and GAs proves to be effective. In
AutoML systems, GAs are successfully used to optimise hyperparameters, select models,
create and reduce pipelines, and dynamically adjust their structure [4-7]. Due to the ability
of evolutionary algorithms to search for optimal configurations in large solution spaces, their
integration into industrial report processing tasks looks natural and promising. They will not
be able to build evolutionary-adaptive pipelines that maintain system stability, adapt to the
emergence of new formats, and minimise operational costs [8].

In conditions of a global economy, industrial and commercial enterprises interact with
a wide network of suppliers and customers. It generates complex and highly variable data
flows. Data comes in hundreds of disparate formats such as spreadsheets, PDFs,
presentations, graphical reports, scanned forms, and hybrid structures. Usually, they vary
significantly in terms of language, structure, and content. Automating such processing
becomes a critical task to ensure consistency and quality of corporate analytics. Current
research demonstrates the effectiveness of using LLMs, vector and graph databases [9-
11], multi-agent systems [12-13], ML, deep learning (DL), and reinforcement learning (RL)
methods [14-16], as well as evolutionary and GAs [6-7, 17] for optimizing ETL pipelines
and analytical processes.

A separate research direction involves combining LLM with vector databases to
enhance the quality of semantic search, classification, and context analysis [9]. Other works
emphasise the potential of graph databases in combination with multi-agent architectures
for implementing multi-step logical inference [13]. Research on optimising ETL processes
using ML/RL suggests the possibility of dynamically adapting pipelines, detecting
anomalies, and automatically selecting transformations [16, 18].

Considerable scientific interest is also associated with the role of LLMs in performing
analytical operations in the “meaning space.” The work [19] demonstrated that LLMs are
capable of performing interpretive, logical, statistical, and arithmetic operations without the
use of hard-coded algorithms, operating on data in the semantic (“meaning”) space. This
opens opportunities for building flexible, dynamic exploratory data analysis (EDA)
processes without predefined pipelines, which is especially important in conditions of a
wide variety of report formats and changing requirements.

Despite these advances, industrial reporting systems face several unresolved
challenges:

1. A growing variety of formats, over a hundred or more;
2. The need to simultaneously extract transactional, contextual, and semantic

data;
3. High demands on accuracy, consistency, and robustness of etl processes;
4. The need to generate new reports with different types of visualisations;
5. The need for adaptive pipeline evolution in response to the dynamics of formats

and business requirements demanded in the market.
A particular problem is the high cost and instability of real experiments in an industrial

environment. Testing different combinations of ETL operations, ML/LLM modules, and
pipeline structures requires significant resources and time, and can lead to quality losses

Sustainable Optimization of Consolidated Data…

Електроніка та інформаційні технології • 2025 • Випуск 32 41

or failures in productive systems. Therefore, there is a need for preliminary modelling using
a simulation environment that allows for evaluating the effectiveness of various
configurations without their physical implementation.

In this context, GAs are a natural tool for modelling, optimizing, and adaptively evolving
report processing pipelines. Their strength lies in the fact that:

1. ETL, ML, and LLM operations can be represented as genes, and the pipeline as
a chromosome.

2. GA allows for minimizing the number of operations while maintaining or improving
the quality of the results.

3. GAs provide the search for the optimal sequence of operations according to
contextual variables and requirements such as accuracy, time, resources, quality
of the final report, required visuals, and others.

4. GAs allow for simulation of the system before its actual implementation and
deployment, reducing risks and costs.

5. GAs naturally adapt to the emergence of new formats and new types of
operations.

As mentioned, GAs are successfully used in AutoML systems, so there is a reasonable
scientific expectation that, in the context of the current task, with the extraction of
transactional, contextual, and semantic data from heterogeneous reports, the application
of GAs will be extremely effective. The integration of LLM approaches in the semantic
space [19], multi-level storage systems which include SQL, VectorDB, and GraphDB, multi-
agent architectures, ML/DL/RL modules, and GAs forms the foundation of a new paradigm
- an evolutionary-adaptive system for sustainable optimization of CD processing algorithms
which can automate processing of industrial reports.

Recent advances in code generation using LLMs have significantly expanded the
capabilities of automated data-processing systems, enabling dynamic construction of
ETL procedures, semantic extraction modules, and visualization logic directly from
natural-language specifications. State-of-the-art models such as Codex, CodeT5, GPT-
4 and Llama-3 have demonstrated near-human performance in generating reusable
and semantically consistent code components for data analytics workflows [20-22].
Scientific studies show that LLM-driven code generation not only accelerates pipeline
development but also improves modularity, reproducibility , and correctness through
learned structural patterns and contextual reasoning [23]. When applied to automated
reporting, code-generating models create flexible and adaptive procedures for parsing,
embedding, aggregating, storing, and visualizing data, enabling rapid reconfiguration
of workflows in response to new report formats or analytical requirements. Thus, now
it no longer makes sense to program all technological operations in advance and after
serving them.

Simultaneously, agentic AI systems have emerged as a powerful paradigm for
orchestrating multi-step analytical processes. Research demonstrates that multi-agent
architectures, comprising planning agents, reasoning agents, tool-using agents, and code-
executing agents, achieve superior performance in complex, multi-stage tasks such as
document analysis, information synthesis, and dynamic pipeline construction [24-25].
Agentic systems benefit from autonomous task decomposition and iterative refinement,
allowing agents to negotiate, supervise, and correct one another, thereby reducing error
propagation and increasing robustness. When applied to automated report generation,
agentic AI can coordinate the entire lifecycle: ingesting documents, selecting
transformations, generating executable code, validating results, and producing narrative
and visual outputs.

