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ABSTRACT

Background. Physics-informed neural networks (PINN) demonstrated strong
capabilities in solving direct and inverse problems for partial differential equations. In this
study, the focus is on applying PINNs for the approximation and extrapolation of narrowband
signal propagation. This effort is motivated by the potential to reduce measurement and
numerical costs in applications such as acoustic and electromagnetic beacon-based
navigation systems. These systems aim to map environments and track object trajectories
by leveraging wave propagation data.

Materials and Methods. The propagation of harmonic waves through a medium can be
described using either the wave equation or the Helmholtz equation. To establish a
connection between these equations, the Fourier transform is employed. PINNs are trained
in the time or frequency domain to predict wave propagation characteristics such as
amplitude and phase. The study compares the performance of PINNs against conventional
neural networks.

Results and Discussion. The study finds that PINNs exhibit superior performance over
conventional neural networks when training data points are separated up to the Nyquist rate.
In the time domain, PINNs accurately predict epy phase up to a distance of one cell except
for the direction to the source. However, amplitude predictions are less accurate, with errors
below 20% up to a distance of 0.5 cells. For larger amplitudes, the model struggles to provide
reliable predictions. Training PINNs in the frequency domain requires less computational
resources, but performance is worse than in the time domain.

Conclusion. PINNs offer promising advantages for modeling wave propagation in
narrowband signals, particularly in scenarios where measurement data is sparse or local.
They can increase resolution, reduce the volume of required data, and optimize
computational efficiency. Despite their limitation, there is a difference in solutions between
the time and frequency domains due to the nonlinear nature of NN. Future work could
address the accuracy of predictions through better network architectures or hybrid
approaches.

Keywords: Physics-informed neural networks, PINN, waves, super resolution, deep
learning, fast Fourier transform

INTRODUCTION

Physics-informed neural networks (PINN) demonstrate good results in solving a
particular partial differential equation (PDE), e.g., solving Burger's equation [1]. Unlike
traditional neural networks, PINNs embed the governing equations of physical systems into
their loss functions, ensuring that the network’s predictions are consistent with the
underlying physics. Also, this approach is capable to solve inverse problems [2] in different
areas. By embedding the governing equations of physical systems (PDEs) into the training
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process, they achieve better performance in modeling complex systems. This is a
promising method that is considered to be applied for quantum computing [3]. However,
background investigation of PINNs is not a complicated topic, and this area is rapidly being
investigated to understand its limitations.

This paper investigates the capabilities of approximation and extrapolation of
narrowband signal propagation using PINN to minimize measurement and numerical costs.
Approximation of measured data using PINNs allows for an increase in resolution without
extra data sets [4], but it considers convolutional neural networks and conclusions cannot
be directly transferred to conventional PINNs that use fully connected layers. On the other
hand, such a fully connected PINN can generalize multiple solutions and do generalization
[5]. However, such generalization requires multiple measurements that are done in the
whole space of interest. This opens the question about extrapolation that is based on data
points that do not cover the area of interest. A typical neural network is not good for
extrapolation tasks and can produce arbitrary results. These results can vary from multiple
factors, e.g., weight initialization, etc. There were investigations of ill-posed problems for
near-wall blood flow from sparse data [6] that solve the Navier—Stokes equations. However,
extrapolation without specifying boundary conditions is more difficult. Also, there is a large
interest in reducing computation resources by training multiple PINNs [7], and this approach
may be applied to reduce the number of measurements too.

The motivation for this work stems from practical challenges in navigation systems
and wireless communication applications. Some navigation systems require the ability to
construct navigation maps based on acoustic and electromagnetic beacons. Also, it can be
helpful to do tracking of trajectories of moving objects in wireless applications [8]. These
systems require the prediction of signal parameters such as phase and time delay, which
are further used to infer distances. Accurate predictions depend on high-resolution data,
which is often limited in real-world scenarios due to cost constraints. PINNs offer a potential
solution to this problem by increasing resolution through intelligent interpolation and
extrapolation without requiring additional measurement points.

