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ABSTRACT  

Background. Automation of analytical report generation in industrial companies is 
gaining strategic importance due to the variety of document formats, increasing data 
volumes, and growing requirements for the rapid generation of multi-component analytical 
materials. Traditional ETL pipelines cannot cope with the complexity of modern information 
flows, especially when machine learning (ML), large language models (LLMs), and agent 
systems are integrated into the process. Due to the rapid progress of code generation and 
autonomous agent capability to perform complex analytical procedures, the task of 
automatically constructing reporting pipelines is becoming increasingly promising and 
scientifically sound. 

Materials and Methods. An evolutionary model for constructing algorithms for 
processing consolidated reports based on genetic algorithms (GA) is proposed. For report 
generation, the algorithm defines a pipeline for constructing a visual component. The 
population grows as a tensor, enabling parallel evolution of a set of independent workflows. 
The operations are classified into four groups: ETL, ML, LLM, and VIS. The fitness function 
evaluates the constant length of the pipeline, the coverage of key types of operations, and 
their structural consistency. 

Results and Discussion. Experimental results have shown that GAs rapidly evolve from 
random NOP-dominated structures to stable, logically consistent, and functional pipelines 
with a duration of 10-14 operations. The best chromosomes formed three full-fledged visual 
components: a predictive regression model, semantic clustering represented by 
embeddings, and a categorical diagram. This evolutionary pattern confirms that combined 
pipelines can be built automatically and adaptively, and the increase in the complexity of 
operations in the “meaning” space, which is the vector space of embedding, along with the 
development of code generation and agent architectures. 

Conclusion. The proposed model demonstrates an effective mechanism for automated 
synthesis of multi-visual reports based on evolutionary pipelines.  The method's prospects 
grow with the development of AI agent systems and the increase in the number of operations 
in the content space, which paves the way for a complete system of autonomous analytical 
reporting of a new generation. 
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INTRODUCTION  

In modern information ecosystems, where industrial companies operate with large 
volumes of heterogeneous data, there is a growing need not only for the automation of 
analytical processes, but also for sustainable approaches to optimizing consolidated data 
(CD) processing. The sustainability of algorithms refers to their ability to remain effective 
as formats change, workload increases, data sources expand, and business requirements 
evolve [1-2]. CD processing includes extraction, transformation, semantic structuring, and 
information integration that requires adaptive intelligent mechanisms capable of 
maintaining long-term stability, minimizing costs, and ensuring scalability in dynamic 
environments [3]. 

In this context, a combination of ML methods and GAs proves to be effective. In 
AutoML systems, GAs are successfully used to optimise hyperparameters, select models, 
create and reduce pipelines, and dynamically adjust their structure [4-7]. Due to the ability 
of evolutionary algorithms to search for optimal configurations in large solution spaces, their 
integration into industrial report processing tasks looks natural and promising. They will not 
be able to build evolutionary-adaptive pipelines that maintain system stability, adapt to the 
emergence of new formats, and minimise operational costs [8]. 

In conditions of a global economy, industrial and commercial enterprises interact with 
a wide network of suppliers and customers. It generates complex and highly variable data 
flows. Data comes in hundreds of disparate formats such as spreadsheets, PDFs, 
presentations, graphical reports, scanned forms, and hybrid structures. Usually, they vary 
significantly in terms of language, structure, and content. Automating such processing 
becomes a critical task to ensure consistency and quality of corporate analytics. Current 
research demonstrates the effectiveness of using LLMs, vector and graph databases [9-
11], multi-agent systems [12-13], ML, deep learning (DL), and reinforcement learning (RL) 
methods [14-16], as well as evolutionary and GAs [6-7, 17] for optimizing ETL pipelines 
and analytical processes. 

A separate research direction involves combining LLM with vector databases to 
enhance the quality of semantic search, classification, and context analysis [9]. Other works 
emphasise the potential of graph databases in combination with multi-agent architectures 
for implementing multi-step logical inference [13]. Research on optimising ETL processes 
using ML/RL suggests the possibility of dynamically adapting pipelines, detecting 
anomalies, and automatically selecting transformations [16, 18]. 

Considerable scientific interest is also associated with the role of LLMs in performing 
analytical operations in the “meaning space.” The work [19] demonstrated that LLMs are 
capable of performing interpretive, logical, statistical, and arithmetic operations without the 
use of hard-coded algorithms, operating on data in the semantic (“meaning”) space. This 
opens opportunities for building flexible, dynamic exploratory data analysis (EDA) 
processes without predefined pipelines, which is especially important in conditions of a 
wide variety of report formats and changing requirements. 

Despite these advances, industrial reporting systems face several unresolved 
challenges: 

1. A growing variety of formats, over a hundred or more; 
2. The need to simultaneously extract transactional, contextual, and semantic 

data; 
3. High demands on accuracy, consistency, and robustness of etl processes; 
4. The need to generate new reports with different types of visualisations; 
5. The need for adaptive pipeline evolution in response to the dynamics of formats 

and business requirements demanded in the market. 
A particular problem is the high cost and instability of real experiments in an industrial 

environment. Testing different combinations of ETL operations, ML/LLM modules, and 
pipeline structures requires significant resources and time, and can lead to quality losses 
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or failures in productive systems. Therefore, there is a need for preliminary modelling using 
a simulation environment that allows for evaluating the effectiveness of various 
configurations without their physical implementation. 

In this context, GAs are a natural tool for modelling, optimizing, and adaptively evolving 
report processing pipelines. Their strength lies in the fact that: 

1. ETL, ML, and LLM operations can be represented as genes, and the pipeline as 
a chromosome. 

2. GA allows for minimizing the number of operations while maintaining or improving 
the quality of the results. 

3. GAs provide the search for the optimal sequence of operations according to 
contextual variables and requirements such as accuracy, time, resources, quality 
of the final report, required visuals, and others. 