Before constructing a fully autonomous agentic pipeline, it is essential to first identify
the optimal algorithmic structure for the report-building workflow. Agentic systems rely on
a predefined space of tools and capabilities. If this space is suboptimal , redundant, or
contains low-quality operations, the agents will form inefficient or even failed workflows.

 Vasyl Lyashkevych

42 Electronics and Information Technologies • 2025 • Issue 32

Scientific evidence shows that agent-based systems are highly sensitive to the structure
of available operations, often suffering from combinatorial explosion and suboptimal
planning when the action space is not pre-optimized [24]. Therefore, determining the
optimal algorithm, through GAs, evolutionary search, or analytical design, ensures that
the agentic system operates within a validated, minimal, high-quality set of operations,
maximizing performance and sustainability. Only after this optimization step, agentic AI
can reliably construct scalable, interpretable, and efficient multi-visual report generation
pipelines.

MATERIALS AND METHODS

Modern industrial companies support reports from numerous suppliers and customers
in hundreds of disparate formats that differ in structure, data types, language, context, and
semantic relationships. Those reports contain different types of CD, such as transactional,
contextual, and semantic. This needs to be properly extracted, transformed, and integrated
into the appropriate SQL, VectorDB, and GraphDB repositories, respectively. The growth
in the number of formats, the dynamic nature of changing business requirements, and the
need for scalability create a demand for continuous, sustainable optimization of CD
processing processes.

In real industrial conditions, testing all possible combinations of ETL, ML, and LLM
operations is extremely expensive, risky, and unsustainable: it requires significant time and
computing resources, can disrupt productive processes, and lead to data quality losses.
Therefore, the primary task is to create a simulation model that allows for virtually exploring
and optimising data processing pipelines before their physical deployment. The most
suitable tool for such optimization is GAs. Thanks to the evolutionary operators of selection,
crossover, and mutation, GAs can effectively explore a large space of possible processing
configurations and find stable and minimally complex pipeline variants.

Formalization of the problem
The data processing and analytics pipeline is shown in Fig. 1. Users can provide input

reports in various formats, such as PDF, XLSX, databases, and APIs containing raw data
to the pipeline. An algorithmic workflow processes the data through multiple stages: 𝑂1, 𝑂𝑖 ,
𝑂𝑗 and 𝑂𝑙 , extracting insights and transforming it. The system integrates data from multiple

storage systems, including SQL databases, VectorDBs, and GraphDBs, ensuring
compatibility with various data formats.

Fig. 1. Report generation approach.

A user defines the desired outputs as visual components, which determine the
analysis scope, metrics, and visualizations in the report. Based on these preferences, the

Sustainable Optimization of Consolidated Data…

Електроніка та інформаційні технології • 2025 • Випуск 32 43

processed data is transformed into tailored analytics outputs, such as visual charts or
custom reports.

This architecture supports flexible processing, allowing dynamic user-driven
customization of outputs and efficient multi-database integration. It is particularly useful for
applications where decision-making relies on consolidated, processed insights from
diverse and complex datasets and for automation based on an Agentic AI or multi-agent
approaches.

Let the industrial report processing system be constructed as an evolutionary-adaptive
algorithm A, consisting of an ordered set of operations:

 𝐴 = { 𝑜1, 𝑜2, . . . , 𝑜𝑙}, 𝑜𝑖 𝜖 𝑂, (1)

where O is the universal set of all possible operations (ETL, ML, LLM, Visualization).
Each operation is defined as:

 𝑜𝑖 = (𝑡𝑖 , 𝜃𝑖, 𝐷𝑖), (2)

where: 𝑡𝑖 is type of operations (ETL, ML, LLM, Visualization); 𝜃𝑖 – parameters of

operations; 𝐷𝑖 = ⊆ 𝑂 × 𝑂 – a set of dependencies (pre- and post-conditions).

There are three main types of dependencies in CD processing: structural, semantic,
and functional. In case of structural dependencies, an operation 𝑜𝑗 may only be executed

after the other operation 𝑜𝑖 , for example 𝑜𝑖 ≼ 𝑜𝑗 . Formally:

 ∀𝑜𝑗 ∈ 𝐴: 𝑃𝑟𝑒(𝑜𝑗) ⊆ 𝐴. (3)

The operation 𝑜𝑗 requires semantic entities produced earlier:

 𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠(𝑜𝑗) ⊆ ∪𝑖<𝑗 𝑂𝑢𝑡𝑝𝑢𝑡(𝑜𝑖), (4)

Example: “LLM summarization” depends on “context normalization”, which depends
on “Entity extraction”.

Operation 𝑜𝑗 may require a specific type of input:

 𝑇𝑦𝑝𝑒𝐼𝑛(𝑜𝑗) = 𝑇𝑦𝑝𝑒𝑂𝑢𝑡(𝑜𝑖). (5)

Example: “ML classification” requires embeddings produced by a “vectorization
operation”.

Therefore, a CD processing algorithm 𝐴 is valid when the conditions (3), (4), and (5)

are met simultaneously. Thus, GA evolves not arbitrary sequences but structurally valid
algorithms.

The context of a document 𝑐 ∈ 𝐶 constrains which operations may be applied:

 𝑂𝑐 = {𝑜 ∈ 𝑂 ∣ 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒(𝑜, 𝑐) = 1}. (6)

Example of context-dependent operations:

• if a document is in Chinese → translation “+” multilingual normalization required;

• If PDF → OCR and structural extraction are required;

• If it contains graphical tables → table reconstruction is needed.

Thus: 𝐴𝑐 ⊆ 𝑂𝑐.

