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ABSTRACT

Background. Landmine contamination remains a critical issue for more than 60
countries, including Ukraine, where the recovery of agriculture and infrastructure is
hampered by hidden explosive devices. The authors propose a passive land-mine
recognition approach that combines measurements of magnetic anomalies obtained with an
FLC-100 sensor and a Kolmogorov-Arnold Network (KAN), delivering high accuracy while
minimising the risk of detonation.

Materials and Methods. A baseline data set of 338 real measurements (sensor voltage
V, sensor height H, soil type S) was balanced by generating 50 synthetic records for every
“soil-mine” pair using a parameterised normal distribution. After normalising V and applying
one-hot encoding to S and the mine classes M, a three-dimensional feature space was
formed. Two KAN architectures were evaluated: KAN (3-16-16-4) and KAN (3-64-64-4), both
employing cubic B-splines to achieve high-precision mine recognition (> 95 % accuracy).
Training was conducted in PyKAN (PyTorch backend) for 65 epochs with a fixed spline grid
(k =3, m = 10) using the Adam optimiser.

Results and Discussion. The KAN (3-16-16-4) model achieved an accuracy of 93.56
% without overfitting; the main confusion occurred between the “anti-personnel” and “booby-
trap” classes. Increasing the number of neurons in each hidden layer to 64 raised the
accuracy to 95.59 % and eliminated the erroneous assignment of “anti-personnel” mines to
the “booby-trap” class. Both networks perfectly distinguished the “no-mine” and “anti-tank”
cases, confirming the robustness of spline activations to sensor noise.

Conclusion. The computer experiment shows that a Kolmogorov—Arnold neural network
with cubic B-spline weights provides robust recognition of different mine types (“no mine”,
“anti-tank mine”, “anti-personnel mine”, “booby-trap”) using magnetic-field sensor data (107"°
Tesla) with accuracy exceeding 95 %. Interpretable spline weights allow the contribution of
each feature to be analysed, ensuring high sensitivity to small anomalies and demonstrating
the scalability of KAN.

Keywords: Kolmogorov—Arnold network, fluxgate magnetic sensor, passive mine
detection

INTRODUCTION

Landmine detection remains a persistent and growing global concern, posing life-
threatening risks to millions of people. According to the Landmine Monitor 2023, landmines
and explosive remnants of war (ERW) continue to cause severe humanitarian consequen-
ces, with over 4,700 casualties reported globally in 2022 alone, the vast majority of whom
were civilians. More than 60 countries remain contaminated by landmines, presenting
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ongoing risks for local populations, especially in post-conflict regions such as Ukraine,
where land access, agricultural activity, and reconstruction are critically hindered [1]. In
post-war Ukraine, the problem of landmine contamination has become especially urgent,
with vast areas of agricultural and residential land requiring safe clearance. Traditional mine
detection techniques often lack the reliability and responsiveness needed for large-scale
humanitarian demining. Moreover, many active detection methods — based on emitting
electric signals — risk triggering explosive devices, endangering human operators.

A promising alternative is the use of passive detection systems [2], particularly those
based on magnetic field anomaly sensing [3], [4]. To enhance detection accuracy and
reduce operational risks, modern solutions increasingly rely on machine learning
techniques, including neural networks. However, neural networks often struggle with noise
and distortions in real-world sensor data. One method for improving the robustness and
pattern recognition capability of neural architectures is to use neural networks with
embedded spline-based functional components, such as Kolmogorov—Arnold Networks
(KANs), which are particularly effective at handling noisy and irregular data due to their
ability to learn smooth, localised approximations of complex functions.

The aim of this study is to develop an optimised architecture of Kolmogorov-Arnold
Networks in terms of the number of hidden layers, neurons per layer, and spline shape for
accurate recognition of mine types in soils of varying composition. This research is highly
relevant in the context of post-war recovery efforts in Ukraine, where effective and safe
detection of minefields plays a crucial role in restoring civil infrastructure and ensuring
public safety.

