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ABSTRACT

Background. Forecasting retail sales is crucial for modern supply chain and inventory
management. Traditional statistical models alone can be insufficient due to the large
amounts of data generated by extensive retail chains. Combining time series analysis with
machine learning can improve forecast accuracy.

Materials and Methods. This research used the M5-forecasting accuracy dataset,
containing over 30,000 time series of store-item daily sales. The study involved data
preprocessing to handle any missing values and splitting the series into training and hold-
out test sets. Three forecasting methods were applied. The first method accounted for
autoregressive and moving average components. The second approach explicitly included
trend and seasonality by decomposing the series into those components, fitting a model to
the trend-adjusted series, and then reintroducing the seasonal part. Third, a long short-term
memory deep learning regressor was trained to capture longer-range dependencies. The
evaluation on the test set was performed using the Mean Absolute Error (MAE). Residual
analysis examined autocorrelation and the distribution of errors.

Results and Discussion. A focus on one item showed a strong weekly cycle. The first
autoregressive approach without explicit seasonality partially captured the data but left some
significant autocorrelation in the residuals. The second autoregressive variant that
considered trend and weekly seasonal decomposition achieved the best short-term
predictive accuracy, reflected by lower MAE. The deep learning regressor, implemented in
a recursive multi-step setup, did not outperform the autoregressive one, partly due to error
accumulation and possibly incorrect choice of its architecture.

Conclusion. The study indicates that for retail data with clear weekly fluctuations, auto-
regressive moving-average models enhanced by trend and seasonal decomposition can
provide robust forecasts. Neural network methods can model non-linearities but require mo-
re specialized sequence-to-sequence configurations to avoid cumulative forecast errors. Fu-
ture work can involve combining methods for multi-horizon and hierarchical retail time series.

Keywords: Time series analysis, machine learning, retail forecasting, ARIMA, LSTM,
seasonality

INTRODUCTION

Retail sales forecasting is pivotal for demand-driven supply chain management,
strategic pricing, and minimizing waste from unsold inventory. Historically, simple models
such as Moving Averages or Exponential Smoothing were used to predict consumer
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demand. With the exponential growth of data volumes, modern forecasting efforts leverage
more sophisticated approaches, including autoregressive integrated moving average
(ARIMA) models and neural networks.

However, successful forecasting in the retail sector encounters several challenges.
Seasonality with weekly, monthly, or yearly patterns. Trend components reflect broad,
gradual changes in consumer behavior. Promotional spikes and special events.

As shown in [1], machine learning models that leverage generalization across
products and stores can improve forecasting accuracy even with limited historical data.
While our study evaluates ARIMA and long short-term memory (LSTM) separately, the
findings in [1] support the idea that different modeling approaches capture distinct sales
patterns. This reinforces the value of comparing classical methods like ARIMA with deep
learning models such as LSTM to assess their strengths across scenarios.

Accurate retail demand forecasting is essential for optimizing inventories, streamlining
operations, and enhancing customer satisfaction. Recent studies demonstrate the potential
of machine learning (ML) and deep learning (DL) methods to handle various complexities
in sales data, such as seasonality, special events, and regional differences [3]. The M5
Competition [2] further highlights the importance of hierarchical retail datasets, driving
advancements in both established and novel forecasting algorithms.

Several publications show the advantages of ML-based approaches. For example, [6]
treats sales forecasting largely as a regression problem, citing improvements over time-
series models like ARIMA. In [6], using additional (exogenous) data enhances XGBoost
performance, while [4] and [5] underscore the effectiveness of LSTM and convolutional
neural networks (CNN), as well as hybrid models (XGBoost-LSTM). Time Series
forecasting with LSTM is broadly described in the article [4]. The author describes so-called
“Multistep” forecasting or “Walk-Forward” forecasting that will be leveraged in this study.