Data transformation through the algorithm 𝐴 is defined as:

 Vasyl Lyashkevych

44 Electronics and Information Technologies • 2025 • Issue 32

 𝑋0 = 𝑟 ∈ 𝑅; 𝑋𝑖+1 = 𝑜𝑖 (𝑋𝑖); 𝑋𝑙 = 𝐴(𝑟). (7)

Required outputs: transactional data 𝑇(𝑟), contextual embeddings 𝑉(𝑟), and

semantic graph 𝐺(𝑟). Algorithm correctness condition 𝑇(𝑟), 𝑉(𝑟), 𝐺(𝑟) ≠⊘:.

The optimization objective of the fitness function with dependency penalties is:

 𝐹(𝐴) = 𝛽1𝐸(𝐴) + 𝛽2𝐿(𝐴) − 𝛽3𝑄(𝐴) − 𝛽4𝑆(𝐴) + 𝛽5𝐷(𝐴), (8)

where: 𝐸(𝐴) is number of operations, 𝐿(𝐴) – latency/compute cost, 𝑄(𝐴) – extraction

quality such as accuracy, recall, and consistency, 𝑆(𝐴) – sustainability/adaptiveness, 𝐷(𝐴)

– dependency violation penalty. Penalty:

 𝐷(𝐴) = 𝜆 ⋅ |{𝑜𝑖 ∈ 𝐴 ∣ 𝑛𝑜𝑡 𝑉𝑎𝑙𝑖𝑑(𝑜𝑖)}|, (9)

If the algorithm satisfies all dependencies, it will be 1, otherwise 0. Therefore, algorithm
validity, using (3), (4), and (5), is being calculated:

 𝑉𝑎𝑙𝑖𝑑(𝐴) = ⋀𝑗=1
𝑙 [𝑃𝑟𝑒(𝑜𝑗) ⊆ {𝑜1, . . . , 𝑜𝑗−1}] ∧ [𝑇𝑦𝑝𝑒𝐼𝑛(𝑜𝑗) = 𝑇𝑦𝑝𝑒𝑂𝑢𝑡(𝑜𝑗−1)]. (10)

Finally, the optimization objective:

 𝐴 ∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑃𝜖𝑃𝑣𝑎𝑙𝑖𝑑
𝐹(𝐴). (11)

The goal is to find and evolutionarily optimize a data-processing algorithm, which
emulates a report processing pipeline, that satisfies all structural, functional, and semantic
dependencies between operations while minimising the number of operations and
computational cost, maximizing the extraction quality of transactional, contextual, and
semantic data, and maintaining adaptability to new report formats.

Sets of operations for experiments
Defining sets of ETL, ML, LLM, and visualization operations is essential for building a

formal, managed, and optimized report processing process. When a system receives
heterogeneous reports, it must know what transformations to perform: what data to parse,
what embeddings to create, how to aggregate, and where to store the information. A clear
separation of operations allows building scalable pipelines that support three data types:
transactional (SQL), contextual (VectorDB), and semantic (GraphDB). It also provides
automatic selection of ML, LLM, and visualization components and optimization of their
sequence using GAs. Examples of operations are shown in Table 1.

The global operation space can be described as:

 𝑂 = 𝑂𝐸𝑇𝐿 ∪ 𝑂𝑀𝐿 ∪ 𝑂𝐿𝐿𝑀 ∪ 𝑂𝑉𝐼𝑆, (12)

where: 𝑂𝐸𝑇𝐿 are operations for loading, converting, merging and storing data; 𝑂𝑀𝐿 –

operations for statistical and machine learning; 𝑂𝐿𝐿𝑀 – semantic, linguistic and reasoning

operations; 𝑂𝑉𝐼𝑆 – operations for building reports and visualizations.

Combined operation space is a unified space of all possible operations that a system
can use for automated report processing. It combines four large classes: ETL, ML, LLM,
and Visualization. Each operation performs a specific function such as parsing, cleansing,
aggregation, classification, semantic extraction, text generation, or visualization of results.

Sustainable Optimization of Consolidated Data…

Електроніка та інформаційні технології • 2025 • Випуск 32 45

Table 1. Sets of used operations in experiments

Operation Functionality Samples

𝑂𝐸𝑇𝐿
𝑖𝑛𝑔

Input, upload,
and ingestion

UploadFile, DownloadFromAPI, IngestEmail, FetchFTP

𝑂𝐸𝑇𝐿
𝑝𝑎𝑟𝑠𝑒

Parsing and
extraction

PDFParse, OCR, TableDetection, ExcelParse,
CSVParse, ImageToTable, HTMLParse

𝑂𝐸𝑇𝐿
𝑛𝑜𝑟𝑚

Data
normalization

CleanText, NormalizeNumbers, Deduplicate,
FixEncoding, DateNormalization, CurrencyNormalization

𝑂𝐸𝑇𝐿
𝑎𝑔𝑔

Data aggregation

and fusion
JoinRecords, MergeSources, GroupBy, Summarize,

Pivot, Unpivot

𝑂𝐸𝑇𝐿
𝑠𝑡𝑜𝑟𝑒 Data storing StoreSQL(T), StoreVectorDB(V), StoreGraphDB(G)

𝑂𝐸𝑇𝐿
𝑟𝑒𝑎𝑑 Data reading ReadSQL, ReadVector, ReadGraph

𝑂𝑀𝐿
𝑐𝑙𝑎𝑠 ML classification

DocumentTypeClassifier, AnomalyClassifier,
SupplierCategoryClassifier

𝑂𝑀𝐿
𝑟𝑒𝑔

 ML regression
PredictMissingValues, ForecastQuantities,
CostRegression, DeliveryTimeRegression