MATERIALS AND METHODS

Theoretical Framework
The simplest model to investigate narrowband signals is wave propagation in a
medium. It can be described by the wave equation:

W = CZVZU, (1)

where u is the wave function;
c is the wave speed; and
V2 is the Laplacian operator.
If the propagation model does not contain nonlinear effects, steady-state conditions
can be assumed, and the Helmholtz equation is used:

Viu + k?u = 0, (2)

where k = w/c is the wave number, and w is the angular frequency.

The Fourier transform provides a bridge between the time-domain wave equation and
the frequency-domain Helmholtz equation. This relation is used to compare trained PINNs in
different domains (Fig. 1). Note that the similarity of solutions in the time and frequency do-
mains is not guaranteed because of using a neural network that is a nonlinear approximator.
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Fig. 1. Comparison of wave propagation in time and frequency domains.
To simplify the investigation, the propagation model of a harmonic wave in a 2D
medium is used. The harmonic wave source is located at a fixed point in the domain, and

the propagation is computed analytically with a defined spatial and time step. The source
is modeled as a harmonic excitation at a fixed point (x,, y,) in the domain:

u(x, vy, t) = %sin(kp — wt), (3)

where a/ﬁ is the amplitude of the source wave;

p =+ (x —x0)% + (y — ¥0)? is the distance from the source of the harmonic wave.
The computed points are used to generate training and test datasets.

The simulation domain is divided into two parts: the core part, which has discretized
points from 0 to 1, is used for training and verification of increasing resolution; the area
outside of the core is used for verification of extrapolation. The core area has a length of
2.5 wavelength in x and y directions. Data in the core area that is marked by the red
rectangle in Fig. 2 has 32 points in the time domain and different discretizations in the
space domain, e.g., 32x32 or 8x8. Such greed in the space domain is the worst case for
increasing resolution and simple to make conclusions.

The training data are generated for two cases: a single harmonic source that uses the
equation above, and two harmonic sources in opposite phase. The goal of the PINN is to
predict the wave field across the entire domain, including areas where data are not
available.

PINN Architecture and Training
The PINNs used for this study are a fully connected neural network with the following
architecture (Fig. 3):
e Input layer: x, y and t for time domain investigation and x, y for frequency domain.
o Hidden layers: three fully connected layers with 64, 128, and 64 neurons, using the
Tanh activation function.

Frame 0 Frame 0

q (|

I

Fig. 2. Input data for neural networks training for single and two sources models.
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Time domain

Xyt Input(3) Tanh(64) Tanh(128) Tanh(64) Linear(1) u

Frequency domain

XY Input(2) Tanh(64) Tanh(128) Tanh(64) Linear(2) Uger Ui

Fig. 3. Architecture of used neural networks for training in time and frequency domains.

e Output layer: one neuron for representing u(x,y,t) in the time domain or two
neurons for complex valued u(x, y) in the frequency domain.
The same architecture is used for conventional neural networks with data only losses
Lgata- On the other hand, the PINN loss function used in training combines data loss and
physics loss:

L = Lgata + Lphysics' 4)

where Lg,¢, represents the error between the model prediction and the analytical data;
Lpnysics represents the error in satisfying the governing PDEs.

The physics loss term is computed by substituting the neural network output into the
PDE. Note that boundary conditions and initial conditions are not given separately and are
partially present in the analytically computed data.

The ordinary NN and PINN models were developed using PyTorch version 2.5.0 [9].

The training data consists of simulated wave propagation data generated from the
wave equation and the Helmholtz equation, which are given above. Physics loss is given
in the whole area of interest. Different PINNs are trained in the time or frequency domain
to assess their performance in:

e Predicting phase and amplitude at non-computed points. Note that FFT is used for
temporal output to represent the result in the frequency domain.
e Extrapolating solutions beyond the dataset domain.

The networks are trained using the Adam optimizer with a learning rate of 0.001. A
total of 12,000 training iterations are performed. MSE of the physics loss is scaled by 0.01
relative to MSE of the data loss to provide correct training.