4. GAs allow for simulation of the system before its actual implementation and 
deployment, reducing risks and costs. 

5. GAs naturally adapt to the emergence of new formats and new types of 
operations. 

As mentioned, GAs are successfully used in AutoML systems, so there is a reasonable 
scientific expectation that, in the context of the current task, with the extraction of 
transactional, contextual, and semantic data from heterogeneous reports, the application 
of GAs will be extremely effective. The integration of LLM approaches in the semantic 
space [19], multi-level storage systems which include SQL, VectorDB, and GraphDB, multi-
agent architectures, ML/DL/RL modules, and GAs forms the foundation of a new paradigm 
- an evolutionary-adaptive system for sustainable optimization of CD processing algorithms 
which can automate processing of industrial reports. 

Recent advances in code generation using LLMs have significantly expanded the 
capabilities of automated data-processing systems, enabling dynamic construction of 
ETL procedures, semantic extraction modules, and visualization logic directly from 
natural-language specifications. State-of-the-art models such as Codex, CodeT5, GPT-
4 and Llama-3 have demonstrated near-human performance in generating reusable 
and semantically consistent code components for data analytics workflows [20-22]. 
Scientific studies show that LLM-driven code generation not only accelerates pipeline 
development but also improves modularity, reproducibility , and correctness through 
learned structural patterns and contextual reasoning [23]. When applied to automated 
reporting, code-generating models create flexible and adaptive procedures for parsing, 
embedding, aggregating, storing, and visualizing data, enabling rapid reconfiguration 
of workflows in response to new report formats or analytical requirements. Thus, now 
it no longer makes sense to program all technological operations in advance and after 
serving them. 

Simultaneously, agentic AI systems have emerged as a powerful paradigm for 
orchestrating multi-step analytical processes. Research demonstrates that multi-agent 
architectures, comprising planning agents, reasoning agents, tool-using agents, and code-
executing agents, achieve superior performance in complex, multi-stage tasks such as 
document analysis, information synthesis, and dynamic pipeline construction [24-25]. 
Agentic systems benefit from autonomous task decomposition and iterative refinement, 
allowing agents to negotiate, supervise, and correct one another, thereby reducing error 
propagation and increasing robustness. When applied to automated report generation, 
agentic AI can coordinate the entire lifecycle: ingesting documents, selecting 
transformations, generating executable code, validating results, and producing narrative 
and visual outputs. 

Before constructing a fully autonomous agentic pipeline, it is essential to first identify 
the optimal algorithmic structure for the report-building workflow. Agentic systems rely on 
a predefined space of tools and capabilities. If this space is suboptimal , redundant, or 
contains low-quality operations, the agents will form inefficient or even failed workflows. 
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Scientific evidence shows that agent-based systems are highly sensitive to the structure 
of available operations, often suffering from combinatorial explosion and suboptimal 
planning when the action space is not pre-optimized [24]. Therefore, determining the 
optimal algorithm, through GAs, evolutionary search, or analytical design, ensures that 
the agentic system operates within a validated, minimal, high-quality set of operations, 
maximizing performance and sustainability. Only after this optimization step, agentic AI 
can reliably construct scalable, interpretable, and efficient multi-visual report generation 
pipelines. 

MATERIALS AND METHODS  

Modern industrial companies support reports from numerous suppliers and customers 
in hundreds of disparate formats that differ in structure, data types, language, context, and 
semantic relationships. Those reports contain different types of CD, such as transactional, 
contextual, and semantic. This needs to be properly extracted, transformed, and integrated 
into the appropriate SQL, VectorDB, and GraphDB repositories, respectively. The growth 
in the number of formats, the dynamic nature of changing business requirements, and the 
need for scalability create a demand for continuous, sustainable optimization of CD 
processing processes. 

In real industrial conditions, testing all possible combinations of ETL, ML, and LLM 
operations is extremely expensive, risky, and unsustainable: it requires significant time and 
computing resources, can disrupt productive processes, and lead to data quality losses. 
Therefore, the primary task is to create a simulation model that allows for virtually exploring 
and optimising data processing pipelines before their physical deployment. The most 
suitable tool for such optimization is GAs. Thanks to the evolutionary operators of selection, 
crossover, and mutation, GAs can effectively explore a large space of possible processing 
configurations and find stable and minimally complex pipeline variants. 

Formalization of the problem 
The data processing and analytics pipeline is shown in Fig. 1. Users can provide input 

reports in various formats, such as PDF, XLSX, databases, and APIs containing raw data 
to the pipeline. An algorithmic workflow processes the data through multiple stages: 𝑂1, 𝑂𝑖  , 
𝑂𝑗   and 𝑂𝑙  , extracting insights and transforming it. The system integrates data from multiple 

storage systems, including SQL databases, VectorDBs, and GraphDBs, ensuring 
compatibility with various data formats.  

 

Fig. 1. Report generation approach. 

A user defines the desired outputs as visual components, which determine the 
analysis scope, metrics, and visualizations in the report. Based on these preferences, the 
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processed data is transformed into tailored analytics outputs, such as visual charts or 
custom reports. 

This architecture supports flexible processing, allowing dynamic user-driven 
customization of outputs and efficient multi-database integration. It is particularly useful for 
applications where decision-making relies on consolidated, processed insights from 
diverse and complex datasets and for automation based on an Agentic AI or multi-agent 
approaches. 

Let the industrial report processing system be constructed as an evolutionary-adaptive 
algorithm A, consisting of an ordered set of operations: 

 𝐴 =  { 𝑜1, 𝑜2, . . . , 𝑜𝑙},   𝑜𝑖 𝜖 𝑂, (1) 

where O is the universal set of all possible operations (ETL, ML, LLM, Visualization). 
Each operation is defined as: 

 𝑜𝑖 = (𝑡𝑖 , 𝜃𝑖, 𝐷𝑖), (2) 

where: 𝑡𝑖 is type of operations (ETL, ML, LLM, Visualization); 𝜃𝑖 – parameters of 

operations; 𝐷𝑖  = ⊆ 𝑂 ×  𝑂 – a set of dependencies (pre- and post-conditions). 