𝑂𝑀𝐿
𝑐𝑙𝑢𝑠𝑡 ML clustering ClusterReports, ClusterSuppliers, ClusterContentTopics

𝑂𝑀𝐿
𝑒𝑚𝑏

Embedding-
based ML

ComputeEmbeddings, SemanticSimilarity, NNRetrieval

𝑂𝐿𝐿𝑀
𝑟𝑒𝑎𝑠𝑜𝑛

Semantic
understanding
and reasoning

SemanticParsing, LogicalInference, MultiHopReasoning,
ConstraintValidation

𝑂𝐿𝐿𝑀
𝑔𝑒𝑛

Summarization
and generation

ShortSummary, DetailedSummary, ExecutiveReport,
NarrativeGeneration

𝑂𝐿𝐿𝑀
𝑒𝑥𝑡𝑟𝑎𝑐𝑡

Information
extraction

EntityExtraction, RelationExtraction, AttributeExtraction,
SchemaInduction

𝑂𝐿𝐿𝑀
𝑡𝑟𝑎𝑛𝑠 Transformation

Translate, NormalizeTerms, Rewrite, CleanNoise,
ContextualRewriting

𝑂𝐿𝐿𝑀
𝑒𝑡𝑙 LLM for ETL

LLM-TableReconstruction, LLM-DataValidation, LLM-
SQLQueryGeneration

𝑂𝑉𝐼𝑆
𝑏𝑎𝑠𝑖𝑐 Basic charts BarChart, LineChart, PieChart, Histogram, ScatterPlot

𝑂𝑉𝐼𝑆
𝑎𝑑𝑣

Advanced
analytics visuals

Heatmap, Sankey, GeoMap, TimeSeriesForecastPlot,
CorrelationMatrix

𝑂𝑉𝐼𝑆
𝑛𝑎𝑟𝑟

Narrative
visualization

ChartExplanation, NarrativeAnalytics, LLM-
GeneratedReport

𝑁𝑂𝑃 No Operation NOP

Combining these sets into a single space 𝑂 allows:

• to consider any operation as a gene in the pipeline chromosome;

• to build flexible, adaptive, and diverse pipelines;

• allow the GA to freely combine and optimize different types of operations;

• provide support for all data types: transactional (SQL), contextual (VectorDB), and
semantic (GraphDB).

 Vasyl Lyashkevych

46 Electronics and Information Technologies • 2025 • Issue 32

Thus, the combined operation space is a foundation that utilizes all the transformation
capabilities that the system can perform on data. Thus, for example, the combined
operation space can be defined:

 𝑂 = 𝑂𝐸𝑇𝐿
𝑖𝑛𝑔

∪ 𝑂𝐸𝑇𝐿
𝑝𝑎𝑟𝑠𝑒

∪ 𝑂𝐸𝑇𝐿
𝑛𝑜𝑟𝑚 ∪ 𝑂𝐸𝑇𝐿

𝑎𝑔𝑔
∪ 𝑂𝐸𝑇𝐿

𝑠𝑡𝑜𝑟𝑒 ∪ 𝑂𝑀𝐿 ∪ 𝑂𝐿𝐿𝑀 ∪ 𝑂𝑉𝐼𝑆, (13)

Every element 𝑂 can be gene in a chromosome, forming an executable pipeline.

General model of operation
Each operation should be formalized within a unified operational specification suitable

for LLM, ML, ETL, and Visualization classes. Thus, an operation is described as:

 𝑜 = (𝑖𝑑, 𝑡𝑦𝑝𝑒, 𝑋𝑖𝑛 , 𝑋𝑜𝑢𝑡, 𝜃, 𝐶, 𝐷𝑒𝑝), (14)

where: 𝑖𝑑 is unique transaction identifier; 𝑡𝑦𝑝𝑒 – class of ETL, ML, LLM or VIS; 𝑋𝑖𝑛 – type

of input data; 𝑋𝑜𝑢𝑡 – type of output data; 𝜃 – operation parameters; 𝐶 – contextual

execution conditions and 𝐷𝑒𝑝 – depending on other operations.

Prepare GA for experiments
Encoding operations and chromosome structure. Each operation from the combined

operation space (ETL, ML, LLM, VIS) is encoded as a gene, represented by a unique
integer or symbolic token:

 𝑜𝑖 → 𝑔𝑖 ∈ 𝛴, (15)

where 𝛴 is the operation alphabet.

In the classical formulation of evolutionary pipelines, a chromosome is represented as
a single linear sequence of operations:

 𝑃 = [𝑔1, 𝑔2, … , 𝑔𝐿], (16)

where each gene corresponds to a transformation step in a pipeline.
Because different pipelines may require different numbers of operations, we use a

fixed-length chromosome. A fixed length 𝐿 guarantees comparability among individuals and
stable crossover or mutation behaviour. To allow variable-length logic within a fixed-length
chromosome, unused positions are filled with a 𝑁𝑂𝑃 gene:

 𝑁𝑂𝑃(𝑋) = 𝑋. (17)

The 𝑁𝑂𝑃 operator allows the GA to simulate shorter pipelines within a fixed-length

representation, supports incremental growth of solutions, and prevents destructive
crossover.

However, this representation encodes only one computational workflow, suitable for
generating a single analytical output (one visualization or one analytical component). In the
context of automated report generation, a user typically requires multiple analytical outputs
simultaneously, such as n different charts, KPIs, summaries, embeddings, graphs or
others. Each of these outputs must be built by a distinct computational pipeline, possibly
sharing some operations but often diverging after early stages. Therefore, a single linear
chromosome is insufficient.

