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ABSTRACT 

Background. Landmine contamination remains a critical issue for more than 60 
countries, including Ukraine, where the recovery of agriculture and infrastructure is 
hampered by hidden explosive devices. The authors propose a passive land-mine 
recognition approach that combines measurements of magnetic anomalies obtained with an 
FLC-100 sensor and a Kolmogorov-Arnold Network (KAN), delivering high accuracy while 
minimising the risk of detonation. 

Materials and Methods. A baseline data set of 338 real measurements (sensor voltage 
V, sensor height H, soil type S) was balanced by generating 50 synthetic records for every 
“soil–mine” pair using a parameterised normal distribution. After normalising V and applying 
one-hot encoding to S and the mine classes M, a three-dimensional feature space was 
formed. Two KAN architectures were evaluated: KAN (3-16-16-4) and KAN (3-64-64-4), both 
employing cubic B-splines to achieve high-precision mine recognition (> 95 % accuracy). 
Training was conducted in PyKAN (PyTorch backend) for 65 epochs with a fixed spline grid 
(k = 3, m = 10) using the Adam optimiser. 

Results and Discussion. The KAN (3-16-16-4) model achieved an accuracy of 93.56 
% without overfitting; the main confusion occurred between the “anti-personnel” and “booby-
trap” classes. Increasing the number of neurons in each hidden layer to 64 raised the 
accuracy to 95.59 % and eliminated the erroneous assignment of “anti-personnel” mines to 
the “booby-trap” class. Both networks perfectly distinguished the “no-mine” and “anti-tank” 
cases, confirming the robustness of spline activations to sensor noise. 

Conclusion. The computer experiment shows that a Kolmogorov–Arnold neural network 
with cubic B-spline weights provides robust recognition of different mine types (“no mine”, 
“anti-tank mine”, “anti-personnel mine”, “booby-trap”) using magnetic-field sensor data (10⁻¹⁰ 
Tesla) with accuracy exceeding 95 %. Interpretable spline weights allow the contribution of 
each feature to be analysed, ensuring high sensitivity to small anomalies and demonstrating 
the scalability of KAN. 

Keywords: Kolmogorov–Arnold network, fluxgate magnetic sensor, passive mine 
detection 

INTRODUCTION 

Landmine detection remains a persistent and growing global concern, posing life-
threatening risks to millions of people. According to the Landmine Monitor 2023, landmines 
and explosive remnants of war (ERW) continue to cause severe humanitarian consequen-
ces, with over 4,700 casualties reported globally in 2022 alone, the vast majority of whom 
were civilians. More than 60 countries remain contaminated by landmines, presenting 
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ongoing risks for local populations, especially in post-conflict regions such as Ukraine, 
where land access, agricultural activity, and reconstruction are critically hindered [1]. In 
post-war Ukraine, the problem of landmine contamination has become especially urgent, 
with vast areas of agricultural and residential land requiring safe clearance. Traditional mine 
detection techniques often lack the reliability and responsiveness needed for large-scale 
humanitarian demining. Moreover, many active detection methods – based on emitting 
electric signals – risk triggering explosive devices, endangering human operators. 

A promising alternative is the use of passive detection systems [2], particularly those 
based on magnetic field anomaly sensing [3], [4]. To enhance detection accuracy and 
reduce operational risks, modern solutions increasingly rely on machine learning 
techniques, including neural networks. However, neural networks often struggle with noise 
and distortions in real-world sensor data. One method for improving the robustness and 
pattern recognition capability of neural architectures is to use neural networks with 
embedded spline-based functional components, such as Kolmogorov–Arnold Networks 
(KANs), which are particularly effective at handling noisy and irregular data due to their 
ability to learn smooth, localised approximations of complex functions. 

The aim of this study is to develop an optimised architecture of Kolmogorov-Arnold 
Networks in terms of the number of hidden layers, neurons per layer, and spline shape for 
accurate recognition of mine types in soils of varying composition. This research is highly 
relevant in the context of post-war recovery efforts in Ukraine, where effective and safe 
detection of minefields plays a crucial role in restoring civil infrastructure and ensuring 
public safety. 