MATERIALS AND METHODS

Literature Review

Kolmogorov—Arnold Networks (KAN) represent a recent advancement in neural
network architecture inspired by the Kolmogorov—Arnold representation theorem. Unlike
traditional multilayer perceptrons (MLPs) that rely on fixed activation functions at each
node, KAN replaces every weight with a univariate, spline-parametrised function. This
allows KANs to learn richer functional representations with fewer parameters, making them
both efficient and interpretable [5].

In the work by Erdmann et al. [6], KAN was applied to a binary classification problem in
high-energy physics. The authors found that while multilayer KANs did not always outperform
standard MLPs in terms of accuracy, they demonstrated greater interpretability. Specifically,
the activation functions learned in deeper KANs differed significantly from those in shallow
models, indicating the architecture's capacity for more abstract feature extraction.

Somvanshi et al. [7] provide a comprehensive survey on KAN, outlining its theoretical
foundations and practical adaptations across domains such as biomedical analytics, time
series prediction, and graph learning. They highlight KAN’s flexibility and adaptability,
particularly in handling high-dimensional structured data.

Barasin et al. [8] explored KAN in the context of time series classification using the
UCR benchmark dataset. Their findings revealed that well-optimised KAN models
outperformed MLPs and achieved competitive results compared to state-of-the-art models
such as HIVE-COTEZ2, all while maintaining computational efficiency and robustness to
hyperparameter changes.

In terms of robustness, the study published in Applied Sciences assessed the
vulnerability of different KAN architectures to adversarial attacks [9]. Among the variants,
KAN-Mixer showed the best performance in resisting attacks while retaining strong
accuracy on clean data. This makes KAN suitable for safety-critical applications like mine
detection, where robustness is paramount.

In the field of remote sensing, Cheon [10] proposed combining pretrained CNNs with
KAN layers for scene classification using the EuroSAT dataset. The hybrid models
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achieved high classification accuracy with reduced parameter counts and faster training,
illustrating the potential for integrating KAN into real-time systems.

Drokin [11] extended KAN’s application to computer vision tasks, proposing
parameter-efficient KAN convolution layers and fine-tuning techniques. The results
demonstrated that KAN-based models can achieve strong performance in both image
classification and segmentation tasks, suggesting relevance to image-based mine
detection scenarios.

The reviewed literature suggests that KAN offers a unique combination of
interpretability, efficiency, and reliability across various classification domains. These
characteristics make it a promising candidate for mine detection, especially in post-war
Ukraine, where safety, dependability, and explainability are of paramount importance.
However, the optimisation of the Kolmogorov-Arnold Network architecture to improve
recognition accuracy — as well as the trade-off between training speed and recognition
precision —remains an open challenge, which is crucial in the context of mine detection.

Classification data

In this study, we utilised the dataset provided in [4], which focuses on the classification
of landmines based on magnetic field anomaly characteristics. The parameter values
employed in our experimental setup are summarised in Table 1. Furthermore, we analysed
the relationship between magnetic anomaly values and the soil type (Table 2), as well as
the distance between the magnetic sensor and the buried landmine (Table 3). The general
trends in magnetic field anomalies across different landmine types were also examined and
illustrated (Table 3).

To obtain reliable measurements of the magnetic anomalies surrounding subsurface
mines, the original study [4] employed a fluxgate magnetic sensor model FLC100 (10-1°
Tesla) [12], which demonstrated sensitivity to minute variations in the magnetic field. This
sensor-based approach enabled passive mine detection without the need for active signal
emission, thus reducing the risk of accidental detonation. The design and deployment of
the sensing mechanism were previously validated in [4], where a decision support system
for mine classification was developed using metaheuristic classifiers.