Typical document-processing pipelines include from 20 to 50 operations, depending
on operational diversity. A single pipeline builds only one analytical output, but real reports

Sustainable Optimization of Consolidated Data…

Електроніка та інформаційні технології • 2025 • Випуск 32 47

require multiple independent visuals. In this case, the chromosome must be represented
as a matrix of size 𝐿 × 𝑛. Consequently, the GA population (Fig. 2) becomes a tensor
𝑀 × 𝐿 × 𝑛, enabling simultaneous evolution of multiple pipelines under shared constraints:

 𝑃 ∈ 𝑅𝐿×𝑛, (18)

where: 𝐿 is max pipeline length (50 operations per one visual or analytical component), 𝑛

– number of requested visuals or analytical components, each column 𝑃𝑖,𝑗 encodes one

full algorithmic pipeline for visual 𝑗.

Fig. 2. Structure of a chromosome.

With matrix chromosomes, the population is no longer a 2-D matrix (population size ×
genome length). It becomes a 3-dimensional tensor:

 𝑃 ∈ 𝑅𝑀 × 𝐿 × 𝑛, (19)

where: 𝑀 is population size, 𝐿 – pipeline length per output, 𝑛 – number of independent

visuals.
The proposed chromosome’s structure considers:

• Multi-objective report generation. A report with 𝑛 visuals is not a single-objective

optimization problem but a multi-pipeline multi-objective system. Each visual
requires a different data-processing workflow.

• Preservation of algorithm (pipeline) independence. Encoding all visuals in a single
vector would mix operations across visuals and destroy semantic locality. Matrix
representation preserves the independence of pipelines.

• Parallel evolution in a shared context. Early operations such as parsing, OCR, and
aggregations may be shared, while later stages such as special aggregations, ML,
LLM, or visualization diverge. Matrix form allows partial sharing naturally.

• Tensor representation enables proper genetic operators. Mutation and crossover
can be applied, such as column-wise (per visual), row-wise (per pipeline depth),
and block-wise (submatrix crossover).

• Scalable and sustainable optimization. Industrial reports frequently contain 10-20
visuals, avoiding redundant computation and ensuring consistency.

The initial population is created using heuristic seeding. We assume that a subset of
10-20% of the population is initialized using heuristically valid partial pipelines:

• parsing → normalization → embedding → ML/LLM → storage;

 Vasyl Lyashkevych

48 Electronics and Information Technologies • 2025 • Issue 32

• OCR → table reconstruction → aggregation → storage;

• parsing → LLM extraction → graph building.
This accelerates convergence.
Some individuals are initialized with many NOP genes and a small number of

operations inserted in valid positions. This encourages smooth evolutionary growth from
simple to complex solutions.

RESULTS AND DISCUSSION

The proposed GA was evaluated through controlled simulations designed to model
the automated construction of multi-visual analytical reports. Due to the limited quantity of
the prepared operations, we cannot allow the use of a large population. Thus, the
experiment used a population of 40 matrix-encoded chromosomes, each representing a

set of three parallel pipelines (one per visual) with a maximum depth 𝐿 = 30 of operations.

Thus, each chromosome formed a tensor-shaped individual of size 30 × 3, while the entire
population spanned a tensor of size 40 × 30 × 3. Such representation enabled the
simultaneous evolution of multiple workflows required for multi-visual reporting, which
cannot be encoded in a classical one-dimensional chromosome.

Fitness function evaluation
The GA was executed for 50 generations. Fitness was calculated per visual using a

function that rewarded: sustainable pipeline length (~10 operations), presence of ETL, ML,
LLM, and VIS categories, and overall completeness of the workflow.

For each individual, the fitness is computed per visual (per column) and then summed
across visuals:

 𝐹(𝑃) = 𝑣 = ∑ 𝑓(𝑃𝑣)

𝑁𝑣𝑖𝑠

𝑣=1

. (20)

Example of calculations for one visual component:

𝑓 = −∣ 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ − 10 ∣ + 3 ⋅ ℎ𝑎𝑠𝐸𝑇𝐿 +

 +2 ⋅ ℎ𝑎𝑠𝑀𝐿 + 2 ⋅ ℎ𝑎𝑠_𝐿𝐿𝑀 + 4 ⋅ ℎ𝑎𝑠_𝑉𝐼𝑆.

As is seen from the provided example, we expect approximately 10 operations in the
pipeline as an effective length. GA optimization dynamics (Fig. 3) show rapid improvement
during the first 10 generations, followed by gradual stabilization.

Fig. 3. Fitness function estimation.

Sustainable Optimization of Consolidated Data…

Електроніка та інформаційні технології • 2025 • Випуск 32 49

The best fitness converged at 33, while the population mean stabilised around 26.
This indicates that the GA successfully moved from sparse, primarily NOP-heavy pipelines
toward meaningful multi-stage workflows, combining ETL, ML, LLM, and VIS operations.

Pipeline length distribution
Fig. 4 shows the distribution of effective pipeline lengths for the final generation. The

population converged around 10-14 operations per pipeline, which aligns with the
sustainability objective encoded into the fitness function.

Fig. 4. Pipeline length distribution.

Pipelines shorter than 6 steps lacked analytic capability, while pipelines longer than
15 steps accumulated penalties due to inefficiency. The GA thus demonstrated an
emergent preference for compact, interpretable, resource-efficient pipelines.