MATERIALS AND METHODS 

Literature Review 
Kolmogorov–Arnold Networks (KAN) represent a recent advancement in neural 

network architecture inspired by the Kolmogorov–Arnold representation theorem. Unlike 
traditional multilayer perceptrons (MLPs) that rely on fixed activation functions at each 
node, KAN replaces every weight with a univariate, spline-parametrised function. This 
allows KANs to learn richer functional representations with fewer parameters, making them 
both efficient and interpretable [5]. 

In the work by Erdmann et al. [6], KAN was applied to a binary classification problem in 
high-energy physics. The authors found that while multilayer KANs did not always outperform 
standard MLPs in terms of accuracy, they demonstrated greater interpretability. Specifically, 
the activation functions learned in deeper KANs differed significantly from those in shallow 
models, indicating the architecture's capacity for more abstract feature extraction. 

Somvanshi et al. [7] provide a comprehensive survey on KAN, outlining its theoretical 
foundations and practical adaptations across domains such as biomedical analytics, time 
series prediction, and graph learning. They highlight KAN’s flexibility and adaptability, 
particularly in handling high-dimensional structured data. 

Barasin et al. [8] explored KAN in the context of time series classification using the 
UCR benchmark dataset. Their findings revealed that well-optimised KAN models 
outperformed MLPs and achieved competitive results compared to state-of-the-art models 
such as HIVE-COTE2, all while maintaining computational efficiency and robustness to 
hyperparameter changes. 

In terms of robustness, the study published in Applied Sciences assessed the 
vulnerability of different KAN architectures to adversarial attacks [9]. Among the variants, 
KAN-Mixer showed the best performance in resisting attacks while retaining strong 
accuracy on clean data. This makes KAN suitable for safety-critical applications like mine 
detection, where robustness is paramount. 

In the field of remote sensing, Cheon [10] proposed combining pretrained CNNs with 
KAN layers for scene classification using the EuroSAT dataset. The hybrid models 
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achieved high classification accuracy with reduced parameter counts and faster training, 
illustrating the potential for integrating KAN into real-time systems. 

Drokin [11] extended KAN’s application to computer vision tasks, proposing 
parameter-efficient KAN convolution layers and fine-tuning techniques. The results 
demonstrated that KAN-based models can achieve strong performance in both image 
classification and segmentation tasks, suggesting relevance to image-based mine 
detection scenarios. 

The reviewed literature suggests that KAN offers a unique combination of 
interpretability, efficiency, and reliability across various classification domains. These 
characteristics make it a promising candidate for mine detection, especially in post-war 
Ukraine, where safety, dependability, and explainability are of paramount importance. 
However, the optimisation of the Kolmogorov-Arnold Network architecture to improve 
recognition accuracy — as well as the trade-off between training speed and recognition 
precision —remains an open challenge, which is crucial in the context of mine detection.  

Classification data 
In this study, we utilised the dataset provided in [4], which focuses on the classification 

of landmines based on magnetic field anomaly characteristics. The parameter values 
employed in our experimental setup are summarised in Table 1. Furthermore, we analysed 
the relationship between magnetic anomaly values and the soil type (Table 2), as well as 
the distance between the magnetic sensor and the buried landmine (Table 3). The general 
trends in magnetic field anomalies across different landmine types were also examined and 
illustrated (Table 3). 

To obtain reliable measurements of the magnetic anomalies surrounding subsurface 
mines, the original study [4] employed a fluxgate magnetic sensor model FLC100 (10–10 

Tesla) [12], which demonstrated sensitivity to minute variations in the magnetic field. This 
sensor-based approach enabled passive mine detection without the need for active signal 
emission, thus reducing the risk of accidental detonation. The design and deployment of 
the sensing mechanism were previously validated in [4], where a decision support system 
for mine classification was developed using metaheuristic classifiers. 

Table 1. Parameters data [4] 

The Parameters 

 
Input Data, “Independent Variables” 

Output Data, 
“Dependent 

Variable” 

Voltage (V) High (H) Soil Type (S) Mine Type (M) 

Definition 

The value of the output 
voltage of the FLC 
sensor is due to the 

action of the magnetic 
anomaly. 

The distance 
of the sensor 

above the 
ground. 

6 different types 
of soil depending 

on the state of 
moisture. 

Types of mines 
commonly found on 

land; 4 different 
classes of mines. 