There are three main types of dependencies in CD processing: structural, semantic, 
and functional. In case of structural dependencies, an operation 𝑜𝑗 may only be executed 

after the other operation 𝑜𝑖 , for example 𝑜𝑖 ≼  𝑜𝑗  . Formally: 

 ∀𝑜𝑗 ∈  𝐴: 𝑃𝑟𝑒(𝑜𝑗)  ⊆  𝐴. (3) 

The operation 𝑜𝑗  requires semantic entities produced earlier: 

 𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠(𝑜𝑗)  ⊆ ∪𝑖<𝑗 𝑂𝑢𝑡𝑝𝑢𝑡(𝑜𝑖), (4) 

Example: “LLM summarization” depends on “context normalization”, which depends 
on “Entity extraction”. 

Operation 𝑜𝑗  may require a specific type of input: 

 𝑇𝑦𝑝𝑒𝐼𝑛(𝑜𝑗) = 𝑇𝑦𝑝𝑒𝑂𝑢𝑡(𝑜𝑖). (5) 

Example: “ML classification” requires embeddings produced by a “vectorization 
operation”. 

Therefore, a CD processing algorithm 𝐴 is valid when the conditions (3), (4), and (5) 

are met simultaneously. Thus, GA evolves not arbitrary sequences but structurally valid 
algorithms. 

The context of a document 𝑐 ∈ 𝐶 constrains which operations may be applied: 

 𝑂𝑐 = {𝑜 ∈  𝑂 ∣  𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒(𝑜, 𝑐) = 1}. (6) 

Example of context-dependent operations: 

• if a document is in Chinese → translation “+” multilingual normalization required; 

• If PDF → OCR and structural extraction are required; 

• If it contains graphical tables → table reconstruction is needed. 

Thus:  𝐴𝑐  ⊆  𝑂𝑐.  

Data transformation through the algorithm 𝐴 is defined as:  
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 𝑋0 = 𝑟 ∈  𝑅;    𝑋𝑖+1 = 𝑜𝑖 (𝑋𝑖);    𝑋𝑙 = 𝐴(𝑟). (7) 

Required outputs: transactional data 𝑇(𝑟), contextual embeddings 𝑉(𝑟), and 

semantic graph 𝐺(𝑟). Algorithm correctness condition 𝑇(𝑟), 𝑉(𝑟), 𝐺(𝑟) ≠⊘:. 

The optimization objective of the fitness function with dependency penalties is: 

 𝐹(𝐴) = 𝛽1𝐸(𝐴) + 𝛽2𝐿(𝐴) − 𝛽3𝑄(𝐴) − 𝛽4𝑆(𝐴) + 𝛽5𝐷(𝐴), (8) 

where: 𝐸(𝐴) is number of operations, 𝐿(𝐴) – latency/compute cost, 𝑄(𝐴) – extraction 

quality such as accuracy, recall, and consistency, 𝑆(𝐴) – sustainability/adaptiveness, 𝐷(𝐴) 

– dependency violation penalty. Penalty: 

 𝐷(𝐴) = 𝜆 ⋅  |{𝑜𝑖 ∈ 𝐴 ∣  𝑛𝑜𝑡  𝑉𝑎𝑙𝑖𝑑(𝑜𝑖)}|, (9) 

If the algorithm satisfies all dependencies, it will be 1, otherwise 0. Therefore, algorithm 
validity, using (3), (4), and (5), is being calculated: 

 𝑉𝑎𝑙𝑖𝑑(𝐴) = ⋀𝑗=1
𝑙 [𝑃𝑟𝑒(𝑜𝑗) ⊆ {𝑜1, . . . , 𝑜𝑗−1}] ∧ [𝑇𝑦𝑝𝑒𝐼𝑛(𝑜𝑗) = 𝑇𝑦𝑝𝑒𝑂𝑢𝑡(𝑜𝑗−1)]. (10) 

Finally, the optimization objective: 

 𝐴 ∗ = 𝑎𝑟𝑔  𝑚𝑖𝑛𝑃𝜖𝑃𝑣𝑎𝑙𝑖𝑑
𝐹(𝐴). (11) 

The goal is to find and evolutionarily optimize a data-processing algorithm, which 
emulates a report processing pipeline, that satisfies all structural, functional, and semantic 
dependencies between operations while minimising the number of operations and 
computational cost, maximizing the extraction quality of transactional, contextual, and 
semantic data, and maintaining adaptability to new report formats. 

Sets of operations for experiments  
Defining sets of ETL, ML, LLM, and visualization operations is essential for building a 

formal, managed, and optimized report processing process. When a system receives 
heterogeneous reports, it must know what transformations to perform: what data to parse, 
what embeddings to create, how to aggregate, and where to store the information. A clear 
separation of operations allows building scalable pipelines that support three data types: 
transactional (SQL), contextual (VectorDB), and semantic (GraphDB). It also provides 
automatic selection of ML, LLM, and visualization components and optimization of their 
sequence using GAs. Examples of operations are shown in Table 1. 

The global operation space can be described as: 

 𝑂 = 𝑂𝐸𝑇𝐿 ∪ 𝑂𝑀𝐿 ∪ 𝑂𝐿𝐿𝑀 ∪ 𝑂𝑉𝐼𝑆, (12) 

where: 𝑂𝐸𝑇𝐿 are operations for loading, converting, merging and storing data; 𝑂𝑀𝐿 – 

operations for statistical and machine learning; 𝑂𝐿𝐿𝑀 – semantic, linguistic and reasoning 

operations; 𝑂𝑉𝐼𝑆 – operations for building reports and visualizations. 