Pipeline decoding
The best-performing chromosome consisted of a 30×3 matrix, in which three distinct

pipelines were evolved. Each pipeline included a mixture of:

• ETL steps: parsing, normalization, and table extraction;

• ML operations: classification, embedding computation, regression, or clustering;

• LLM methods: semantic parsing, summarization, and textual reconstruction;

• Visualization components for final chart generation.
Decoding the matrix revealed three semantically coherent workflows:

• visual 1: ETL → ML → LLM → VIS, suitable for KPIs and trend analysis;

• visual 2: ETL → ML → LLM → VIS, producing semantic cluster views;

• visual 3: ETL → LLM → VIS, producing narrative-style or categorical summaries.
The existence of all four operation classes in the final chromosome confirms that the

GA learned the implicit structure of real-world analytical reporting pipelines, even though
no explicit constraints, beyond validity and type matching, forced such ordering. To validate
that the evolved pipelines correspond to meaningful outputs, three synthetic visuals were
generated:

• The regression forecast chart (Fig. 5) represents time-series prediction, illustrating
the ML segment of the pipeline.

• Semantic embedding clusters (Fig. 6) represent LLM with ML synergy for
contextual analytics.

• The categorical summary chart (Fig. 7) represents ETL aggregation followed by
basic visualization.

These visuals emulate typical report components found in automated dashboards:
trend analysis, semantic grouping, and KPI summaries.

 Vasyl Lyashkevych

50 Electronics and Information Technologies • 2025 • Issue 32

Fig. 5. Regression forecast chart.

The ability of the evolved pipelines to generate full visuals demonstrates that the GA

was able to construct functional workflows, not just syntactic sequences of operations.

Fig. 6. Semantic embedding clusters.

Fig. 7. Categorical summary chart.

Sustainable Optimization of Consolidated Data…

Електроніка та інформаційні технології • 2025 • Випуск 32 51

The experimental results confirm several critical findings:

• Matrix chromosome encoding works. Encoding the chromosome as a matrix
(pipeline-per-visual) supports parallel workflow evolution and allows GA to optimize
complete multi-visual reports.

• GA can learn sustainable algorithms (pipelines). The convergence around 10-14
operations demonstrates that the fitness function effectively guides the algorithm
toward sustainable ETL, ML, LLM, and VIS chains.

• Automatic multimodal report construction is feasible. The final pipelines
successfully generated three distinct and meaningful visuals.

• Emergency structure matches human workflow design. Despite no explicit manual
design, the GA consistently evolved a logical ordering: ETL first (ingestion, parsing,
cleaning), ML/LLM next (interpretation, semantic enhancement) and visualization
last (final chart generation).

• Population-level diversity was maintained. Although fitness converged, the
distribution of pipeline structures remained diverse, indicating that mutation and
crossover operators preserved exploration.

These results support the viability of using a tensor-based GA for industrial report
automation, especially in heterogeneous data environments requiring simultaneous
multimodal analytics.

CONCLUSION

This research demonstrates that evolutionary optimization, when combined with
modern ML, LLMs, and agentic AI principles, provides an effective methodological
foundation for automated report generation in heterogeneous industrial environments. The
developed tensor-based GA model successfully evolves multi-stage, multi-visual analytic
pipelines by representing each report as a matrix of parallel workflows and optimizing them
jointly. Experimental results confirm that the proposed framework converges toward
sustainable, interpretable, and structurally valid pipelines, balancing ETL, ML, LLM, and
VIS operations into coherent analytic sequences.

The study also reveals that as the operational space expands, through the growth of
meaning-space operations, improved code-generation capabilities, and the emergence of
agentic AI systems, the effectiveness and scalability of evolutionary pipeline synthesis
increase substantially. These technological developments amplify the adaptability and
autonomy of the system, enabling dynamic reconfiguration of analytic workflows in
response to new formats, data modalities, and reporting objectives. Consequently,
evolutionary optimization becomes a foundational step for future agentic systems. It
establishes an optimized, validated and semantically coherent action space from which AI
agents can reliably plan, coordinate and execute reporting tasks. The findings thus position
evolutionary algorithm-driven pipeline synthesis as a crucial enabling technology for next-
generation autonomous analytic ecosystems.

The research introduces a novel encoding of analytic pipelines as a matrix L × N rather
than a linear sequence, enabling simultaneous evolution of multiple report visuals within a
single chromosome. This produces richer, more scalable, and structurally coherent
solutions compared to classical GA pipeline representations.

The proposed framework integrates heterogeneous operation types into a single
evolutionary unified multimodal operation space “ETL-ML-LLM-VIS”. This unification is
unprecedented in existing AutoML or AutoETL systems. The experiments prove that
complex reporting pipelines can emerge autonomously from evolutionary pressure, without
manually encoded domain rules, which is an important step toward self-assembling
analytics systems.

A key contribution of this work is the formalization of LLM-based semantic operations,
such as summarization, multi-hop reasoning, entity and relation extraction, and contextual

 Vasyl Lyashkevych

52 Electronics and Information Technologies • 2025 • Issue 32

normalization, as evolvable genetic components within the pipeline. Treating meaning-
space transformations as genes places them on equal theoretical footing with classical
feature engineering, ML, and ETL operations, thereby extending the domain of evolutionary
computation from structural data manipulation into the realm of semantic cognition.

The study formulates a new design principle: before constructing agentic AI systems
capable of autonomous report generation, the underlying operation space must be
optimized through evolutionary search. This ensures that the action space available to
agents is minimal, non-redundant, sustainable, and functionally validated.

ACKNOWLEDGMENTS AND FUNDING SOURCES

The author received no financial support for the research, writing and publication of
this article.

COMPLIANCE WITH ETHICAL STANDARDS

The author declares that the research was conducted in the absence of any conflict of
interest.

AUTHOR CONTRIBUTIONS

The author has read and agreed to the published version of the manuscript.