Limit 
values/ 
Class 

[0 V, 10.6 V] [0 cm, 20 cm] 

Dry and sandy No mine 

Dry and purulent Anti-tank 

Dry and chalky Anti-personnel 

Wet and sandy 
Booby trapped Anti-

personnel 
Humid and humus 

Wet and chalky 
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Table 2. Dependence of magnetic field anomalies in the vicinity of mines on soil 
type [4] 

Soil Type Null, V Anti-Tank, V 
Anti-Personnel,  

V 
Booby Trapped 

Anti-Personnel, V 

Dry and sandy 3.560 10.400 3.830 5.590 

Dry and purulent 3.500 7.500 3.920 5.590 

Dry and chalky 3.720 10.400 6.890 2.406 

Wet and sandy 3.780 10.400 6.220 4.490 

Humid and humus 3.350 10.400 5.050 2.770 

Wet and chalky 3.610 10.400 5.960 4.400 

 

Preprocessing data 

Data generation based on parameterised normal distribution 
To improve the generalisation capability of the model on a limited dataset consisting 

of 338 real records [4], an additional data generation procedure was applied using a 
parameterised normal distribution. 

The chosen method is based on generating new examples by adding pseudorandom 

noise [13] to the original feature values 𝑉 and 𝐻 within each subgroup of data defined by 

a unique pair of soil type 𝑆 and mine type 𝑀. For each such subgroup, the statistical 

characteristics of the features are computed as follows: 

 𝜇𝑉 = 𝑉, 𝜎𝑉 = std(𝑉), 𝜇𝐻 = 𝐻, 𝜎𝐻 = std(𝐻), (1) 

where 𝜇𝑉, 𝜇𝐻 — mean values of features 𝑉 and 𝐻, respectively, 

𝜎𝑉, 𝜎𝐻 — standard deviations of features 𝑉 and 𝐻, 

Table 3. Dependence of the magnetic field anomaly in the vicinity of mines on the 
distance from the sensor to the ground [4] 

Height (cm) 
Mine Type 1 
Voltage, V 

Mine Type 2 
Voltage, V 

Mine Type 3 
Voltage, V 

Mine Type 4 
Voltage, V 

0.00 3.6 10.4 4.1 5.9 

1.82 3.4 10.4 4.0 5.5 

3.64 3.4 10.4 3.8 5.0 

5.45 2.8 10.4 3.9 4.4 

7.27 2.9 9.5 3.6 4.3 

9.09 2.7 8.3 3.4 4.25 

10.91 2.9 7.0 3.4 4.2 

12.73 2.6 6.4 3.45 4.05 

14.55 2.5 6.2 3.5 3.9 

16.36 2.6 4.8 3.8 3.2 

18.18 2.6 4.6 3.2 3.2 

20.00 2.4 4.5 3.2 3.1 



Landmine Recognition Using a Kolmogorov–Arnold…  

Електроніка та інформаційні технології • 2025 • Випуск 30 125 

𝑉, 𝐻 — arithmetic means of the respective columns, 

std(𝑋) — standard deviations of features 𝑉 and 𝐻. 

New examples are generated using the following formulas: 

 

𝑉𝑖
′ = 𝑉𝑖 + 𝑁(0, 𝜎𝑉 ⋅ 𝛼), 

𝐻𝑖
′ = 𝐻𝑖 + 𝑁(0, 𝜎𝐻 ⋅ 𝛼), 

(2) 

where 𝑉𝑖
′, 𝐻𝑖

′ — newly generated values of magnetic field anomaly and height for the 𝑖-th 

sample, 

𝑉𝑖, 𝐻𝑖 — values sampled from an existing record in the subgroup, 

𝛼 = 0.1 — noise intensity coefficient (empirically selected), 

𝑁(0, 𝜎) — normally distributed random value with mean 0 and standard deviation 𝜎. 

To ensure the physical plausibility of generated values, clipping was applied to 
constrain them within real-world sensor bounds: 

 𝑉𝑖
′ ∈ [0.0𝑉, 10.6𝑉], 𝐻𝑖

′ ∈ [0.0𝑐𝑚, 20.0𝑐𝑚], (3) 

in accordance with the sensor specifications. 