Combined operation space is a unified space of all possible operations that a system 
can use for automated report processing. It combines four large classes: ETL, ML, LLM, 
and Visualization. Each operation performs a specific function such as parsing, cleansing, 
aggregation, classification, semantic extraction, text generation, or visualization of results. 
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Table 1. Sets of used operations in experiments 

Operation Functionality Samples 

𝑂𝐸𝑇𝐿
𝑖𝑛𝑔

 
Input, upload, 
and ingestion 

UploadFile, DownloadFromAPI, IngestEmail, FetchFTP 

𝑂𝐸𝑇𝐿
𝑝𝑎𝑟𝑠𝑒

 
Parsing and 
extraction 

PDFParse, OCR, TableDetection, ExcelParse, 
CSVParse, ImageToTable, HTMLParse 

𝑂𝐸𝑇𝐿
𝑛𝑜𝑟𝑚 

Data 
normalization 

CleanText, NormalizeNumbers, Deduplicate, 
FixEncoding, DateNormalization, CurrencyNormalization 

𝑂𝐸𝑇𝐿
𝑎𝑔𝑔

 
Data aggregation 

and fusion 
JoinRecords, MergeSources, GroupBy, Summarize, 

Pivot, Unpivot 

𝑂𝐸𝑇𝐿
𝑠𝑡𝑜𝑟𝑒 Data storing StoreSQL(T), StoreVectorDB(V), StoreGraphDB(G) 

𝑂𝐸𝑇𝐿
𝑟𝑒𝑎𝑑  Data reading ReadSQL, ReadVector, ReadGraph 

𝑂𝑀𝐿
𝑐𝑙𝑎𝑠 ML classification 

DocumentTypeClassifier, AnomalyClassifier, 
SupplierCategoryClassifier 

𝑂𝑀𝐿
𝑟𝑒𝑔

 ML regression 
PredictMissingValues, ForecastQuantities, 
CostRegression, DeliveryTimeRegression 

𝑂𝑀𝐿
𝑐𝑙𝑢𝑠𝑡 ML clustering ClusterReports, ClusterSuppliers, ClusterContentTopics 

𝑂𝑀𝐿
𝑒𝑚𝑏 

Embedding- 
based ML 

ComputeEmbeddings, SemanticSimilarity, NNRetrieval 

𝑂𝐿𝐿𝑀
𝑟𝑒𝑎𝑠𝑜𝑛 

Semantic 
understanding 
and reasoning 

SemanticParsing, LogicalInference, MultiHopReasoning, 
ConstraintValidation 

𝑂𝐿𝐿𝑀
𝑔𝑒𝑛

 
Summarization 
and generation 

ShortSummary, DetailedSummary, ExecutiveReport, 
NarrativeGeneration 

𝑂𝐿𝐿𝑀
𝑒𝑥𝑡𝑟𝑎𝑐𝑡 

Information 
extraction 

EntityExtraction, RelationExtraction, AttributeExtraction, 
SchemaInduction 

𝑂𝐿𝐿𝑀
𝑡𝑟𝑎𝑛𝑠 Transformation 

Translate, NormalizeTerms, Rewrite, CleanNoise, 
ContextualRewriting 

𝑂𝐿𝐿𝑀
𝑒𝑡𝑙  LLM for ETL 

LLM-TableReconstruction, LLM-DataValidation, LLM-
SQLQueryGeneration 

𝑂𝑉𝐼𝑆
𝑏𝑎𝑠𝑖𝑐  Basic charts BarChart, LineChart, PieChart, Histogram, ScatterPlot 

𝑂𝑉𝐼𝑆
𝑎𝑑𝑣 

Advanced 
analytics visuals 

Heatmap, Sankey, GeoMap, TimeSeriesForecastPlot, 
CorrelationMatrix 

𝑂𝑉𝐼𝑆
𝑛𝑎𝑟𝑟 

Narrative 
visualization 

ChartExplanation, NarrativeAnalytics, LLM-
GeneratedReport 

𝑁𝑂𝑃 No Operation NOP 

 

Combining these sets into a single space 𝑂 allows: 

• to consider any operation as a gene in the pipeline chromosome; 

• to build flexible, adaptive, and diverse pipelines; 

• allow the GA to freely combine and optimize different types of operations; 

• provide support for all data types: transactional (SQL), contextual (VectorDB), and 
semantic (GraphDB). 
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Thus, the combined operation space is a foundation that utilizes all the transformation 
capabilities that the system can perform on data. Thus, for example, the combined 
operation space can be defined: 

 𝑂 = 𝑂𝐸𝑇𝐿
𝑖𝑛𝑔

∪ 𝑂𝐸𝑇𝐿
𝑝𝑎𝑟𝑠𝑒

∪ 𝑂𝐸𝑇𝐿
𝑛𝑜𝑟𝑚 ∪ 𝑂𝐸𝑇𝐿

𝑎𝑔𝑔
∪ 𝑂𝐸𝑇𝐿

𝑠𝑡𝑜𝑟𝑒 ∪ 𝑂𝑀𝐿 ∪ 𝑂𝐿𝐿𝑀 ∪ 𝑂𝑉𝐼𝑆, (13) 

Every element 𝑂 can be gene in a chromosome, forming an executable pipeline. 

General model of operation  
Each operation should be formalized within a unified operational specification suitable 

for LLM, ML, ETL, and Visualization classes. Thus, an operation is described as: 

 𝑜 = (𝑖𝑑, 𝑡𝑦𝑝𝑒, 𝑋𝑖𝑛 , 𝑋𝑜𝑢𝑡, 𝜃, 𝐶, 𝐷𝑒𝑝), (14) 

where: 𝑖𝑑 is unique transaction identifier; 𝑡𝑦𝑝𝑒 – class of ETL, ML, LLM or VIS; 𝑋𝑖𝑛 – type 

of input data; 𝑋𝑜𝑢𝑡 – type of output data; 𝜃 – operation parameters; 𝐶 – contextual 

execution conditions and 𝐷𝑒𝑝 – depending on other operations. 

Prepare GA for experiments 
Encoding operations and chromosome structure. Each operation from the combined 

operation space (ETL, ML, LLM, VIS) is encoded as a gene, represented by a unique 
integer or symbolic token: 

 𝑜𝑖 → 𝑔𝑖 ∈ 𝛴, (15) 

where 𝛴 is the operation alphabet. 