Table 1. Parameters data [4]

The Parameters
Output Data,

Input Data, “Independent Variables” “Dependent
Variable”
Voltage (V) High (H) Soil Type (S) Mine Type (M)

The value of the output
voltage of the FLC
Definition sensor is due to the

The distance 6 different types Types of mines
of the sensor of soil depending commonly found on

: : above the on the state of land; 4 different
action of the magnetic ; :
ground. moisture. classes of mines.
anomaly.
Dry and sandy No mine
Dry and purulent Anti-tank
Limit Dry and chalky Anti-personnel
values/ [0V, 10.6 V] [0 cm, 20 cm]
Class Wet and sandy

Booby trapped Anti-

Humid and humus
personnel

Wet and chalky
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Table 2. Dependence of magnetic field anomalies in the vicinity of mines on soil
type [4]

Anti-Personnel, Booby Trapped

Soil Type Null, V Anti-Tank, V v Anti-Personnel, V
Dry and sandy 3.560 10.400 3.830 5.590
Dry and purulent 3.500 7.500 3.920 5.590
Dry and chalky 3.720 10.400 6.890 2.406
Wet and sandy 3.780 10.400 6.220 4.490
Humid and humus 3.350 10.400 5.050 2.770
Wet and chalky 3.610 10.400 5.960 4.400

Preprocessing data

Data generation based on parameterised normal distribution

To improve the generalisation capability of the model on a limited dataset consisting
of 338 real records [4], an additional data generation procedure was applied using a
parameterised normal distribution.

The chosen method is based on generating new examples by adding pseudorandom
noise [13] to the original feature values VV and H within each subgroup of data defined by
a unique pair of soil type S and mine type M. For each such subgroup, the statistical
characteristics of the features are computed as follows:

w=V, oy=stdV), uy=H,  oy=std(H), (1)

where uy, uy — mean values of features V and H, respectively,
oy, oy — standard deviations of features V and H,

Table 3. Dependence of the magnetic field anomaly in the vicinity of mines on the
distance from the sensor to the ground [4]

Height (cm) Mine Type 1 Mine Type 2 Mine Type 3 Mine Type 4

Voltage, V Voltage, V Voltage, V Voltage, V
0.00 3.6 10.4 4.1 5.9
1.82 3.4 10.4 4.0 B3
3.64 3.4 10.4 3.8 5.0
5.45 2.8 10.4 3.9 4.4
7.27 2.9 9.5 3.6 4.3
9.09 2.7 8.3 3.4 4.25
10.91 2.9 7.0 3.4 4.2
12.73 2.6 6.4 3.45 4.05
14.55 2.5 6.2 3.5 3.9
16.36 2.6 4.8 3.8 3.2
18.18 2.6 4.6 3.2 3.2
20.00 2.4 4.5 3.2 3.1
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V, H — arithmetic means of the respective columns,
std(X) — standard deviations of features IV and H.
New examples are generated using the following formulas:

V! =V;+N(,0y - a),
(2)
H; =H; + N(0,0y4 - @),

where V;, H{ — newly generated values of magnetic field anomaly and height for the i-th
sample,
V;, H; — values sampled from an existing record in the subgroup,
a = 0.1 — noise intensity coefficient (empirically selected),
N (0, 0) — normally distributed random value with mean 0 and standard deviation o.

To ensure the physical plausibility of generated values, clipping was applied to
constrain them within real-world sensor bounds:

V! € [0.0V,10.6V],  H} € [0.0cm, 20.0cm], (3)

in accordance with the sensor specifications.
For each subgroup defined by (S,M), 50 new samples were generated, which
significantly increased the number of training examples and smoothed the data distribution.

Data preprocessing before training
Before training the neural network, the following preprocessing steps were performed:
1. Normalisation of magnetic anomaly feature V:

V-V
V’ = ) (4)
Oy

where V'— normalised magnetic anomaly value,
V' — original value of the magnetic anomaly,

V' — mean magnetic anomaly over the entire dataset,
oy — standard deviation of the magnetic anomaly.
2. Categorical encoding of the soil type variable S, which takes six values:

¢ “Dry and Sandy”.

¢ “Dry and Humus”.

¢ “Dry and Limy”.

¢ “Humid and Sandy”.

¢ “Humid and Humus”.

¢ “Humid and Limy”.