For each subgroup defined by (𝑆,𝑀), 50 new samples were generated, which 

significantly increased the number of training examples and smoothed the data distribution. 

Data preprocessing before training 
Before training the neural network, the following preprocessing steps were performed: 

1. Normalisation of magnetic anomaly feature V: 

 𝑉′ =
𝑉 − 𝑉

𝜎𝑉
, (4) 

where 𝑉′— normalised magnetic anomaly value, 

𝑉 — original value of the magnetic anomaly, 

𝑉 — mean magnetic anomaly over the entire dataset, 

𝜎𝑉 — standard deviation of the magnetic anomaly. 

2. Categorical encoding of the soil type variable S, which takes six values: 

• “Dry and Sandy”. 

• “Dry and Humus”. 

• “Dry and Limy”. 

• “Humid and Sandy”. 

• “Humid and Humus”. 

• “Humid and Limy”. 
These categories were encoded using One-Hot Encoding, which transforms each 

category into a binary vector of size six. For example, if the soil type is the second category 
(“Dry and Humus”), the vector would be: 

 [0,1,0,0,0,0]. (5) 

3. Target encoding. The mine types M, originally in categorical form, were first mapped to 
numerical indices (0–4) and then encoded using one-hot encoding for input into the 
neural network. 
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This method preserved the internal structure and semantics of the data, ensured 
physical interpretability of the generated values, and significantly improved the model’s 
generalisation potential. 

Mathematical Model of Kolmogorov–Arnold Networks 
The articles [3], [4] address a multiclass classification task solved with classical 

machine-learning techniques — artificial neural networks [14] and their variants, support-
vector machines [15], Bayesian approaches [16], decision trees, and others [17]. 

Let X be the feature space X = {V, H, S}, where V denotes the magnetic-field anomaly 
in the vicinity of a mine (volts), H is the sensor height above the ground that covers the 
mine, and S represents the soil type. The label set is Y = {0, 1, 2, 3}, whose elements 
correspond to the classes “no mine,” “anti-tank mine,” “anti-personnel mine,” and “booby-
trap,” respectively. 

The classification objective is to determine a mapping operator Y*: Х → Y that assigns 
any previously unseen object x ∈ X to class y ∈ Y while minimising the Euclidean error 

 𝑚𝑖𝑛 ∥ 𝑦∗ − 𝑦 ∥, (6) 

where 𝑦 the true class label and 𝑦∗ is the neural-network prediction [14]. 

KAN morphology 
The Kolmogorov–Arnold Network (KAN) is a neural architecture inspired by the 

Kolmogorov-Arnold representation theorem [18]. Unlike traditional MLPs that apply fixed 
nonlinearities at nodes and learn linear weights, KANs apply learnable nonlinear 
activation functions on edges, modelled as univariate splines. Each layer in a KAN 
consists of a matrix of spline functions, and each neuron simply sums the outputs of 
these spline-parameterised edges. 

General architecture 
We consider KAN architecture with the shape [3, 16, 16, 4] (Fig. 1), which includes an 

input layer comprising 3 nodes corresponding to the input features, followed by two hidden 
layers with 16 nodes each, and an output layer consisting of 4 nodes representing either 
classification labels or regression targets. 

The general forward propagation is expressed by the composition of KAN layers: 

 𝐾𝐴𝑁(𝑥) = (𝛷2 ∘ 𝛷1 ∘ 𝛷0)(𝑥), (7) 

where each 𝛷𝑙 is a functional matrix consisting of learnable spline activations.  

Every layer transforms its input by applying these univariate spline functions on each 
edge, followed by summation at the next layer’s nodes. 

Layer-wise formulation 

Let the input vector be 𝑥(0) = 𝑥 ∈ ℝ3. The subsequent layer computations are 

defined as follows: 
1. First Hidden Layer (Layer 0 → 1). 

For each neuron 𝑗 = 1, . . . ,16 in the first hidden layer: 

 𝑥𝑗
(1)

= ∑ 𝜑𝑗,𝑖
(0)

(𝑥𝑖
(0)

)
3

𝑖=1
. (8) 

2. Second Hidden Layer (Layer 1 → 2). 

For each neuron 𝑘 = 1, . . . ,16 in the second hidden layer: 
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Fig. 1. General architecture of KAN. 