In the classical formulation of evolutionary pipelines, a chromosome is represented as 
a single linear sequence of operations: 

 𝑃 = [𝑔1, 𝑔2, … , 𝑔𝐿], (16) 

where each gene corresponds to a transformation step in a pipeline.  
Because different pipelines may require different numbers of operations, we use a 

fixed-length chromosome. A fixed length 𝐿 guarantees comparability among individuals and 
stable crossover or mutation behaviour. To allow variable-length logic within a fixed-length 
chromosome, unused positions are filled with a 𝑁𝑂𝑃 gene: 

 𝑁𝑂𝑃(𝑋) = 𝑋. (17) 

The 𝑁𝑂𝑃 operator allows the GA to simulate shorter pipelines within a fixed-length 

representation, supports incremental growth of solutions, and prevents destructive 
crossover.  

However, this representation encodes only one computational workflow, suitable for 
generating a single analytical output (one visualization or one analytical component). In the 
context of automated report generation, a user typically requires multiple analytical outputs 
simultaneously, such as n different charts, KPIs, summaries, embeddings, graphs or 
others. Each of these outputs must be built by a distinct computational pipeline, possibly 
sharing some operations but often diverging after early stages. Therefore, a single linear 
chromosome is insufficient. 

Typical document-processing pipelines include from 20 to 50 operations, depending 
on operational diversity. A single pipeline builds only one analytical output, but real reports 
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require multiple independent visuals. In this case, the chromosome must be represented 
as a matrix of size 𝐿 × 𝑛. Consequently, the GA population (Fig. 2) becomes a tensor 
𝑀 × 𝐿 × 𝑛, enabling simultaneous evolution of multiple pipelines under shared constraints: 

 𝑃 ∈ 𝑅𝐿×𝑛, (18) 

where: 𝐿 is max pipeline length (50 operations per one visual or analytical component), 𝑛 

– number of requested visuals or analytical components, each column 𝑃𝑖,𝑗 encodes one 

full algorithmic pipeline for visual 𝑗. 

 
Fig. 2. Structure of a chromosome. 

With matrix chromosomes, the population is no longer a 2-D matrix (population size × 
genome length). It becomes a 3-dimensional tensor: 

 𝑃 ∈ 𝑅𝑀 × 𝐿 × 𝑛, (19) 

where: 𝑀 is population size, 𝐿 – pipeline length per output, 𝑛 – number of independent 

visuals. 
The proposed chromosome’s structure considers: 

• Multi-objective report generation. A report with 𝑛 visuals is not a single-objective 

optimization problem but a multi-pipeline multi-objective system. Each visual 
requires a different data-processing workflow. 

• Preservation of algorithm (pipeline) independence. Encoding all visuals in a single 
vector would mix operations across visuals and destroy semantic locality. Matrix 
representation preserves the independence of pipelines. 

• Parallel evolution in a shared context. Early operations such as parsing, OCR, and 
aggregations may be shared, while later stages such as special aggregations, ML, 
LLM, or visualization diverge. Matrix form allows partial sharing naturally. 

• Tensor representation enables proper genetic operators. Mutation and crossover 
can be applied, such as column-wise (per visual), row-wise (per pipeline depth), 
and block-wise (submatrix crossover). 

• Scalable and sustainable optimization. Industrial reports frequently contain 10-20 
visuals, avoiding redundant computation and ensuring consistency. 

The initial population is created using heuristic seeding. We assume that a subset of 
10-20% of the population is initialized using heuristically valid partial pipelines: 

• parsing → normalization → embedding → ML/LLM → storage; 
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• OCR → table reconstruction → aggregation → storage; 

• parsing → LLM extraction → graph building. 
This accelerates convergence. 
Some individuals are initialized with many NOP genes and a small number of 

operations inserted in valid positions. This encourages smooth evolutionary growth from 
simple to complex solutions. 

RESULTS AND DISCUSSION 

The proposed GA was evaluated through controlled simulations designed to model 
the automated construction of multi-visual analytical reports. Due to the limited quantity of 
the prepared operations, we cannot allow the use of a large population. Thus, the 
experiment used a population of 40 matrix-encoded chromosomes, each representing a 

set of three parallel pipelines (one per visual) with a maximum depth 𝐿 =  30 of operations. 

Thus, each chromosome formed a tensor-shaped individual of size 30 × 3, while the entire 
population spanned a tensor of size 40 × 30 × 3. Such representation enabled the 
simultaneous evolution of multiple workflows required for multi-visual reporting, which 
cannot be encoded in a classical one-dimensional chromosome. 

Fitness function evaluation 
The GA was executed for 50 generations. Fitness was calculated per visual using a 

function that rewarded: sustainable pipeline length (~10 operations), presence of ETL, ML, 
LLM, and VIS categories, and overall completeness of the workflow.  

For each individual, the fitness is computed per visual (per column) and then summed 
across visuals: 

 𝐹(𝑃) = 𝑣 = ∑ 𝑓(𝑃𝑣)

𝑁𝑣𝑖𝑠

𝑣=1

. (20) 

Example of calculations for one visual component: 

𝑓 = −∣ 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ − 10 ∣ + 3 ⋅ ℎ𝑎𝑠𝐸𝑇𝐿 + 

        +2 ⋅ ℎ𝑎𝑠𝑀𝐿 + 2 ⋅ ℎ𝑎𝑠_𝐿𝐿𝑀 + 4 ⋅ ℎ𝑎𝑠_𝑉𝐼𝑆. 

As is seen from the provided example, we expect approximately 10 operations in the 
pipeline as an effective length. GA optimization dynamics (Fig. 3) show rapid improvement 
during the first 10 generations, followed by gradual stabilization. 