RESULTS AND DISCUSSION

Approximation accuracy for different models

The approximation accuracy is tested for simple NN and PINN in the time and
frequency domains. Figure 4 contains the mean square error for different NNs depending
on the number of measurements per wavelength. In other words, there is a dependance of
error on resolution. It is obvious that decreasing resolution increases error for all cases.
However, PINNs approximate data better in the case of decreasing resolution. PINNs stop
working if the sampling rate is less than the Nyquist rate (< 2 in Fig. 4).

Note that this result is valid for PINNs in time and frequency domains. So, PINNs can
be used to increase resolution, which decreases the number of measurements.
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Fig. 4. Approximation error of different NNs depending on data density.

Extrapolation Capability

Ordinary NN and PINN are trained in limited regions and demonstrate different
extrapolation performance in the frequency domain. Fig. 5 shows that an ordinary NN gives
expectedly incorrect results for the single source.

On the other hand, Fig. 6 shows that PINNs can predict phase and amplitude in
neighboring regions where phase is predicted with 20% error up to 0.5 of the training cell
size, which is marked by a red rectangle. An exception is the neighboring region that is
directed to the source. This is caused by the absence of the wave excitation source in the
partial differential equation.

Using PINNs in the frequency domain for predicting narrow band signals allows for a
reduction in computational resources.

Extrapolation of PINN in the time domain predicts phase correctly at a distance of 1
cell except the direction to the source (Fig. 7). Amplitude is predicted with an error of < 20%
at a distance of 0.5 cells except the direction to the source. Large amplitudes cannot be
correctly described by the model in both domains.

Also, Fig. 7 illustrates on the bottom images, predicted wave propagation in the time
domain for two sources in opposite phase. It has a similar result to a single source. And
these results are better than those for the frequency domain. This allows us to reduce the
amount of data for training.
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Fig. 5. Extrapolation results in frequency domain of ordinary NN for single source.

EnekTtpoHika Ta iHpopmauinHi TexHonorii « 2025 « Bunyck 30 117



Igor Kolych

Amplitude Phase

2.04

15

1.0

0.5

0.0 4

-1.0 -05 0.0 0.5 1.0 1.5 2.0

X
Fig. 6. Extrapolation results in frequency domain of PINN for single source.
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Fig. 7. Extrapolation results in time domain of PINN for single (top) and two (bottom) sources.

Despite the advantages of PINNs, it exhibits the following limitation. Nonlinearities in
the neural network architecture prevent exact equivalence between time-domain and
frequency-domain solutions.

CONCLUSION

PINNs offer a powerful tool for modeling wave propagation in scenarios where
measurement data is limited in some areas. This study demonstrates their ability to improve
resolution, extrapolate solutions, and reduce the need for additional data and
computations. While challenges remain, particularly in the accurate prediction of large
amplitudes and the preservation of solution identity across domains, PINNs represent a
promising approach for applications in navigation and wireless tracking.

Future work should focus on improving the accuracy of predictions through better
network architectures or hybrid approaches.
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®ISUYHO-IHOPOPMOBAHI HENPOHHI MEPEXI A1 MOOENIOBAHHSA
NOLWMPEHHA BY3bKOCMYIrOoBUX CUrHANIB

lzop Konuy ©©
JIbsiecbkull HayioHanbHUl yHieepcumem imeHi IeaHa ®paHka,
syn. [ipazomaHosa, 50, m. Jlkeie, 79005, YkpaiHa

AHOTALIA

BcTyn. ®iznyHo-iHpopmoBaHi HelpoHHi Mepexi (PIHM) npoaemoHCcTpyBanu NOTYXHi
MOXIMBOCTi Y BUPILLUEHHI Npamux i obepHeHux 3agady ans audepeHuianbHUX PiBHSHbL Y
YaCTKOBMUX NOXiAHMX. Y UbOMY AOCHIOXEHHI OCHOBHa yBara npuainsieTbCs 3aCTOCYBaHHIO
®IHM pgns anpokcvumauii Ta ekcTpanonsuii MOLWMPEHHS BY3bKOCMYroBoro curHany. Lli
3ycunnsg MOTMBOBaHI MOTEHLINHOK MOXIMBICTIO 3MEHLIUTM BUTPATM Ha BUMIPIOBAHHA Ta
yncenbHi BUTPATU B TakMX 3aCTOCYHKaX, SIK HasirauiHi CUCTEMU Ha OCHOBI aKyCTUYHUX i
enekTpoOMarHiTHMX maskis. Lli cuctemum CTBOpPIOIOTL KapTy cepedoBulla Ta BiACTEXYHOTb
TpaekTopii 06’eKTIB, BUKOPUCTOBYHOUYM AaHi NPO NOLUMPEHHS XBUIb.