 

 𝑥𝑘
(2)

= ∑ 𝜑𝑘,𝑗
(1)

(𝑥𝑗
(1)

)
16

𝑗=1
. (9) 

3. Output Layer (Layer 2 → 3). 

For each output node 𝑚 = 1, . . . ,4: 

 𝑥𝑘
(2)

= ∑ 𝜑𝑘,𝑗
(1)

(𝑥𝑗
(1)

)
16

𝑗=1
. (10) 

The final output of the model is: 

 𝐾𝐴𝑁(𝑥) =

[
 
 
 
 
 𝑥1

(3)

𝑥2
(3)

𝑥3
(3)

𝑥4
(3)

]
 
 
 
 
 

∈ ℝ. (11) 
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Spline Activation Functions 

Each edge activation function 𝜑𝑗,𝑖
(𝑙)(𝑥) is defined as a combination of a residual 

nonlinear term and a cubic B-spline [19]: 

 𝜑(𝑥) = 𝑤𝑏 ⋅ silu(𝑥) + 𝑤𝑠 ⋅ ∑ 𝑐𝑚𝐵𝑚(𝑥)
𝐺+𝑘−1

𝑚=0
. (12) 

where silu(𝑥) = 𝑥 (1 + 𝑒−𝑥)⁄  is the smooth SiLU function (acts as a residual base), 

𝐵𝑚(𝑥) are cubic B-spline basis functions (order 𝑘 = 3), 

𝐺 = 10 is the number of intervals → 𝐺 + 𝑘 = 13 of basis functions per spline, 

𝑐𝑚 are trainable spline coefficients, 

𝑤𝑏 , 𝑤𝑠 are trainable scalar weights controlling the contribution of the SiLU and the spline. 

Spline Activation Functions 
The total number of parameters can be calculated as follows. Each spline 

contains 𝐺 + 𝑘 = 13 coefficients, in addition to two weights (𝑤𝑏 , 𝑤𝑠), resulting in 15 

parameters per edge. The first layer (𝜑0) contains 3 × 16 = 48 edges, contributing 48 ⋅
15 = 720 parameters. The second layer (𝜑1) has 16 × 16 = 256 edges, yielding 256 ⋅
15 = 3840 parameters. The third layer (𝜑2) includes 16 × 4 = 64 edges, resulting in 64 ⋅
15 = 960 parameters. Therefore, the total number of parameters is 720 + 3840 + 960 =
5520. 

Computational Environment and Tools 
The details of the experimental environment, including the software tools and libraries, 

are as follows: 
Programming language: Python 
Neural network library: PyKAN [20] 
Hardware: Personal PC (AMD Ryzen 5 5600G CPU, NVIDIA GeForce RTX 4060 

GPU) 
Software:  

• IntelliJ IDEA (with Python plugin support). 

• Python 3.x. 

• PyKAN library [20]. 

• CUDA Toolkit (for GPU acceleration with NVIDIA RTX 4060). 

• PyTorch (backend library for PyKAN). 

• NumPy (for data manipulation). 

• Matplotlib (for visualisation of results). 

RESULTS AND DISCUSSION 

In this section, we present the setup and execution of the computer experiment aimed 
at evaluating the performance of Kolmogorov–Arnold Networks (KANs) for a multiclass 
classification task. The experiment involved training and comparing two network 
architectures: KAN (3,16,16,4) and KAN (3,64,64,4). The architectures were chosen based 
on the task's dimensionality, where the input space was three-dimensional, and the output 
space consisted of four distinct classes. 

The training was conducted using the PyKAN library [20] on the Python platform. The 
settings for the networks included the use of cubic B-splines as basis functions, with the 
order set to 3 and the grid size set to 10. These parameters provided a sufficient balance 
between the flexibility of the spline approximation and computational efficiency. 
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The network KAN (3,16,16,4) was trained first. It underwent a training process over a 
65 epochs and achieved an accuracy of 93.56% on the test set. In the second case, the 
KAN (3,64,64,4) architecture was trained. Due to its significantly higher number of 
parameters, the training took a considerably longer time; however, it achieved an improved 
test accuracy of approximately 95,59%. 