 

Fig. 3. Fitness function estimation. 
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The best fitness converged at 33, while the population mean stabilised around 26. 
This indicates that the GA successfully moved from sparse, primarily NOP-heavy pipelines 
toward meaningful multi-stage workflows, combining ETL, ML, LLM, and VIS operations. 

Pipeline length distribution 
Fig. 4 shows the distribution of effective pipeline lengths for the final generation. The 

population converged around 10-14 operations per pipeline, which aligns with the 
sustainability objective encoded into the fitness function. 

 
Fig. 4. Pipeline length distribution. 

Pipelines shorter than 6 steps lacked analytic capability, while pipelines longer than 
15 steps accumulated penalties due to inefficiency. The GA thus demonstrated an 
emergent preference for compact, interpretable, resource-efficient pipelines. 

Pipeline decoding 
The best-performing chromosome consisted of a 30×3 matrix, in which three distinct 

pipelines were evolved. Each pipeline included a mixture of: 

• ETL steps: parsing, normalization, and table extraction; 

• ML operations: classification, embedding computation, regression, or clustering; 

• LLM methods: semantic parsing, summarization, and textual reconstruction; 

• Visualization components for final chart generation. 
Decoding the matrix revealed three semantically coherent workflows: 

• visual 1: ETL → ML → LLM → VIS, suitable for KPIs and trend analysis; 

• visual 2: ETL → ML → LLM → VIS, producing semantic cluster views; 

• visual 3: ETL → LLM → VIS, producing narrative-style or categorical summaries. 
The existence of all four operation classes in the final chromosome confirms that the 

GA learned the implicit structure of real-world analytical reporting pipelines, even though 
no explicit constraints, beyond validity and type matching, forced such ordering. To validate 
that the evolved pipelines correspond to meaningful outputs, three synthetic visuals were 
generated: 

• The regression forecast chart (Fig. 5) represents time-series prediction, illustrating 
the ML segment of the pipeline. 

• Semantic embedding clusters (Fig. 6) represent LLM with ML synergy for 
contextual analytics. 

• The categorical summary chart (Fig. 7) represents ETL aggregation followed by 
basic visualization. 

These visuals emulate typical report components found in automated dashboards: 
trend analysis, semantic grouping, and KPI summaries. 
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Fig. 5. Regression forecast chart. 

 
The ability of the evolved pipelines to generate full visuals demonstrates that the GA 

was able to construct functional workflows, not just syntactic sequences of operations. 

 

Fig. 6. Semantic embedding clusters. 

 

 

Fig. 7. Categorical summary chart. 
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The experimental results confirm several critical findings: 

• Matrix chromosome encoding works. Encoding the chromosome as a matrix 
(pipeline-per-visual) supports parallel workflow evolution and allows GA to optimize 
complete multi-visual reports. 

• GA can learn sustainable algorithms (pipelines). The convergence around 10-14 
operations demonstrates that the fitness function effectively guides the algorithm 
toward sustainable ETL, ML, LLM, and VIS chains. 

• Automatic multimodal report construction is feasible. The final pipelines 
successfully generated three distinct and meaningful visuals. 

• Emergency structure matches human workflow design. Despite no explicit manual 
design, the GA consistently evolved a logical ordering: ETL first (ingestion, parsing, 
cleaning), ML/LLM next (interpretation, semantic enhancement) and visualization 
last (final chart generation). 

• Population-level diversity was maintained. Although fitness converged, the 
distribution of pipeline structures remained diverse, indicating that mutation and 
crossover operators preserved exploration. 

These results support the viability of using a tensor-based GA for industrial report 
automation, especially in heterogeneous data environments requiring simultaneous 
multimodal analytics. 

CONCLUSION  

This research demonstrates that evolutionary optimization, when combined with 
modern ML, LLMs, and agentic AI principles, provides an effective methodological 
foundation for automated report generation in heterogeneous industrial environments. The 
developed tensor-based GA model successfully evolves multi-stage, multi-visual analytic 
pipelines by representing each report as a matrix of parallel workflows and optimizing them 
jointly. Experimental results confirm that the proposed framework converges toward 
sustainable, interpretable, and structurally valid pipelines, balancing ETL, ML, LLM, and 
VIS operations into coherent analytic sequences. 

The study also reveals that as the operational space expands, through the growth of 
meaning-space operations, improved code-generation capabilities, and the emergence of 
agentic AI systems, the effectiveness and scalability of evolutionary pipeline synthesis 
increase substantially. These technological developments amplify the adaptability and 
autonomy of the system, enabling dynamic reconfiguration of analytic workflows in 
response to new formats, data modalities, and reporting objectives. Consequently, 
evolutionary optimization becomes a foundational step for future agentic systems. It 
establishes an optimized, validated and semantically coherent action space from which AI 
agents can reliably plan, coordinate and execute reporting tasks. The findings thus position 
evolutionary algorithm-driven pipeline synthesis as a crucial enabling technology for next-
generation autonomous analytic ecosystems. 

The research introduces a novel encoding of analytic pipelines as a matrix L × N rather 
than a linear sequence, enabling simultaneous evolution of multiple report visuals within a 
single chromosome. This produces richer, more scalable, and structurally coherent 
solutions compared to classical GA pipeline representations. 

The proposed framework integrates heterogeneous operation types into a single 
evolutionary unified multimodal operation space “ETL-ML-LLM-VIS”. This unification is 
unprecedented in existing AutoML or AutoETL systems. The experiments prove that 
complex reporting pipelines can emerge autonomously from evolutionary pressure, without 
manually encoded domain rules, which is an important step toward self-assembling 
analytics systems. 

A key contribution of this work is the formalization of LLM-based semantic operations, 
such as summarization, multi-hop reasoning, entity and relation extraction, and contextual 
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normalization, as evolvable genetic components within the pipeline. Treating meaning-
space transformations as genes places them on equal theoretical footing with classical 
feature engineering, ML, and ETL operations, thereby extending the domain of evolutionary 
computation from structural data manipulation into the realm of semantic cognition. 