Training of deep neural networks may be expensive in terms of time and resources.
Alternatively, to training or model fine-tuning, in-context learning was introduced in large
language models. The idea is that giving examples to model works similarly to fine-tuning
it for foundational models. Authors of Lag-Llama, the open-source base model for
univariate probabilistic forecasting [8], decided to replicate this idea for time-series
forecasting to make the model adjust to specific data more seamlessly. The novelty of this
study lies partially in the way models produce forecasts. As the output model predicts
mean, standard deviation, and degrees of freedom estimates of the predicted distribution,
from which model forecasts are then sampled.

Despite these strides, challenges remain in forecasting the complex seasonality of
retail sales. Therefore, the purpose of this study is to develop and experimentally validate
a demand forecasting approach that leverages ML and DL techniques under real-world
retail constraints. By applying these approaches to the M5-forecasting accuracy dataset,
we aim to examine how trend, seasonality, and advanced recurrent neural network
architectures influence forecast performance.

MATERIALS AND METHODS

Data Description

This study used the M5-forecasting accuracy dataset [7], comprising over 30,000
unique time series from Walmart stores across different US states. Each product-store
combination details daily unit sales from 2011 to 2016. It includes sales data for specific
products at individual store locations, incorporating contextual factors such as pricing,
promotions, and product/store characteristics. The dataset is substantial, spanning several
dozen gigabytes, making it highly valuable for time series research. The dataset exhibits
variability across different time periods, including daily, weekly, and monthly fluctuations.
Due to the dynamic nature of sales and the numerous influencing factors, developing
accurate forecasting models is challenging. Forecasting requires consideration of future
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time horizons, in addition to historical sales data. Robust evaluation metrics are necessary
to assess the accuracy of predictions. This dataset is widely used for testing and
benchmarking forecasting algorithms.

Forecasting Approaches

Three main forecasting approaches were explored.

First, we used ARIMA models. Itincorporates autoregressive (AR) terms. This element
of the model indicates that the current value of the series can be represented as a linear
combination of the previous values and model parameters. [2]

Yic+dpr Y+ .+ Y, + & (1)

where ¢ is slope model parameter,
¢ — intercept model parameter,
and p — a hyperparameter of the model.
In order to define hyperparameter p in AR we shall use the autocorrelation function.

cov(ye, Ye-1)
T =corr(Yp,yx) = ————— (2)
O0t0t—k
Differentiating for stationarity (I). Includes differentiation of the series to achieve
stationarity. For example:

Yt, = Yt - Yt—l (3)

Additionally, moving average (MA) terms. It represents a series as a weighted
combination of error values. The MA process must be stationary [2]

Yt =u + gt + 61 * gt—l +... +9q€t—q (4)

where 6,, — slope model parameter,
u — average of the series, also can be an intercept,
and ¢, — past errors obtained from AR.
To define hyperparameter q in MA we shall use the partial autocorrelation function.

cov(Ye, Ve
1 = corr(Ve, Vi) = M and Ym (0 < m < k): y;_, = const (5)

0t0t—k

Note: partial correlation function on the contrary to correlation function helps to
determine direct effect of y;_, on y;.

Second, an ARIMA variant explicitly accounted for trend and seasonal effects by
decomposing the time series (Fig. 1) into trend, seasonal, and residual components, then
applying ARIMA on the deseasonalized series and re-adding the seasonal parts [2].

Why is time series decomposition needed?

e Modeling: to predict the trend and add a seasonal component.
¢ Using the seasonal component as a feature for the model.
¢ Using knowledge of the trend and seasonality for more useful actions. For example, if
we know some periodicity, we can decompose it into a Fourier series, generating the
corresponding periodicity sin(kx) and cos(kx) and feed these functions to the input of
a linear model, thus we can get a good basic solution.
Third, we implemented a Long Short-Term Memory (LSTM) regressor from the class of
recurrent neural networks (Fig. 2), training it to capture longer-range patterns [3].
For LSTM regression in one step ht is projected onto the linear layer of the network.
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Fig. 1. Additive Decomposition of Time Series: Original (a), Trend (b), Seasonality (c), and Residuals (d) [10].