Matepianu Ta meToau. lMoLwmMpeHHsi FrapMOHINHUX XBUIb Y CepeoBULLi MOXHa onucaTn
32 [I0MOMOrOK XBUIIbOBOMO PiBHSIHHSA abo piBHSAHHS enbMmronbua. [Onsi BCTAHOBMEHHS
3B'A3KY MK UMMM PIBHAHHAMW BUKOPUCTOBYETHCS nepeTBopeHHs dyp'e. PIHM HaBueHi B
yacosin abo 4yacToTHIN obnacTti Ana MPOrHo3yBaHHA XapaKTEPUCTUK MOLUMPEHHS XBWIi,
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Takux ik amnnityaa Ta pasa. [JocnigxkeHHs nopiBHoe NpoaykTuBHiCTb ®IHM 3i 3BuyanHmmm
HENPOHHMMMW MepeXaMu.

PesynbTaTtun. JocnimxkeHHsa nokasye, wo ®IHM geMoHCTpyloTh Kpally NpoayKTUBHICTb
Y MOPIBHAHHI 3i 3BU4ANHMMMN HENPOHHUMU Mepexamn, KONM TOYKM TpeHyBarnbHUX OaHUX
po3HeceHi Ao YacTtotu Harksicta. Y vacosin obnacti ®IHM TouHo nepenbavatoTe hasy Ha
BiACTaHi 0O OAHIEI KOMIpKM, 3a BUHATKOM HanpsiMky Ha mkepeno. OgHak NpOrHosu
aMnniTyan MeHL TOYHi, 3 nomunkamu meHwe 20% Ha sigcTtai o 0,5 knituHn. Ona 6inbumnx
amnnityg Mogeni Baxko 3abe3neunTy HaginHi nporHo3n. HaBuyaHHsa ®IHM y vacTtoTHin
obnacti noTpebye MeHLle 064MCnoBanNbHNX pecypciB, ane NPoayKTUBHICTb HUXKYA, HiX Y
yacosin obnacri.

BucHoBkn. ®IHM nponoHytoTe GaraToobiudtoui nepeary Onsi MOAENOBAHHSA
PO3MOBCIOAXEHHSA XBWUMNb Yy BY3bKOCMYrOBMX CUrHanax, ocobnmBo B cUeHapisx, Ae AaHi
BMMIipIOBaHb po3pimxeHi abo nokanbHi. BoHn MoxyTb 36inblumMTy po3ginbHy 3AaTHICTb,
3MeHWNTN obcar HeobxigHWX AaHuX | ONTMMI3yBaTM OBYMCrIOBanbHY egeKTUBHICTb.
HesBaxawun Ha iXx ODMEXEHHs, iCHye pi3HMLA pilleHb MiXK 4acoBOK Ta YaCTOTHOH
obnacTamu 4Yepes3 HeniHiNHY nNpupoay HEMpoHHMX Mepex. ManbyTtHa poboTa Moxe
cTocyBaTWUCSl TOYHOCTI MPOrHO3iB 32 JOMOMOIOH0 KPaLLoi apXiTeKTypu Mmepex abo ribpuaHmx
nigxoais.

Knroyoei cnoea: ®isanyHo-iHpopmoBaHi HENPOHHI Mmepexi, PIHM, xBuni, HagBucoka
po3ainbHa 3aaTHICTb, MMOOoKe HaBYaHHS, WBKAKE NnepeTBopeHHsa Pyp'e.
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