The study formulates a new design principle: before constructing agentic AI systems 
capable of autonomous report generation, the underlying operation space must be 
optimized through evolutionary search. This ensures that the action space available to 
agents is minimal, non-redundant, sustainable, and functionally validated. 

ACKNOWLEDGMENTS AND FUNDING SOURCES 

The author received no financial support for the research, writing and publication of 
this article. 

COMPLIANCE WITH ETHICAL STANDARDS  

The author declares that the research was conducted in the absence of any conflict of 
interest. 

AUTHOR CONTRIBUTIONS 

The author has read and agreed to the published version of the manuscript. 

REFERENCES 

[1] Fan, J., Han, F., & Liu, H. (2014). Challenges of Big Data analysis. National Science 
Review, 1(2), 293–314. https://doi.org/10.1093/nsr/nwt032  

[2] Fernandes, A. A. A., Koehler, M., Konstantinou, N., et al. (2023). Data preparation: A 
technological perspective and review. SN Computer Science, 4(425). 
https://doi.org/10.1007/s42979-023-01828-8  

[3] Ahlawat, P., Borgman, J., Eden, S., Huels, S., Iandiorio, J., Kumar, A., & Zakahi, P. 
(2023). A new architecture to manage data costs and complexity. BCG. 
https://on.bcg.com/3HOP7vQ  

[4] Kwon, N., Comuzzi, M. (2023). Genetic Algorithms for AutoML in Process Predictive 
Monitoring. In: Montali, M., Senderovich, A., Weidlich, M. (eds) Process Mining 
Workshops. ICPM 2022. Lecture Notes in Business Information Processing, vol 468. 
Springer, Cham. https://doi.org/10.1007/978-3-031-27815-0_18  

[5] Shi, K., Saad, S. (2023). Automated feature engineering for AutoML using genetic 
algorithms. In Proceedings of the 15th International Joint Conference on 
Computational Intelligence (pp. 450-459). SCITEPRESS. 
https://www.scitepress.org/Papers/2023/120904/120904.pdf  

[6] Hernandez, J., Saini, A., Ghosh, A., Moore, J. (2025). The tree-based pipeline 
optimization tool: Tackling biomedical research problems with genetic programming 
and automated machine learning. Patterns. 6. 101314. 
10.1016/j.patter.2025.101314. https://doi.org/10.1016/j.patter.2025.101314  

[7] Jiao, J., Yuan, J. (2025). GA-PRE: A Genetic Algorithm-Based Automatic Data 
Preprocessing Algorithm. In Proceedings of the Genetic and Evolutionary 
Computation Conference (GECCO '25). Association for Computing Machinery, New 
York, NY, USA, 1371–1378. https://doi.org/10.1145/3712256.3726312  

[8] Polonskaia, I. S., Nikitin, N. O., Revin, I., Vychuzhanin, P., & Kalyuzhnaya, A. V. 
(2021, June). Multi-objective evolutionary design of composite data-driven models. In 
2021 IEEE Congress on Evolutionary Computation (CEC) (pp. 926-933). IEEE. 
https://doi.org/10.1109/CEC45853.2021.9504773  

[9] Jing, Z., Su, Y., Han, Y., Yuan, B., Liu, C., Xu, H., & Chen, K. (2024). When Large 
Language Models Meet Vector Databases: A Survey. arXiv. 
https://arxiv.org/abs/2402.01763  

https://doi.org/10.1093/nsr/nwt032
https://doi.org/10.1007/s42979-023-01828-8
https://on.bcg.com/3HOP7vQ
https://doi.org/10.1007/978-3-031-27815-0_18
https://www.scitepress.org/Papers/2023/120904/120904.pdf
https://doi.org/10.1016/j.patter.2025.101314
https://doi.org/10.1145/3712256.3726312
https://doi.org/10.1109/CEC45853.2021.9504773
https://arxiv.org/abs/2402.01763


Sustainable Optimization of Consolidated Data…  

Електроніка та інформаційні технології • 2025 • Випуск 32 53 

[10] Sequeda, J., Allemang, D., & Jacob, B. (2025). Knowledge graphs as a source of 
trust for LLM-powered enterprise question answering. Journal of Web Semantics, 85, 
100858. https://doi.org/10.1016/j.websem.2024.100858  

[11] Instaclustr. (2024). Vector Databases and LLMs: Better Together. 
https://www.instaclustr.com/education/open-source-ai/vector-databases-and-llms-
better-together/  

[12] DeepFA AI. (2025). Multi-Agent Systems in Artificial Intelligence. 
https://deepfa.ir/en/blog/multi-agent-systems-artificial-intelligence  

[13] Ramachandran, A. (2025). Revolutionizing Knowledge Graphs with Multi-Agent 
Systems: AI-Powered Construction, Enrichment, and Applications. ResearchGate 

[14] Mehta, V., Batra, N., Poonam, Goyal, S., Kaur, A., Dudekula, K. V., & Victor, G. J. 
(2024). Machine Learning Based Exploratory Data Analysis and Diagnosis of Chronic 
Kidney Disease (CKD). https://doi.org/10.4108/eetpht.10.5512  

[15] Da Poian, V., Theiling, B., Clough, L., McKinney, B., Major, J., Chen, J., & Hörst, S. 
(2023). Exploratory data analysis (EDA) machine learning approaches for ocean 
world analogue-mass spectrometry. https://doi.org/10.3389/fspas.2023.1134141  

[16] Nayak, U. (2025). AI-Powered Data Pipelines: Leveraging Machine Learning for ETL 
Optimization. Journal of Software Engineering and Simulation, 11(6), 134-136. 