During the training process, loss and accuracy curves were recorded for each model 
to monitor convergence dynamics and to detect potential signs of overfitting. After the 
evaluation phase, confusion matrices were generated to provide a detailed understanding 
of classification performance across all classes. In addition to the visual analyses, a 
comprehensive classification report was produced, presenting key metrics such as 
precision, recall, and F1-score for each class. 

The results of the experiments are illustrated through loss-accuracy curves, confusion 
matrices, and a set of other performance metrics [21], which comprehensively describe the 
behavior of both tested architectures. 

For the KAN (3,16,16,4) network, the loss curve (Fig. 2) demonstrated a steady 
decrease without abrupt oscillations, indicating stable convergence. The corresponding 
accuracy curve (Fig. 2) showed consistent improvement throughout the training process, 
reaching a plateau near 92.56%. The confusion matrices (Fig. 3) revealed that most 
misclassifications occurred between the (specify which classes if possible), suggesting that 
the network found these classes harder to differentiate given the feature space. 

The normalized confusion matrix for the KAN (3–16–16–4) model, shown in Fig. 3b, 
reflects almost perfect identification of the "no mine" and "anti-tank" classes, with correct 
detection rates reaching approximately ninety-seven percent. At the same time, the 
majority of misclassifications occurred between the "anti-personnel" and "booby trap" 
classes: around ten objects from the first category were confused with the second, while 
the reverse misclassification happened almost twice as rarely. This asymmetry is explained 
by the partial overlap of magnetic anomaly ranges and sensor height, indicating that the 
three-dimensional feature space was insufficient to fully separate these mine types. 

Despite this, the model exhibits stable convergence of the loss function and absence 
of sharp fluctuations, indicating proper hyperparameter tuning and sufficient capacity for 
the basic task. However, it also signals the need to enrich the feature space specifically in 
the area where classification errors are observed. 

On the other hand, the KAN (3,64,64,4) architecture, while requiring longer training 
time due to the increased number of neurons, achieved superior classification results with 
approximately 95% accuracy. Its loss curve (Fig. 4) exhibited a smoother descent, and its 
accuracy curve (Fig. 4) achieved a slightly higher and more stable plateau compared to  

 
Fig. 2. Training accuracy and loss over epochs for KAN (3, 16, 16, 4). 
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(a)  

(b) 

Fig. 3. Confusion matrix (a) and normalized confusion matrix (b) for KAN (3, 16, 16, 4). 

the smaller network. The confusion matrices (Fig. 5) for this model showed a significant 
reduction in misclassification rates across all classes, particularly improving recognition of 
“anti-personnel mine” class.  

 

Fig. 4. Loss and accuracy over epochs for KAN (3, 64, 64, 4). 
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(a) 

(b) 

Fig. 5. Confusion matrix (a) and Normalized confusion matrix (b) for KAN (3, 64, 64, 4). 

 
Increasing the number of neurons to sixty-four in each hidden layer led to significant 

changes in the error patterns, as clearly seen in the confusion matrices in Fig. 5. The 
updated KAN (3–64–64–4) architecture almost completely eliminated confusion between 
the "anti-personnel" and "booby trap" classes in the direction from the latter to the former, 
raising the accuracy for the "booby trap" class above ninety-five percent. Reverse 
confusion still occurred in about seven cases out of seventy-three, reducing the recall of 
this class to ninety-four percent, but these mistakes now have a one-sided nature: the 
network becomes more conservative, assigning doubtful samples to the less dangerous 
category in the absence of convincing evidence. The increased computational costs are 
justified by the fact that overall classification accuracy improved by about two percent, and 
the off-diagonal elements of the matrix sharply decreased for all classes except for the 
localised issue of booby trap identification. 

The comparison of the two models shows that even with the same basic set of 
features, a wider architecture can capture finer signal nonlinearities and thus reduce the 
number of critical errors. At the same time, the remaining confusion between classes 2 and 
3 indicates the limit beyond which pure network scaling becomes less effective compared 
to introducing additional information, such as gradient characteristics of the magnetic field 
or contextual soil indicators. 