In a chosen recursive multi-step forecasting strategy, the model's previous
predictions serve as inputs to forecast further ahead. The idea of this approach can be

analytically described as follows [3]:

prediction(t +1) = model(observ(t), observ(t — 1),
prediction(t + 2) = model(prediction(t + 1),0bs(t),

®
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Fig. 2. Schematic representation of LSTM cells [11]: h; — hidden state output; x; — time series input value.
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Evaluation

We evaluated performance using MAE, SMAPE, MASE to quantify forecast accuracy,
while the analysis of residuals and autocorrelation confirmed how well each model
explained the underlying patterns.

Used Software

The experiments in this study were conducted using Python 3.11. For time series
modeling, the statsmodels library was employed to implement ARIMA models and perform
STL decomposition. LSTM networks for deep learning-based forecasting were developed
using PyTorch.

RESULTS AND DISCUSSION

Case Study on a Single Product with ARIMA

For our experiment we picked an example of an M5 dataset. It is the daily sales of a
product item called “FOODS_3 090 _CA_3,” where “FOODS_3” indicates a department-
subcategory (food items), “090” identifies the product, and “CA_3” denotes a particular
store in California. Initial exploration revealed a clear weekly seasonal pattern and some
irregular peaks likely driven by promotions.

The experiment aims to evaluate the forecasting performance of the ARIMA (7,0,7)
model on a given time series dataset, assessing its ability to capture trends and fluctuations
in both training and test sets.

The ARIMA (7,0,7) model was trained on historical data, with actual values
represented in blue for the training set and red for the test set (Fig. 3 and Fig. 4). Model
predictions were compared against actual values, with forecasted values shown in purple
for the training set and orange for the test set.

The results indicate that the model successfully captures the general trends and
periodic fluctuations in the training set. However, discrepancies were observed, particularly
in areas with sharp peaks and drops, suggesting potential limitations of the approach.

The next experiment investigates an alternative forecasting method that separately
models trend and seasonality components using an additive decomposition approach. The
goal is to improve forecasting accuracy by isolating these components before making
predictions.

The time series was decomposed into trend, seasonality, and residuals. The trend
component was forecasted using ARIMA (7,0,7), removing seasonal fluctuations for a
clearer long-term prediction. After predicting the trend, the seasonal pattern was
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Fig. 3. Sales forecasting with the ARIMA (7, 0, 7) on train and test sets.
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reintroduced to reconstruct the complete forecast (Fig. 5 and Fig. 6). The approach
provides improved metrics compared to a standard ARIMA model, though deviations still
exist at extreme peaks and dips.
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The time series was decomposed into trend, seasonality, and residuals. The trend
component was forecasted using ARIMA (7,0,7), removing seasonal fluctuations for a
clearer long-term prediction. After predicting the trend, the seasonal pattern was
reintroduced to reconstruct the complete forecast (Fig. 5 and Fig. 6). The approach
provides improved metrics compared to a standard ARIMA model, though deviations still
exist at extreme peaks and dips.

LSTM Performance
LSTM regressor was trained to predict the next-day sale.

LSTM Configuration.
The network consists of two stacked LSTM layers, each with a hidden state size of
256 units. The input sequence length (window size) is set to 30-time steps. No dropout
regularization is applied between layers. The model is trained for a maximum of 269 epochs
using the Adam optimizer with a learning rate of 1 x 10™%.

Early Stopping.

To prevent overfitting and reduce training time, we apply early stopping based on valida-
tion loss. The model is saved whenever the validation loss improves beyond a set threshold,
and training halts if no improvement occurs for 100 consecutive epochs. The best model
(from epoch 169) is retained for evaluation. Learning curves are shown in Fig. 7 and Fig. 8.
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Fig.7. LSTM Training and validation mean squared error (MSE) loss curves for next-day sales prediction.
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Fig. 8. LSTM training and validation mean absolute error MAE metric curves for next-day sales prediction.
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LSTM was trained to perform next-step prediction on historical sales data and
employed recursive inference to produce multi-step forecasts. Evaluation shows (Fig. 9
and Fig. 10) that while the model achieves good performance on the test set (MAE = 36.0,
symmetric mean absolute percentage error (SMAPE) = 30.4), it performs worse on the
training set (MAE = 77.0, SMAPE = 61.4) due to recursive error accumulation and the
presence of higher variance in earlier historical data. This discrepancy highlights the
limitations of recursive forecasting on long historical sequences.
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Fig. 9. Forecasting a time series using pretrained LSTM Regressor with recursive multistep approach.
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Fig. 10. Forecasting a test set of time series using pretrained LSTM Regressor with recursive multistep approach.