[17] Heffetz, Y., Vainstein, R., & Katz, G. (2019). DeepLine: AutoML Tool for Pipelines 
Generation using Deep Reinforcement Learning and Hierarchical Actions Filtering. 
arXiv. https://doi.org/10.48550/arXiv.1911.00061  

[18] Chanda, D. (2024). Automated ETL Pipelines for Modern Data Warehousing: 
Architectures, Challenges, and Emerging Solutions. The Eastasouth Journal of 
Information System and Computer Science, 1(03), 209–212. 
https://doi.org/10.58812/esiscs.v1i03.523  

[19] Lyashkevych, L., Lyashkevych, V., & Shuvar, R. (2024). Exploratory data analysis 
possibility in the meaning space using large language models. Electronics and 
Information Technologies, 1(25), 9, 102–116. http://dx.doi.org/10.30970/eli.25.9  

[20] Chen, M., Tworek, J., Jun, H., et al. (2021). Evaluating large language models 
trained on code. arXiv:2107.03374. https://doi.org/10.48550/arXiv.2107.03374  

[21] Wang, Y., Yin, W., Li, B., et al. (2023). CodeT5+: Open code large language models 
for code understanding and generation. arXiv:2305.07922. 
https://doi.org/10.48550/arXiv.2305.07922  

[22] Rozière, B., Gehring, J., Gloeckle, F., et al. (2023). Code Llama: Open foundation 
models for code. arXiv:2308.12950. https://doi.org/10.48550/arXiv.2308.12950 

[23] Zhang, Y., Wang, C., Xie, T., & Huang, J. (2023). A survey on program synthesis 
with large language models. arXiv:2311.07989. 
https://doi.org/10.48550/arXiv.2311.07989  

[24] Schick, T., Dwivedi-Yu, J., Dessì, R., Raileanu, R., Lomeli, M., Hambro, E., 
Zettlemoyer, L., Cancedda, N., & Scialom, T. (2023). Toolformer: Language models 
can teach themselves to use tools. In Proceedings of the 37th International 
Conference on Neural Information Processing Systems (Article 2997, pp. 1–13). 
Curran Associates Inc. https://dl.acm.org/doi/10.5555/3666122.3669119.  

[25] Park, J. S., O'Brien, J., Cai, C. J., Morris, M. R., Liang, P., & Bernstein, M. S. (2023, 
October). Generative agents: Interactive simulacra of human behavior. In 
Proceedings of the 36th annual acm symposium on user interface software and 
technology (pp. 1-22). https://doi.org/10.48550/arXiv.2304.03442  
 
 
 

 

https://doi.org/10.1016/j.websem.2024.100858
https://www.instaclustr.com/education/open-source-ai/vector-databases-and-llms-better-together/
https://www.instaclustr.com/education/open-source-ai/vector-databases-and-llms-better-together/
https://deepfa.ir/en/blog/multi-agent-systems-artificial-intelligence
https://doi.org/10.4108/eetpht.10.5512
https://doi.org/10.3389/fspas.2023.1134141
https://doi.org/10.48550/arXiv.1911.00061
https://doi.org/10.58812/esiscs.v1i03.523
http://dx.doi.org/10.30970/eli.25.9
https://doi.org/10.48550/arXiv.2107.03374
https://doi.org/10.48550/arXiv.2305.07922
https://doi.org/10.48550/arXiv.2311.07989
https://dl.acm.org/doi/10.5555/3666122.3669119
https://doi.org/10.48550/arXiv.2304.03442


 Vasyl Lyashkevych 

54 Electronics and Information Technologies • 2025 • Issue 32 

СТАЛА ОПТИМІЗАЦІЯ АЛГОРИТМІВ ОБРОБКИ КОНСОЛІДОВАНИХ 

ДАНИХ НА ОСНОВІ МАШИННОГО НАВЧАННЯ ТА ГЕНЕТИЧНИХ 

АЛГОРИТМІВ 
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АНОТАЦІЯ  

Вступ. Автоматизація побудови аналітичних звітів у промислових компаніях 
набуває стратегічного значення через різноманіття форматів документів, збільшення 
обсягів даних та зростання вимог до швидкого формування багатокомпонентних 
аналітичних матеріалів. Традиційні ETL-конвеєри не справляються зі складністю 
сучасних інформаційних потоків, особливо коли у процес інтегруються машинне 
навчання, LLM-моделі та агентні системи. У зв’язку зі швидким прогресом генерації 
коду та автономних агентів, здатних виконувати складні аналітичні процедури, задача 
автоматичного конструювання звітних конвеєрів стає все більш перспективною та 
науково обґрунтованою. 

Матеріали та методи. Запропоновано еволюційну модель побудови алгоритмів 
для опрацювання консолідованих звітів на основі генетичних алгоритмів (ГА). Для 
генерації звітів, алгоритм визначає конвеєр для побудови візуального компоненту. 
Популяція визначається як тензор, що забезпечує паралельну еволюцію множини 
незалежних робочих потоків. Операції класифіковано у чотири групи: ETL, ML, LLM та 
VIS. Функція пристосованості оцінює сталу довжину конвеєру, покриття ключових типів 
операцій та їх структурну узгодженість. 

Результати. Експериментальні результати показали, що ГА швидко еволюціонує 
від випадкових NOP-домінованих структур до сталих, логічно узгоджених та 
функціональних конвеєрів довжиною 10-14 операцій. Найкращі хромосоми 
сформували три повноцінні візуальні компоненти: прогнозну регресійну модель, 
семантичну кластеризацію представлень вбудовування та категоріальну діаграму. 
Така еволюційна закономірність підтверджує, що комбіновані конвеєри можуть 
будуватися автоматично й адаптивно, а збільшення складності операцій у просторі 
“смислу”, що є векторним простором вбудовування, разом із розвитком генерації коду 
та агентних архітектур. 

Висновки. Запропонована модель демонструє ефективний механізм 
автоматизованого синтезу звітів з багатьма візуальними компонентами на основі 
еволюційних конвеєрів. Перспективність методу зростає із розвитком агентних систем 
ШІ та збільшенням кількості операцій у просторі смислу, що відкриває шлях до 
повністю автономних систем аналітичної звітності нового покоління. 

Ключові слова: консолідовані дані, сталий оптимізаційний підхід, машинне 
навчання, генетичні алгоритми, LLM, аналітика даних  
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