These categories were encoded using One-Hot Encoding, which transforms each

category into a binary vector of size six. For example, if the soil type is the second category
(“Dry and Humus”), the vector would be:

[0,1,0,0,0,0]. (5)
3. Target encoding. The mine types M, originally in categorical form, were first mapped to

numerical indices (0—4) and then encoded using one-hot encoding for input into the
neural network.
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This method preserved the internal structure and semantics of the data, ensured
physical interpretability of the generated values, and significantly improved the model’s
generalisation potential.

Mathematical Model of Kolmogorov—Arnold Networks

The articles [3], [4] address a multiclass classification task solved with classical
machine-learning techniques — artificial neural networks [14] and their variants, support-
vector machines [15], Bayesian approaches [16], decision trees, and others [17].

Let X be the feature space X = {V, H, S}, where V denotes the magnetic-field anomaly
in the vicinity of a mine (volts), H is the sensor height above the ground that covers the
mine, and S represents the soil type. The label setis Y = {0, 1, 2, 3}, whose elements
correspond to the classes “no mine,” “anti-tank mine,” “anti-personnel mine,” and “booby-
trap,” respectively.

The classification objective is to determine a mapping operator Y*: X — Y that assigns
any previously unseen object x € X to class y € Y while minimising the Euclidean error

minly* =y, (6)

where y the true class label and y* is the neural-network prediction [14].

KAN morphology
The Kolmogorov—Arnold Network (KAN) is a neural architecture inspired by the
Kolmogorov-Arnold representation theorem [18]. Unlike traditional MLPs that apply fixed
nonlinearities at nodes and learn linear weights, KANs apply learnable nonlinear
activation functions on edges, modelled as univariate splines. Each layer in a KAN
consists of a matrix of spline functions, and each neuron simply sums the outputs of
these spline-parameterised edges.

General architecture
We consider KAN architecture with the shape [3, 16, 16, 4] (Fig. 1), which includes an
input layer comprising 3 nodes corresponding to the input features, followed by two hidden
layers with 16 nodes each, and an output layer consisting of 4 nodes representing either
classification labels or regression targets.
The general forward propagation is expressed by the composition of KAN layers:

KAN (x) = (@3 © @1 0 D) (x), (7)

where each @; is a functional matrix consisting of learnable spline activations.
Every layer transforms its input by applying these univariate spline functions on each
edge, followed by summation at the next layer’s nodes.

Layer-wise formulation

Let the input vector be x©@ = x € R3. The subsequent layer computations are
defined as follows:
1. First Hidden Layer (Layer 0 — 1).

For each neuron j = 1,...,16 in the first hidden layer:

3
1 _ ) (. (0)
P ICHCY) ®

2. Second Hidden Layer (Layer 1 — 2).
For each neuron k = 1,...,16 in the second hidden layer:
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Fig. 1. General architecture of KAN.
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3. Output Layer (Layer 2 — 3).
For each output node m = 1,...,4:
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The final output of the model is:
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Spline Activation Functions
Each edge activation function (p](fi)(x) is defined as a combination of a residual
nonlinear term and a cubic B-spline [19]:

G+k—1
@(x) = wy - silu(x) + wy z Cm B (). (12)

m=0

where silu(x) = x/(1 + e ™) is the smooth SiLU function (acts as a residual base),
B,,,(x) are cubic B-spline basis functions (order k = 3),

G = 10 is the number of intervals — G + k = 13 of basis functions per spline,

Cm, are trainable spline coefficients,

wp, W, are trainable scalar weights controlling the contribution of the SiLU and the spline.

Spline Activation Functions

The total number of parameters can be calculated as follows. Each spline
contains G + k = 13 coefficients, in addition to two weights (wy, wy), resulting in 15
parameters per edge. The first layer (¢,) contains 3 X 16 = 48 edges, contributing 48 -
15 = 720 parameters. The second layer (¢,) has 16 X 16 = 256 edges, yielding 256 -
15 = 3840 parameters. The third layer (¢, ) includes 16 X 4 = 64 edges, resulting in 64 -
15 = 960 parameters. Therefore, the total number of parameters is 720 + 3840 + 960 =
5520.