This approach seems to be working satisfactorily for shorter test sequences but does
not work efficiently for longer-term train series forecasting. Its quality also seems to be
dependent on the initialized sequence to regress from. Thus, we think that adopting a more
specialized sequence-to-sequence design could improve results. Sequence-to-sequence
approach for long-term time series forecasting is nicely described in the work [9].

Evaluation metrics
Table 1 presents train and test MAE metrics for LSTM regressor, Prophet, ARIMA
(7,0,7) and for ARIMA trend forecasting with added seasonality.
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Table 1. Evaluation metric of models on train and test sets

Evaluation metrics

Models Train Test Train Test Train Test
MAE MAE SMAPE SMAPE MASE MASE
LSTM Regressor 77.05 36.01 61.38 30.42 11.05 4.25
Prophet (out of the box) 56.24 62.97 71.51 83.18 5.415 5.37
ARIMA (7,0,7) 37.55 26.86 65.19 24.25 2.28 2.99
ARIMA trend +

. 30.35 21.83 45.55 19.95 2.16 2.30
seasonality

LSTM Regressor shows the significant gap between training and test MAE (from
77.05 to 36.01), likely due to recursive multistep inference on training data leading to
error accumulation. Lower test errors imply that when evaluated on shorter, realistic
forecast horizons, the LSTM performs better. LSTM has the highest mean absolute
scaled error (MASE) on train and test sets, which means that the prediction is the worst
against naive forecast.

Prophet out of the box with weekly seasonality performs poorly for this time series. It
may need tuning. MAE and MASE are similar across train and test. Prophet is not overfitting
but is underperforming overall. High SMAPE and MASE indicate poor predictive quality and
high deviation from naive forecasts.

ARIMA (7,0,7) performs better than previous models. Its average error is only 26
product units on the test set and 37 product units train set. It indicates that ARIMA (7,0,7)
managed to handle linear dependency in data well and forecast sales better in this case
than LSTM Regressor with a recursive approach to forecasting. Its test MASE (2.99) is
lower than LSTM’s, indicating fewer cumulative errors across the forecast horizon and
higher proximity to the naive forecast errors.

ARIMA with trend and added seasonality performs the best on train and test sets. This
model achieves the best overall performance, with the lowest errors across all metrics for
both train and test sets. It indicates that there are trends and seasonal weekly oscillations
that ARIMA manages to capture carefully.

Residual Analysis

To compare the results of ARIMA (7,0,7) and ARIMA with trend and added
seasonality, we conducted comprehensive residual analysis, including examination of
residuals versus ground truth sales, distributional fit, and autocorrelation.

The residuals from an ARIMA (7,0,7) model are illustrated on Fig. 11a. The scatter
plot reveals a structured pattern. The residuals reflect a noticeable downward trend in
residuals for higher sales values, indicating potential model bias and underperformance in
high-sales as well as low-sales regions.

The empirical distribution has noticeably heavier tails, thus it is better approximated
by the Laplace distribution (fited mean = 14.7, STD = 23.8) when compared with the
normal distribution (fitted mean = 10, STD = 30.3). This reflects the presence of outliers or
unmodeled structure. While most lag values fall within the 95% confidence bounds, several
statistically significant autocorrelations remain — especially at lower lags (e.g., lags 1, 2, 7,
and 14).

These values indicate the presence of remaining temporal structure in the residuals,
violate the assumption of white noise — indicating that certain data features remain badly
modeled.
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Fig. 11. Scatterplot (a), distribution of residuals (b) and autocorrelation function of residuals (c) for modeling with
ARIMA (7,0,7).

Residual plots from the ARIMA with trend + seasonality approach (Fig. 12) reflect the
fact that the smoothed residual mean is flatter, and the variance is more stable across sales
values. Residual values related to small sales are lower though outliers remain for high
sales.

