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ABSTRACT 

Background. Physics-informed neural networks (PINN) demonstrated strong 
capabilities in solving direct and inverse problems for partial differential equations. In this 
study, the focus is on applying PINNs for the approximation and extrapolation of narrowband 
signal propagation. This effort is motivated by the potential to reduce measurement and 
numerical costs in applications such as acoustic and electromagnetic beacon-based 
navigation systems. These systems aim to map environments and track object trajectories 
by leveraging wave propagation data. 

Materials and Methods. The propagation of harmonic waves through a medium can be 
described using either the wave equation or the Helmholtz equation. To establish a 
connection between these equations, the Fourier transform is employed. PINNs are trained 
in the time or frequency domain to predict wave propagation characteristics such as 
amplitude and phase. The study compares the performance of PINNs against conventional 
neural networks. 

Results and Discussion. The study finds that PINNs exhibit superior performance over 
conventional neural networks when training data points are separated up to the Nyquist rate. 
In the time domain, PINNs accurately predict еру phase up to a distance of one cell except 
for the direction to the source. However, amplitude predictions are less accurate, with errors 
below 20% up to a distance of 0.5 cells. For larger amplitudes, the model struggles to provide 
reliable predictions. Training PINNs in the frequency domain requires less computational 
resources, but performance is worse than in the time domain. 

Conclusion. PINNs offer promising advantages for modeling wave propagation in 
narrowband signals, particularly in scenarios where measurement data is sparse or local. 
They can increase resolution, reduce the volume of required data, and optimize 
computational efficiency. Despite their limitation, there is a difference in solutions between 
the time and frequency domains due to the nonlinear nature of NN. Future work could 
address the accuracy of predictions through better network architectures or hybrid 
approaches. 

Keywords: Physics-informed neural networks, PINN, waves, super resolution, deep 
learning, fast Fourier transform 

INTRODUCTION 

Physics-informed neural networks (PINN) demonstrate good results in solving a 
particular partial differential equation (PDE), e.g., solving Burger’s equation [1]. Unlike 
traditional neural networks, PINNs embed the governing equations of physical systems into 
their loss functions, ensuring that the network’s predictions are consistent with the 
underlying physics. Also, this approach is capable to solve inverse problems [2] in different 
areas. By embedding the governing equations of physical systems (PDEs) into the training 
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process, they achieve better performance in modeling complex systems. This is a 
promising method that is considered to be applied for quantum computing [3]. However, 
background investigation of PINNs is not a complicated topic, and this area is rapidly being 
investigated to understand its limitations. 

This paper investigates the capabilities of approximation and extrapolation of 
narrowband signal propagation using PINN to minimize measurement and numerical costs. 
Approximation of measured data using PINNs allows for an increase in resolution without 
extra data sets [4], but it considers convolutional neural networks and conclusions cannot 
be directly transferred to conventional PINNs that use fully connected layers. On the other 
hand, such a fully connected PINN can generalize multiple solutions and do generalization 
[5]. However, such generalization requires multiple measurements that are done in the 
whole space of interest. This opens the question about extrapolation that is based on data 
points that do not cover the area of interest. A typical neural network is not good for 
extrapolation tasks and can produce arbitrary results. These results can vary from multiple 
factors, e.g., weight initialization, etc. There were investigations of ill-posed problems for 
near-wall blood flow from sparse data [6] that solve the Navier–Stokes equations. However, 
extrapolation without specifying boundary conditions is more difficult. Also, there is a large 
interest in reducing computation resources by training multiple PINNs [7], and this approach 
may be applied to reduce the number of measurements too. 

The motivation for this work stems from practical challenges in navigation systems 
and wireless communication applications. Some navigation systems require the ability to 
construct navigation maps based on acoustic and electromagnetic beacons. Also, it can be 
helpful to do tracking of trajectories of moving objects in wireless applications [8]. These 
systems require the prediction of signal parameters such as phase and time delay, which 
are further used to infer distances. Accurate predictions depend on high-resolution data, 
which is often limited in real-world scenarios due to cost constraints. PINNs offer a potential 
solution to this problem by increasing resolution through intelligent interpolation and 
extrapolation without requiring additional measurement points. 

MATERIALS AND METHODS 

Theoretical Framework 
The simplest model to investigate narrowband signals is wave propagation in a 

medium. It can be described by the wave equation: 

 
𝜕2𝑢

𝜕𝑡2
=  𝑐2∇2𝑢, (1) 

where 𝑢 is the wave function;  

𝑐 is the wave speed; and  

∇2 is the Laplacian operator.  

If the propagation model does not contain nonlinear effects, steady-state conditions 
can be assumed, and the Helmholtz equation is used: 

 ∇2𝑢 +  𝑘2𝑢 =  0, (2) 

where 𝑘 = 𝜔 𝑐⁄  is the wave number, and 𝜔 is the angular frequency.  