Thus, detailed analysis of the confusion matrices indicates that the main direction for 
further optimization should be strengthening the discriminative power of features 
specifically for the "booby trap" class, while preserving the already achieved high reliability 
in detecting other mines and safe areas. 
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Comparative analysis of the two models (Table 4 and Table 5) indicates that 
increasing the hidden layer size improves generalization capability but at the cost of greater 
computational time and resources. This trade-off must be considered depending on the 
application domain requirements. 

Table 4. Classification Report for KAN (3, 16, 16, 4) 

Class Precision Recall F1-score Support 

0 0.9733 0.9733 0.9733 75 

1 0.9730 0.9730 0.9730 74 

2 0.9265 0.8630 0.8936 73 

3 0.8718 0.9315 0.9007 73 

Accuracy – – 0.9356 295 

Macro average 0.9361 0.9352 0.9351 295 

Weighted average 0.9365 0.9356 0.9355 295 

Notes: 
Columns: 

• Precision – The proportion of predicted positive samples that are actually correct for each class. 

• Recall – The proportion of actual positive samples that are correctly predicted for each class. 

• F1-score – The harmonic mean of precision and recall for each class, providing a balance between the 
two metrics. 

• Support – The number of true instances for each class in the test set. 
Rows: 

• 0, 1, 2, 3 – The performance metrics for the classes “no mine,” “anti-tank mine,” “anti-personnel mine,” 
and “booby-trap,” respectively. 

• Accuracy – The overall classification accuracy across all classes (i.e., the proportion of correctly classified 
samples). 

• Macro average – The unweighted mean of precision, recall, and F1-score across all classes, treating each 
class equally regardless of its support. 

• Weighted average – The mean of precision, recall, and F1-score weighted by the number of true instances 
(support) for each class, giving more influence to classes with more samples. 

 

Table 5. Classification report for KAN (3, 64, 64, 4) 

Class Precision Recall F1-score Support 

0 0.9737 0.9867 0.9801 75 

1 0.9730 0.9730 0.9730 74 

2 0.9211 0.9589 0.9396 73 

3 0.9565 0.9041 0.9296 73 

Accuracy – – 0.9559 295 

Macro average 0.9561 0.9557 0.9556 295 

Weighted average 0.9562 0.9559 0.9558 295 

 
Thus, the computer experiments have demonstrated that Kolmogorov–Arnold 

Networks, when properly configured with cubic B-splines and an appropriate grid 
resolution, can achieve high accuracy in multiclass classification problems, with 
performance scaling positively with network capacity. 
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Study Limitations 
The base dataset has a limited volume; although synthetic augmentation improves 

generalization, it cannot fully replace field measurements.  The results were obtained under 
laboratory conditions without considering the influence of metallic debris, heterogeneous 
magnetic backgrounds, or sensor temperature drifts. 

Future Research Directions 
Collection of large-scale field data under various climatic and geological conditions to 

validate the results.   
End-to-end optimization: selection of spline grids, nonlinearity bases, and 

regularization techniques (e.g., KAN-Mixer, weight priorities) to further improve accuracy 
without exponential growth in parameters.   

Robustness: investigation of resilience to adversarial influences typical of deceptive 
mine masking with metallic shrapnel or geomagnetic traps. 

CONCLUSION 

1. For the first time, Kolmogorov–Arnold Networks (KAN) with cubic B-splines were 
used for passive mine recognition based on magnetic anomalies. Unlike classical MLPs, 
KAN allows modelling nonlinear dependencies at the level of weight connections, 
enhancing the interpretability and robustness of the model to noise in real sensor 
measurements. 

2. An extended dataset was created: synthetic samples were added to 338 original 
magnetic anomaly recordings, generated using a parameterized normal distribution with a 
step of 50 samples for each "soil type – mine type" subset. This balanced the feature 
variance and reduced the risk of overfitting. 

3. Two architectures were developed: KAN (3 - 16 - 16 - 4) and KAN (3 - 64 - 64 - 4). 
Both models were trained using the PyTorch-compatible PyKAN library with identical spline 
hyperparameters. 