This plot shows improved bias handling due to trend modelling and proper seasonal
treatment.

The Laplace approximation fitting remains better than the normal fit, but the mean
(closer to 0) and reduced standard deviation indicate more centred, less dispersed
residuals. This reflects improved modelling of systematic patterns, though some non-
normality remains.

The updated ACF shows weaker and fewer significant lags, indicating a closer
approximation to white noise. This confirms that accounting for seasonality and trend
improved the temporal independence of residuals.

This result suggests the model more adequately captured the main structure — both
trend and seasonal cycles.
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Diebold—Mariano test

We applied the Diebold-Mariano (DM) test to statistically compare the predictive accuracy
of several forecasting models on the test set. The test evaluates whether the difference in
forecast errors between two models is statistically significant. A positive test statistic
indicates the second model has lower forecast error (is more accurate), while a negative
value favors the first model. The p-value assesses the significance of this difference. The
results are attached to Table 2.

From the results on a test set, we can see that ARIMA significantly outperforms non-
tuned Prophet. ARIMA with seasonality significantly outperforms Prophet even more.
ARIMA with trend and seasonality significantly improves ARIMA. No significant difference
between LSTM and Prophet. ARIMA significantly outperforms LSTM. ARIMA with
seasonality significantly outperforms LSTM even more.
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Table 2. Diebold—Mariano test results

Models’ comparison Test Statistic P-value
ARIMA vs Prophet -6.73 7.78x107°
ARIMA trend + seasonality vs Prophet —7.86 9.27x10-"
ARIMA trend + seasonality vs ARIMA -3.63 5.9x104
LSTM vs Prophet -1.05 0.296
LSTM vs ARIMA 6.22 5.4x10-8
LSTM vs ARIMA trend + seasonality 6.25 4.99x10-8

CONCLUSION

In this paper, we focused on predicting retail sales trends using time series analysis
and machine learning algorithms. Forecasting methods, including autoregression (AR),
moving average (MA), integrated autoregression with moving average (ARIMA), seasonal
ARIMA (SARIMA), and long short-term memory (LSTM) played an important role in the
study. We also compared the results to Prophet model with default hyperparameters.
Based on experiments conducted with sales data we've folded up our conclusions.

Seasonality Matters: The presence of distinct weekly patterns proved vital for
accurate forecasting; explicitly modeling seasonality with ARIMA significantly reduced
errors.

Trend Decomposition: Decomposing the data into separate trend and seasonal
components allowed a more precise fit, which is especially helpful in retail domains with
strong cyclical effects.

Neural Networks Caveats: While LSTM can capture complex patterns, performance
depends on architecture design, training strategy, and the amount of data. A single-step
recurrent approach can lead to escalating errors in multi-step forecasts. The quality of
forecasts is dependent on the initialized sequence to regress from.

Practical Implications: For retail businesses, relatively straightforward ARIMA
extensions remain a strong baseline. More complex models are promising but require
careful tuning.

These findings underscore the importance of robust time series decomposition and
targeted model selection. The results of this work can be used to improve solutions in the
field of inventory management and sales planning in retail. Future work will explore hybrid
methodologies, combining the interpretability of statistical models with the flexibility of deep
learning architectures for hierarchical and multi-horizon sales forecasts.
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Oleksii Kachmar, Roman Shuvar & Igor Kolych

MOJAENOBAHHA PO3APIBHUX NMPOOAXIB 3 BUKOPUCTAHHAM METOAIB
ABTOPEIPECIMHOIO IHTEFTPOBAHOIO KOB3HOIO CEPEOHbLOIO TA
OOBroOCTPOKOBOI MAM'ATI

Onekciti Kaumap ©O*, Poman Lllyeap 20, l2zop Konuy ©Q
Kagpedpa cucmemHO20 npoeKkmye8aHHs,