Computational Environment and Tools

The details of the experimental environment, including the software tools and libraries,
are as follows:

Programming language: Python

Neural network library: PyKAN [20]

Hardware: Personal PC (AMD Ryzen 5 5600G CPU, NVIDIA GeForce RTX 4060
GPU)

Software:

¢ IntelliJ IDEA (with Python plugin support).

Python 3.x.
PyKAN library [20].
CUDA Toolkit (for GPU acceleration with NVIDIA RTX 4060).
PyTorch (backend library for PyKAN).
NumPy (for data manipulation).
Matplotlib (for visualisation of results).

RESULTS AND DISCUSSION

In this section, we present the setup and execution of the computer experiment aimed
at evaluating the performance of Kolmogorov—Arnold Networks (KANs) for a multiclass
classification task. The experiment involved fraining and comparing two network
architectures: KAN (3,16,16,4) and KAN (3,64,64,4). The architectures were chosen based
on the task's dimensionality, where the input space was three-dimensional, and the output
space consisted of four distinct classes.

The training was conducted using the PyKAN library [20] on the Python platform. The
settings for the networks included the use of cubic B-splines as basis functions, with the
order set to 3 and the grid size set to 10. These parameters provided a sufficient balance
between the flexibility of the spline approximation and computational efficiency.
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The network KAN (3,16,16,4) was trained first. It underwent a training process over a
65 epochs and achieved an accuracy of 93.56% on the test set. In the second case, the
KAN (3,64,64,4) architecture was trained. Due to its significantly higher number of
parameters, the training took a considerably longer time; however, it achieved an improved
test accuracy of approximately 95,59%.

During the training process, loss and accuracy curves were recorded for each model
to monitor convergence dynamics and to detect potential signs of overfitting. After the
evaluation phase, confusion matrices were generated to provide a detailed understanding
of classification performance across all classes. In addition to the visual analyses, a
comprehensive classification report was produced, presenting key metrics such as
precision, recall, and F1-score for each class.

The results of the experiments are illustrated through loss-accuracy curves, confusion
matrices, and a set of other performance metrics [21], which comprehensively describe the
behavior of both tested architectures.

For the KAN (3,16,16,4) network, the loss curve (Fig. 2) demonstrated a steady
decrease without abrupt oscillations, indicating stable convergence. The corresponding
accuracy curve (Fig. 2) showed consistent improvement throughout the training process,
reaching a plateau near 92.56%. The confusion matrices (Fig. 3) revealed that most
misclassifications occurred between the (specify which classes if possible), suggesting that
the network found these classes harder to differentiate given the feature space.

The normalized confusion matrix for the KAN (3—16—16—4) model, shown in Fig. 3b,
reflects almost perfect identification of the "no mine" and "anti-tank™ classes, with correct
detection rates reaching approximately ninety-seven percent. At the same time, the
majority of misclassifications occurred between the "anti-personnel" and "booby trap”
classes: around ten objects from the first category were confused with the second, while
the reverse misclassification happened almost twice as rarely. This asymmetry is explained
by the partial overlap of magnetic anomaly ranges and sensor height, indicating that the
three-dimensional feature space was insufficient to fully separate these mine types.

Despite this, the model exhibits stable convergence of the loss function and absence
of sharp fluctuations, indicating proper hyperparameter tuning and sufficient capacity for
the basic task. However, it also signals the need to enrich the feature space specifically in
the area where classification errors are observed.

On the other hand, the KAN (3,64,64,4) architecture, while requiring longer training
time due to the increased number of neurons, achieved superior classification results with
approximately 95% accuracy. Its loss curve (Fig. 4) exhibited a smoother descent, and its
accuracy curve (Fig. 4) achieved a slightly higher and more stable plateau compared to
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Fig. 2. Training accuracy and loss over epochs for KAN (3, 16, 16, 4).