KAN (3 - 16 - 16 - 4) achieved 93.56% accuracy without signs of overfitting; the main 
errors occurred between the "anti-personnel" and "booby trap" classes. Increasing the 
number of neurons in KAN (3 - 64 - 64 - 4) to 64 per hidden layer improved accuracy to 
95.59%, significantly reducing false detections across all four classes. The cost of this 
improvement was an almost linear increase in the number of parameters and training time. 
This confirms the advisability of adaptively selecting model size based on the hardware 
constraints of field systems. Confusion-matrix analysis showed both models nearly flawless 
at identifying “no-mine” and “anti-tank” cases, while most errors arose from confusion 
between anti-personnel mines and booby-traps. Results confirm that increasing network 
capacity improves discrimination among visually similar magnetic signatures. 

4. Advantages of the proposed approach. 
Passive mine recognition: the use of the FLC-100 sensor does not require active 

excitation, minimizing the risk of detonation. 
Interpretability: spline weights enable analysis of the contribution of each feature and 

facilitate safety certification. 
Robustness: experiments showed no sharp fluctuations in the loss function and stable 

convergence even on a noise-enriched dataset. 
The study proves that properly configured Kolmogorov–Arnold Networks can achieve 

over 95% accuracy in multiclass mine classification based on passive magnetic features. 
The combination of interpretable spline weights, high sensitivity to small anomalies, and 
scalability potential makes KAN a promising foundation for modular humanitarian demining 
systems, which can significantly accelerate land clearance and reduce risks for personnel. 
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РОЗПІЗНАВАННЯ МІН ЗА ДОПОМОГОЮ НЕЙРОННОЇ МЕРЕЖІ 

КОЛМОГОРОВА-АРНОЛЬДА НА ОСНОВІ ДАНИХ МАГНІТНОГО 

ЗОНДУВАННЯ 

Іван Пелещак *, В’ячеслав Бельтюков  
Національний університет «Львівська політехніка»,  

вул. Степана Бандери, 12, 79013, Львів, Україна 

АНОТАЦІЯ 

Вступ. Мінна небезпека залишається критичною для понад 60 країн, зокрема 
України, де відновлення сільського господарства й інфраструктури стримується 
прихованими вибуховими пристроями. Автори пропонують пасивний підхід до 
розпізнавання мін, який поєднує вимірювання магнітних аномалій сенсором FLC-100 
із нейронною мережею Колмогорова-Арнольда (НМКА), що забезпечує високу точність 
за мінімального ризику детонації. 

Матеріали та методи. Базовий набір даних із 338 реальних вимірювань (напруга 
V, висота сенсора H, тип ґрунту S) було збалансовано шляхом генерації 50 
синтетичних записів для кожної пари “ґрунт-міна“ за параметризованим нормальним 
розподілом. Після нормалізації V та one-hot кодування S і класів мін М сформовано 
тривимірний простір ознак. Застосовувалися дві архітектури НМКА: НМКА (3-16-16-4) 
та НМКА (3-64-64-4) з кубічними B-сплайнами для високоточного розпізнавання мін 
(>95 % точності). Навчання виконувалось за допомогою бібліотеки PyKAN (PyTorch 
backend) протягом 65 епох із фіксованою сіткою сплайнів (k = 3, m = 10) з 
використанням оптимізатора Адам. 

Результати. Модель НМКА (3-16-16-4) досягла точності 93,56% без перенавчання; 
головна плутанина спостерігалась між класами «протипіхотна міна» та «міна-пастка». 
Збільшення кількості нейронів у кожному прихованому шарі до 64 збільшило точність 
до 95,59 % і усунуло хибні віднесення «протипіхотна міна» до «міна-пастка». Обидві 
мережі бездоганно розрізняли випадки «без міни» та «протитанкова міна», що 
підтверджує стійкість сплайнових активацій до шуму сенсора. 
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Висновки. Комп’ютерний експеримент показав, що нейронна мережа 
Колмогорова-Арнольда з кубічними B-сплайновими вагами має високу надійність 
розпізнавання різних типів мін («без міни», «протитанкова міна», «протипіхотна міна», 
«міна-пастка») з використанням даних сенсорів магнітного поля (10–10 – 10–4 Тл) з 
точністю понад 95%. 

Показано, що інтерпретовані ваги сплайнів дозволяють аналізувати внесок кожної 
ознаки, що забезпечує високу чутливість до малих аномалій та масштабованість 
НМКА. 

Ключові слова: мережа Колмогорова-Арнольда, феррозондовий магнітний 
сенсор, пасивне виявлення мін 
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