REFERENCES

[1] Fan, J., Han, F., & Liu, H. (2014). Challenges of Big Data analysis. National Science
Review, 1(2), 293–314. https://doi.org/10.1093/nsr/nwt032

[2] Fernandes, A. A. A., Koehler, M., Konstantinou, N., et al. (2023). Data preparation: A
technological perspective and review. SN Computer Science, 4(425).
https://doi.org/10.1007/s42979-023-01828-8

[3] Ahlawat, P., Borgman, J., Eden, S., Huels, S., Iandiorio, J., Kumar, A., & Zakahi, P.
(2023). A new architecture to manage data costs and complexity. BCG.
https://on.bcg.com/3HOP7vQ

[4] Kwon, N., Comuzzi, M. (2023). Genetic Algorithms for AutoML in Process Predictive
Monitoring. In: Montali, M., Senderovich, A., Weidlich, M. (eds) Process Mining
Workshops. ICPM 2022. Lecture Notes in Business Information Processing, vol 468.
Springer, Cham. https://doi.org/10.1007/978-3-031-27815-0_18

[5] Shi, K., Saad, S. (2023). Automated feature engineering for AutoML using genetic
algorithms. In Proceedings of the 15th International Joint Conference on
Computational Intelligence (pp. 450-459). SCITEPRESS.
https://www.scitepress.org/Papers/2023/120904/120904.pdf

[6] Hernandez, J., Saini, A., Ghosh, A., Moore, J. (2025). The tree-based pipeline
optimization tool: Tackling biomedical research problems with genetic programming
and automated machine learning. Patterns. 6. 101314.
10.1016/j.patter.2025.101314. https://doi.org/10.1016/j.patter.2025.101314

[7] Jiao, J., Yuan, J. (2025). GA-PRE: A Genetic Algorithm-Based Automatic Data
Preprocessing Algorithm. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO '25). Association for Computing Machinery, New
York, NY, USA, 1371–1378. https://doi.org/10.1145/3712256.3726312

[8] Polonskaia, I. S., Nikitin, N. O., Revin, I., Vychuzhanin, P., & Kalyuzhnaya, A. V.
(2021, June). Multi-objective evolutionary design of composite data-driven models. In
2021 IEEE Congress on Evolutionary Computation (CEC) (pp. 926-933). IEEE.
https://doi.org/10.1109/CEC45853.2021.9504773

[9] Jing, Z., Su, Y., Han, Y., Yuan, B., Liu, C., Xu, H., & Chen, K. (2024). When Large
Language Models Meet Vector Databases: A Survey. arXiv.
https://arxiv.org/abs/2402.01763

https://doi.org/10.1093/nsr/nwt032
https://doi.org/10.1007/s42979-023-01828-8
https://on.bcg.com/3HOP7vQ
https://doi.org/10.1007/978-3-031-27815-0_18
https://www.scitepress.org/Papers/2023/120904/120904.pdf
https://doi.org/10.1016/j.patter.2025.101314
https://doi.org/10.1145/3712256.3726312
https://doi.org/10.1109/CEC45853.2021.9504773
https://arxiv.org/abs/2402.01763

Sustainable Optimization of Consolidated Data…

Електроніка та інформаційні технології • 2025 • Випуск 32 53

[10] Sequeda, J., Allemang, D., & Jacob, B. (2025). Knowledge graphs as a source of
trust for LLM-powered enterprise question answering. Journal of Web Semantics, 85,
100858. https://doi.org/10.1016/j.websem.2024.100858

[11] Instaclustr. (2024). Vector Databases and LLMs: Better Together.
https://www.instaclustr.com/education/open-source-ai/vector-databases-and-llms-
better-together/

[12] DeepFA AI. (2025). Multi-Agent Systems in Artificial Intelligence.
https://deepfa.ir/en/blog/multi-agent-systems-artificial-intelligence

[13] Ramachandran, A. (2025). Revolutionizing Knowledge Graphs with Multi-Agent
Systems: AI-Powered Construction, Enrichment, and Applications. ResearchGate

[14] Mehta, V., Batra, N., Poonam, Goyal, S., Kaur, A., Dudekula, K. V., & Victor, G. J.
(2024). Machine Learning Based Exploratory Data Analysis and Diagnosis of Chronic
Kidney Disease (CKD). https://doi.org/10.4108/eetpht.10.5512

[15] Da Poian, V., Theiling, B., Clough, L., McKinney, B., Major, J., Chen, J., & Hörst, S.
(2023). Exploratory data analysis (EDA) machine learning approaches for ocean
world analogue-mass spectrometry. https://doi.org/10.3389/fspas.2023.1134141

[16] Nayak, U. (2025). AI-Powered Data Pipelines: Leveraging Machine Learning for ETL
Optimization. Journal of Software Engineering and Simulation, 11(6), 134-136.

[17] Heffetz, Y., Vainstein, R., & Katz, G. (2019). DeepLine: AutoML Tool for Pipelines
Generation using Deep Reinforcement Learning and Hierarchical Actions Filtering.
arXiv. https://doi.org/10.48550/arXiv.1911.00061

[18] Chanda, D. (2024). Automated ETL Pipelines for Modern Data Warehousing:
Architectures, Challenges, and Emerging Solutions. The Eastasouth Journal of
Information System and Computer Science, 1(03), 209–212.
https://doi.org/10.58812/esiscs.v1i03.523

[19] Lyashkevych, L., Lyashkevych, V., & Shuvar, R. (2024). Exploratory data analysis
possibility in the meaning space using large language models. Electronics and
Information Technologies, 1(25), 9, 102–116. http://dx.doi.org/10.30970/eli.25.9

[20] Chen, M., Tworek, J., Jun, H., et al. (2021). Evaluating large language models
trained on code. arXiv:2107.03374. https://doi.org/10.48550/arXiv.2107.03374