EnekTtpoHika Ta iHpopmauinHi TexHonorii « 2025 « Bunyck 30 129



Ivan Peleshchak & Viacheslav Beltiukov

70

60

50

40

True label

r30

F20

10

0.8

0.6

True label

- 04

-02

| - 0.0
o 1 2 3

Predicted label (b)

Fig. 3. Confusion matrix (a) and normalized confusion matrix (b) for KAN (3, 16, 16, 4).
the smaller network. The confusion matrices (Fig. 5) for this model showed a significant

reduction in misclassification rates across all classes, particularly improving recognition of
“anti-personnel mine” class.
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Fig. 4. Loss and accuracy over epochs for KAN (3, 64, 64, 4).
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Fig. 5. Confusion matrix (a) and Normalized confusion matrix (b) for KAN (3, 64, 64, 4).

Increasing the number of neurons to sixty-four in each hidden layer led to significant
changes in the error patterns, as clearly seen in the confusion matrices in Fig. 5. The
updated KAN (3-64-64—4) architecture almost completely eliminated confusion between
the "anti-personnel" and "booby trap" classes in the direction from the latter to the former,
raising the accuracy for the "booby trap" class above ninety-five percent. Reverse
confusion still occurred in about seven cases out of seventy-three, reducing the recall of
this class to ninety-four percent, but these mistakes now have a one-sided nature: the
network becomes more conservative, assigning doubtful samples to the less dangerous
category in the absence of convincing evidence. The increased computational costs are
justified by the fact that overall classification accuracy improved by about two percent, and
the off-diagonal elements of the matrix sharply decreased for all classes except for the
localised issue of booby trap identification.

The comparison of the two models shows that even with the same basic set of
features, a wider architecture can capture finer signal nonlinearities and thus reduce the
number of critical errors. At the same time, the remaining confusion between classes 2 and
3 indicates the limit beyond which pure network scaling becomes less effective compared
to introducing additional information, such as gradient characteristics of the magnetic field
or contextual soil indicators.

Thus, detailed analysis of the confusion matrices indicates that the main direction for
further optimization should be strengthening the discriminative power of features
specifically for the "booby trap" class, while preserving the already achieved high reliability
in detecting other mines and safe areas.
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Comparative analysis of the two models (Table 4 and Table 5) indicates that
increasing the hidden layer size improves generalization capability but at the cost of greater
computational time and resources. This trade-off must be considered depending on the
application domain requirements.

Table 4. Classification Report for KAN (3, 16, 16, 4)

Class Precision Recall F1-score Support

0 0.9733 0.9733 0.9733 75

1 0.9730 0.9730 0.9730 74

2 0.9265 0.8630 0.8936 73

3 0.8718 0.9315 0.9007 73
Accuracy - - 0.9356 295
Macro average 0.9361 0.9352 0.9351 295
Weighted average 0.9365 0.9356 0.9355 295

Notes:
Columns:

e Precision — The proportion of predicted positive samples that are actually correct for each class.

e Recall — The proportion of actual positive samples that are correctly predicted for each class.

e F1-score — The harmonic mean of precision and recall for each class, providing a balance between the
two metrics.

o Support — The number of true instances for each class in the test set.

Rows:

¢ 0, 1, 2, 3 — The performance metrics for the classes “no mine,” “anti-tank mine,” “anti-personnel mine,”
and “booby-trap,” respectively.

e Accuracy — The overall classification accuracy across all classes (i.e., the proportion of correctly classified
samples).

» Macro average — The unweighted mean of precision, recall, and F1-score across all classes, treating each
class equally regardless of its support.

* Weighted average — The mean of precision, recall, and F1-score weighted by the number of true instances
(support) for each class, giving more influence to classes with more samples.