The Fourier transform provides a bridge between the time-domain wave equation and 
the frequency-domain Helmholtz equation. This relation is used to compare trained PINNs in 
different domains (Fig. 1). Note that the similarity of solutions in the time and frequency do-
mains is not guaranteed because of using a neural network that is a nonlinear approximator. 
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Fig. 1. Comparison of wave propagation in time and frequency domains. 

To simplify the investigation, the propagation model of a harmonic wave in a 2D 
medium is used. The harmonic wave source is located at a fixed point in the domain, and 
the propagation is computed analytically with a defined spatial and time step. The source 
is modeled as a harmonic excitation at a fixed point (𝑥0, 𝑦0) in the domain: 

 𝑢(𝑥, 𝑦, 𝑡) =  
𝑎

√𝜌
sin(𝑘𝜌 − 𝜔𝑡), (3) 

where 𝑎 √𝜌⁄  is the amplitude of the source wave;  

𝜌 = √(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 is the distance from the source of the harmonic wave.  

The computed points are used to generate training and test datasets. 
The simulation domain is divided into two parts: the core part, which has discretized 

points from 0 to 1, is used for training and verification of increasing resolution; the area 
outside of the core is used for verification of extrapolation. The core area has a length of 
2.5 wavelength in x and y directions. Data in the core area that is marked by the red 
rectangle in Fig. 2 has 32 points in the time domain and different discretizations in the 
space domain, e.g., 32x32 or 8x8. Such greed in the space domain is the worst case for 
increasing resolution and simple to make conclusions. 

The training data are generated for two cases: a single harmonic source that uses the 
equation above, and two harmonic sources in opposite phase. The goal of the PINN is to 
predict the wave field across the entire domain, including areas where data are not 
available. 

PINN Architecture and Training 
The PINNs used for this study are a fully connected neural network with the following 

architecture (Fig. 3): 

• Input layer: 𝑥, 𝑦 and 𝑡 for time domain investigation and 𝑥, 𝑦 for frequency domain. 

• Hidden layers: three fully connected layers with 64, 128, and 64 neurons, using the 
Tanh activation function. 

 

Fig. 2. Input data for neural networks training for single and two sources models. 
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Fig. 3. Architecture of used neural networks for training in time and frequency domains. 

 

• Output layer: one neuron for representing 𝑢(𝑥, 𝑦, 𝑡) in the time domain or two 

neurons for complex valued 𝑢(𝑥, 𝑦) in the frequency domain. 

The same architecture is used for conventional neural networks with data only losses 

𝐿data. On the other hand, the PINN loss function used in training combines data loss and 

physics loss: 

 𝐿 =  𝐿data   + 𝐿physics, (4) 

where 𝐿data represents the error between the model prediction and the analytical data; 

𝐿physics represents the error in satisfying the governing PDEs.  

The physics loss term is computed by substituting the neural network output into the 
PDE. Note that boundary conditions and initial conditions are not given separately and are 
partially present in the analytically computed data. 

The ordinary NN and PINN models were developed using PyTorch version 2.5.0 [9]. 
The training data consists of simulated wave propagation data generated from the 

wave equation and the Helmholtz equation, which are given above. Physics loss is given 
in the whole area of interest. Different PINNs are trained in the time or frequency domain 
to assess their performance in: 

• Predicting phase and amplitude at non-computed points. Note that FFT is used for 
temporal output to represent the result in the frequency domain. 

• Extrapolating solutions beyond the dataset domain. 
The networks are trained using the Adam optimizer with a learning rate of 0.001. A 

total of 12,000 training iterations are performed. MSE of the physics loss is scaled by 0.01 
relative to MSE of the data loss to provide correct training. 

RESULTS AND DISCUSSION 

Approximation accuracy for different models 
The approximation accuracy is tested for simple NN and PINN in the time and 

frequency domains. Figure 4 contains the mean square error for different NNs depending 
on the number of measurements per wavelength. In other words, there is a dependance of 
error on resolution. It is obvious that decreasing resolution increases error for all cases. 
However, PINNs approximate data better in the case of decreasing resolution. PINNs stop 
working if the sampling rate is less than the Nyquist rate (< 2 in Fig. 4). 

Note that this result is valid for PINNs in time and frequency domains. So, PINNs can 
be used to increase resolution, which decreases the number of measurements. 
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Fig. 4. Approximation error of different NNs depending on data density. 

Extrapolation Capability 
Ordinary NN and PINN are trained in limited regions and demonstrate different 

extrapolation performance in the frequency domain. Fig. 5 shows that an ordinary NN gives 
expectedly incorrect results for the single source. 