[21] Wang, Y., Yin, W., Li, B., et al. (2023). CodeT5+: Open code large language models
for code understanding and generation. arXiv:2305.07922.
https://doi.org/10.48550/arXiv.2305.07922

[22] Rozière, B., Gehring, J., Gloeckle, F., et al. (2023). Code Llama: Open foundation
models for code. arXiv:2308.12950. https://doi.org/10.48550/arXiv.2308.12950

[23] Zhang, Y., Wang, C., Xie, T., & Huang, J. (2023). A survey on program synthesis
with large language models. arXiv:2311.07989.
https://doi.org/10.48550/arXiv.2311.07989

[24] Schick, T., Dwivedi-Yu, J., Dessì, R., Raileanu, R., Lomeli, M., Hambro, E.,
Zettlemoyer, L., Cancedda, N., & Scialom, T. (2023). Toolformer: Language models
can teach themselves to use tools. In Proceedings of the 37th International
Conference on Neural Information Processing Systems (Article 2997, pp. 1–13).
Curran Associates Inc. https://dl.acm.org/doi/10.5555/3666122.3669119.

[25] Park, J. S., O'Brien, J., Cai, C. J., Morris, M. R., Liang, P., & Bernstein, M. S. (2023,
October). Generative agents: Interactive simulacra of human behavior. In
Proceedings of the 36th annual acm symposium on user interface software and
technology (pp. 1-22). https://doi.org/10.48550/arXiv.2304.03442

https://doi.org/10.1016/j.websem.2024.100858
https://www.instaclustr.com/education/open-source-ai/vector-databases-and-llms-better-together/
https://www.instaclustr.com/education/open-source-ai/vector-databases-and-llms-better-together/
https://deepfa.ir/en/blog/multi-agent-systems-artificial-intelligence
https://doi.org/10.4108/eetpht.10.5512
https://doi.org/10.3389/fspas.2023.1134141
https://doi.org/10.48550/arXiv.1911.00061
https://doi.org/10.58812/esiscs.v1i03.523
http://dx.doi.org/10.30970/eli.25.9
https://doi.org/10.48550/arXiv.2107.03374
https://doi.org/10.48550/arXiv.2305.07922
https://doi.org/10.48550/arXiv.2311.07989
https://dl.acm.org/doi/10.5555/3666122.3669119
https://doi.org/10.48550/arXiv.2304.03442

 Vasyl Lyashkevych

54 Electronics and Information Technologies • 2025 • Issue 32

СТАЛА ОПТИМІЗАЦІЯ АЛГОРИТМІВ ОБРОБКИ КОНСОЛІДОВАНИХ

ДАНИХ НА ОСНОВІ МАШИННОГО НАВЧАННЯ ТА ГЕНЕТИЧНИХ

АЛГОРИТМІВ

Василь Ляшкевич
Львівський національний університет імені Івана Франка,

вул. Драгоманова 50, 79005, Львів, Україна

АНОТАЦІЯ

Вступ. Автоматизація побудови аналітичних звітів у промислових компаніях
набуває стратегічного значення через різноманіття форматів документів, збільшення
обсягів даних та зростання вимог до швидкого формування багатокомпонентних
аналітичних матеріалів. Традиційні ETL-конвеєри не справляються зі складністю
сучасних інформаційних потоків, особливо коли у процес інтегруються машинне
навчання, LLM-моделі та агентні системи. У зв’язку зі швидким прогресом генерації
коду та автономних агентів, здатних виконувати складні аналітичні процедури, задача
автоматичного конструювання звітних конвеєрів стає все більш перспективною та
науково обґрунтованою.

Матеріали та методи. Запропоновано еволюційну модель побудови алгоритмів
для опрацювання консолідованих звітів на основі генетичних алгоритмів (ГА). Для
генерації звітів, алгоритм визначає конвеєр для побудови візуального компоненту.
Популяція визначається як тензор, що забезпечує паралельну еволюцію множини
незалежних робочих потоків. Операції класифіковано у чотири групи: ETL, ML, LLM та
VIS. Функція пристосованості оцінює сталу довжину конвеєру, покриття ключових типів
операцій та їх структурну узгодженість.

Результати. Експериментальні результати показали, що ГА швидко еволюціонує
від випадкових NOP-домінованих структур до сталих, логічно узгоджених та
функціональних конвеєрів довжиною 10-14 операцій. Найкращі хромосоми
сформували три повноцінні візуальні компоненти: прогнозну регресійну модель,
семантичну кластеризацію представлень вбудовування та категоріальну діаграму.
Така еволюційна закономірність підтверджує, що комбіновані конвеєри можуть
будуватися автоматично й адаптивно, а збільшення складності операцій у просторі
“смислу”, що є векторним простором вбудовування, разом із розвитком генерації коду
та агентних архітектур.

Висновки. Запропонована модель демонструє ефективний механізм
автоматизованого синтезу звітів з багатьма візуальними компонентами на основі
еволюційних конвеєрів. Перспективність методу зростає із розвитком агентних систем
ШІ та збільшенням кількості операцій у просторі смислу, що відкриває шлях до
повністю автономних систем аналітичної звітності нового покоління.

Ключові слова: консолідовані дані, сталий оптимізаційний підхід, машинне
навчання, генетичні алгоритми, LLM, аналітика даних

Received / Одержано Revised / Доопрацьовано Accepted / Прийнято Published / Опубліковано

19 November, 2025 14 December, 2025 14 December, 2025 25 December, 2025

https://orcid.org/0000-0003-2810-6061
mailto:vasyl.liashkevych@lnu.edu.ua