Table 5. Classification report for KAN (3, 64, 64, 4)

Class Precision Recall F1-score Support

0 0.9737 0.9867 0.9801 75

1 0.9730 0.9730 0.9730 74

2 0.9211 0.9589 0.9396 73

3 0.9565 0.9041 0.9296 73
Accuracy - - 0.9559 295
Macro average 0.9561 0.9557 0.9556 295
Weighted average 0.9562 0.9559 0.9558 295

Thus, the computer experiments have demonstrated that Kolmogorov—Arnold
Networks, when properly configured with cubic B-splines and an appropriate grid
resolution, can achieve high accuracy in multiclass classification problems, with
performance scaling positively with network capacity.
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Study Limitations

The base dataset has a limited volume; although synthetic augmentation improves
generalization, it cannot fully replace field measurements. The results were obtained under
laboratory conditions without considering the influence of metallic debris, heterogeneous
magnetic backgrounds, or sensor temperature drifts.

Future Research Directions

Collection of large-scale field data under various climatic and geological conditions to
validate the results.

End-to-end optimization: selection of spline grids, nonlinearity bases, and
regularization techniques (e.g., KAN-Mixer, weight priorities) to further improve accuracy
without exponential growth in parameters.

Robustness: investigation of resilience to adversarial influences typical of deceptive
mine masking with metallic shrapnel or geomagnetic traps.

CONCLUSION

1. For the first time, Kolmogorov—Arnold Networks (KAN) with cubic B-splines were
used for passive mine recognition based on magnetic anomalies. Unlike classical MLPs,
KAN allows modelling nonlinear dependencies at the level of weight connections,
enhancing the interpretability and robustness of the model to noise in real sensor
measurements.

2. An extended dataset was created: synthetic samples were added to 338 original
magnetic anomaly recordings, generated using a parameterized normal distribution with a
step of 50 samples for each "soil type — mine type" subset. This balanced the feature
variance and reduced the risk of overfitting.

3. Two architectures were developed: KAN (3 - 16 - 16 - 4) and KAN (3 - 64 - 64 - 4).
Both models were trained using the PyTorch-compatible PyKAN library with identical spline
hyperparameters.

KAN (3 - 16 - 16 - 4) achieved 93.56% accuracy without signs of overfitting; the main
errors occurred between the "anti-personnel" and "booby trap" classes. Increasing the
number of neurons in KAN (3 - 64 - 64 - 4) to 64 per hidden layer improved accuracy to
95.59%, significantly reducing false detections across all four classes. The cost of this
improvement was an almost linear increase in the number of parameters and training time.
This confirms the advisability of adaptively selecting model size based on the hardware
constraints of field systems. Confusion-matrix analysis showed both models nearly flawless
at identifying “no-mine” and “anti-tank” cases, while most errors arose from confusion
between anti-personnel mines and booby-traps. Results confirm that increasing network
capacity improves discrimination among visually similar magnetic signatures.

4. Advantages of the proposed approach.

Passive mine recognition: the use of the FLC-100 sensor does not require active
excitation, minimizing the risk of detonation.

Interpretability: spline weights enable analysis of the contribution of each feature and
facilitate safety certification.

Robustness: experiments showed no sharp fluctuations in the loss function and stable
convergence even on a noise-enriched dataset.

The study proves that properly configured Kolmogorov—Arnold Networks can achieve
over 95% accuracy in multiclass mine classification based on passive magnetic features.
The combination of interpretable spline weights, high sensitivity to small anomalies, and
scalability potential makes KAN a promising foundation for modular humanitarian demining
systems, which can significantly accelerate land clearance and reduce risks for personnel.
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PO3MI3HABAHHA MIH 3A JONOMOIOK0 HEUPOHHOI MEPEXI
KOJIMOIOPOBA-APHOJIbAA HA OCHOBI AAHUX MATHITHOIO
30HAYBAHHA

leaH Menewak 0 * B’syecnae Benibmiokoe &0
HauioHanbHul yHisepcumem «JIbgigcbKa rnonimexHika,
8yn. CmenaHa baHOepu, 12, 79013, Jlbsis, YkpaiHa

AHOTALIA

Bctyn. MiHHa Hebesneka 3anuwaeTbCs KPpUTUYHOK Onis noHag 60 kpaiH, 3okpema
YKpaiHu, Oe BiOHOBMEHHS CinbCbKOro rocrnogapctsa N iHPPACTPYKTYpu CTPUMYETHCS
NpMXoBaHMMM BWOYXOBMMM NPUCTPOSAMU. ABTOPM MPOMOHYIOTbL MacuMBHUA Migxig Ao
po3ni3HaBaHHS MiH, KA NOEAHYE BUMIPIOBAHHSI MarHiTHMX aHomanin ceHcopom FLC-100
i3 HelipoHHo Mepexeto Konmoroposa-ApHonbaa (HMKA), wo 3abeanevye BUCOKY TOYHICTb
3a MiHiManbHOro pu3nky geToHadii.