On the other hand, Fig. 6 shows that PINNs can predict phase and amplitude in 
neighboring regions where phase is predicted with 20% error up to 0.5 of the training cell 
size, which is marked by a red rectangle. An exception is the neighboring region that is 
directed to the source. This is caused by the absence of the wave excitation source in the 
partial differential equation. 

Using PINNs in the frequency domain for predicting narrow band signals allows for a 
reduction in computational resources. 

Extrapolation of PINN in the time domain predicts phase correctly at a distance of 1 
cell except the direction to the source (Fig. 7). Amplitude is predicted with an error of < 20% 
at a distance of 0.5 cells except the direction to the source. Large amplitudes cannot be 
correctly described by the model in both domains. 

Also, Fig. 7 illustrates on the bottom images, predicted wave propagation in the time 
domain for two sources in opposite phase. It has a similar result to a single source. And 
these results are better than those for the frequency domain. This allows us to reduce the 
amount of data for training. 

 

Fig. 5. Extrapolation results in frequency domain of ordinary NN for single source. 
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Fig. 6. Extrapolation results in frequency domain of PINN for single source. 

 

 

Fig. 7. Extrapolation results in time domain of PINN for single (top) and two (bottom) sources. 

Despite the advantages of PINNs, it exhibits the following limitation. Nonlinearities in 
the neural network architecture prevent exact equivalence between time-domain and 
frequency-domain solutions. 

CONCLUSION 

PINNs offer a powerful tool for modeling wave propagation in scenarios where 
measurement data is limited in some areas. This study demonstrates their ability to improve 
resolution, extrapolate solutions, and reduce the need for additional data and 
computations. While challenges remain, particularly in the accurate prediction of large 
amplitudes and the preservation of solution identity across domains, PINNs represent a 
promising approach for applications in navigation and wireless tracking. 

Future work should focus on improving the accuracy of predictions through better 
network architectures or hybrid approaches. 
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ФІЗИЧНО-ІНФОРМОВАНІ НЕЙРОННІ МЕРЕЖІ ДЛЯ МОДЕЛЮВАННЯ 

ПОШИРЕННЯ ВУЗЬКОСМУГОВИХ СИГНАЛІВ 

Ігор Колич  
Львівський національний університет імені Івана Франка, 

вул. Драгоманова, 50, м. Львів, 79005, Україна 

АНОТАЦІЯ 

Вступ. Фізично-інформовані нейронні мережі (ФІНМ) продемонстрували потужні 
можливості у вирішенні прямих і обернених задач для диференціальних рівнянь у 
часткових похідних. У цьому дослідженні основна увага приділяється застосуванню 
ФІНМ для апроксимації та екстраполяції поширення вузькосмугового сигналу. Ці 
зусилля мотивовані потенційною можливістю зменшити витрати на вимірювання та 
чисельні витрати в таких застосунках, як навігаційні системи на основі акустичних і 
електромагнітних маяків. Ці системи створюють карту середовища та відстежують 
траєкторії об’єктів, використовуючи дані про поширення хвиль. 

Матеріали та методи. Поширення гармонійних хвиль у середовищі можна описати 
за допомогою хвильового рівняння або рівняння Гельмгольца. Для встановлення 
зв'язку між цими рівняннями використовується перетворення Фур'є. ФІНМ навчені в 
часовій або частотній області для прогнозування характеристик поширення хвилі, 
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таких як амплітуда та фаза. Дослідження порівнює продуктивність ФІНМ зі звичайними 
нейронними мережами. 

Результати. Дослідження показує, що ФІНМ демонструють кращу продуктивність 
у порівнянні зі звичайними нейронними мережами, коли точки тренувальних даних 
рознесені до частоти Найквіста. У часовій області ФІНМ точно передбачають фазу на 
відстані до однієї комірки, за винятком напрямку на джерело. Однак прогнози 
амплітуди менш точні, з помилками менше 20% на відстані до 0,5 клітини. Для більших 
амплітуд моделі важко забезпечити надійні прогнози. Навчання ФІНМ у частотній 
області потребує менше обчислювальних ресурсів, але продуктивність нижча, ніж у 
часовій області. 

Висновки. ФІНМ пропонують багатообіцяючі переваги для моделювання 
розповсюдження хвиль у вузькосмугових сигналах, особливо в сценаріях, де дані 
вимірювань розріджені або локальні. Вони можуть збільшити роздільну здатність, 
зменшити обсяг необхідних даних і оптимізувати обчислювальну ефективність. 
Незважаючи на їх обмеження, існує різниця рішень між часовою та частотною 
областями через нелінійну природу нейронних мереж. Майбутня робота може 
стосуватися точності прогнозів за допомогою кращої архітектури мереж або гібридних 
підходів. 

Ключові слова: Фізично-інформовані нейронні мережі, ФІНМ, хвилі, надвисока 
роздільна здатність, глибоке навчання, швидке перетворення Фур'є. 
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