Martepianu Ta Mmetoau. basosuin Habip AaHux i3 338 peanbHKMX BUMIpOBaHb (Hanpyra
V, Bucota ceHcopa H, tun rpyHty S) OGyno 306anaHcoBaHO LwwnsAxom reHepadii 50
CMHTETUYHMX 3anuciB ANA KOXHOI napu “rpyHT-mMiHa“ 3a napameTpusoBaHNM HOpManbHUM
posnoginom. lMicna Hopmani3auii V ta one-hot kogyBaHHsA S i knaciB miH M cdopmoBaHo
TPUBUMIPHWI NpOCTip o3Hak. 3actocoByBanuca Asi apxitektypy HMKA: HMKA (3-16-16-4)
Ta HMKA (3-64-64-4) 3 ky6iuHMMK B-cnnanHamu nsi BACOKOTOYHOrO pO3ni3HaBaHHSI MiH
(>95 % TouHocTi). HaB4yaHHA BuKoHyBanocb 3a gonomoroto 6ibniotekn PyKAN (PyTorch
backend) npotarom 65 enox i3 dikcoBaHow ciTkolo cnnavHiB (k = 3, m = 10) 3
BMKOPUCTaHHAM onTuMizaTtopa Agam.

Pesynbtatu. Mogens HMKA (3-16-16-4) nocarna TouHocTi 93,56% 6e3 nepeHaByaHHs;
rofloBHa NiyTaHWHA criocTepiranack MiX Knacamu «npoTUMNIXOTHa MiHa» Ta «MiHa-nacTkay.
36inbLUEHHA KiNMbKOCTi HEMPOHIB Y KOXXHOMY MPUXOBaHOMY Liapi A0 64 36inbLnno TOYHICTb
0o 95,59 % i ycyHyno xubHi BiogHeCeHHs1 «nNpoTunixoTHa MiHa» A0 «MiHa-nactka». O6uaBi
Mepexi 6e3goraHHO po3pi3HANM BuNagku «6e3 MiHM» Ta «NpOTUTAHKOBA MiHay», LWO
NigTBEPIXKYE CTINKICTb CNanHOBUX akTMBAaLIN A0 WyMy CeHcopa.
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BucHoBkn. Komm'lOTEPHUIA  eKCMEPUMEHT MokasaB, WO HEeWpOHHa Mepexa
KonmoropoBa-ApHonbaa 3 KybiyHMMK B-cnnavHOBMMWM BaramMu Mae BUCOKY HafilHICTb
po3ni3HaBaHHS Pi3HUX TUNIB MiH («6e3 MiHWMY», «NPOTUTAHKOBA MiHa», «NMPOTUMIXOTHA MiHa»,
«MiHa-NacTka») 3 BUKOPUCTAHHAM [aHUX CeHcopiB MarHiTHoro nons (10710 — 104 Tn) 3
ToyHicTio noHan 95%.

Moka3aHo, Wo iHTepnpeToBaHi Bary cnnavHiB 4O3BONAIOTL aHanidyBaTu BHECOK KOXHOT
O3Haku, Wo 3abesneyye BUCOKY YyTNUBICTb OO Manux aHomanii ta macwtaboBaHiCTb
HMKA.

Knroyoei crnoea: wmepexa Konmoroposa-ApHomnbga, (eppO30OH4OBUW  MarHiTHUN
CEHCOp, NacVBHE BUSIBINEHHSI MiH
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