JIbsiscbkuli HauioHanbHUU yHieepcumem iMeHi lsaHa ®paHka

8yn. [ipazomaHosa 50, 79005 Jibeie, YkpaiHa

AHOTALIA

Beryn. [lporHodyBaHHA po3gpibHMX MpodaxiB Mae KPUTUYHE 3HA4YeHHs  Ans
eeKTMBHOIO ynpaBniHHA 3anacaMmy Ta NaHLUlrom noctaBok. Yepes cknafHicTb i obcsar
CydacCHMX po3apidHUX AaHUX TpaauUiHUX CTaTUCTUYHUX MOAENEN 4YacTo HegoCTaTHbLO.
I[HTerpauis MeToAiB MalUMHHOIO HaBYaHHS 3 aHani3oM YacoBWUX PSAiB LO3BOSISIE CYTTEBO
NOKpaLLMTX TOUHICTb NPOrHo3iB.

Martepianu Ta MeTogu. Y JocnimkeHHi BUKopuctaHo Habip gaHux M5, wo Bknovae
noHag 30 000 yacosBux psAiB LWOAEHHWX MpofaxiB ToBapiB y MarasvHax. [NposegeHo
OUMLLEHHs1 Ta nonepeaHilo 06pobKy AaHMX, BKMHYHO 3 OBpPOOKOK MpPOMycKiB, a TakoX
pO3AineHHsaM pafiB Ha HaByarnbHi Ta TecToBi BUBipku. Byno 3actocosaHo Tpu nigxoam Ao
nporHo3dyBaHHs. lMeplwmin - knacuyHa aBTOperpecuBHa Mogernb 3 KOB3HUMW CepefHiMu
(ARMA), Wo He BpaxoBYE SBHWM YMHOM CE30HHICTb. [pyryin meTod i3 posknagaHHaMm
4acoBOro psidy Ha TPEHOOBY W CE30HHY KOMMOHEHTW, nobyaoBow mogeni Ans
CKOPWIroBaHOro psifly, a NoTiM BiJHOBNEHHSIM MOBHOO MPOrHO3Yy 3 ypaxyBaHHAM CE30HHOCTI.
TpeTin - Mogenb rMMOOKOro HaBYaHHA Ha OCHOBI Mepexi TUMy «[oBra KopoTKo4acHa
nam'atb» (LSTM), 3patHa BuABNATM [OBroTpuBani 3anexHocti. [Ons  ouiHoBaHHSA
BMKOpPUCTOBYBanacb MeTpuka cepefgHboi abcontoTHoi nomunku (MAE), a Takox aHanis
aBTOKOpensLii 3anuLuKiB.

PesynbTatn. AHania npogaxiB OKPeMOoro ToBapy BUSBMB YiTKO BUPaXeHy TWXKHEBY
Ce30HHICTb. ABTOperpecuBHui nigxia 6e3 agekomnosuuii YacTkoBo Bigobpaxkas CTPYKTYpY,
arne sanviwas CyTTEBY aBTOKOPENALi0 B 3anuwkax. [pyriin MeToA, Skl BpaxoByBaB TPEHA,
Ta Ce30HHY KOMMOHEHTY, MNokasaB Haukpawi pesynbtatm 3a MAE, pocsrHysLn
HaNTOYHILLOro KOPOTKOCTPOKOBOrO MporHo3dy. HelipoHHa mepexa LSTM, peanisoBaHa y
6araToKpOKOBOMY peKypcMBHOMY pexumi, He nepesepwuna ARMA-mogens 4epes
HaKoMMYeHHs1 MOMWIOK i, IMOBIPHO, HeigeanbHy KOHQIrypawito apxiTektypu.

BucHoBku. [na po3gpibHMX 4acoBuX pALiB i3 PerynspHO TWKHEBOK CE30HHICTIO
HalnKpally TOYHICTb 3abesnedvyloTb aBTOpPErpecuBHi Mogeni 3 ypaxyBaHHAM TpeHay W
CE30HHOI Aekomno3uuii. HermpoHHi Mepexi mMarTb MoTeHUian y MOLENoBaHHI CKIagHUX
3anexHOCTeN, O4HaK BUMaratTb peTenbHOro HanalwTyBaHHS, Wo0O YHUKHYTU HAKOMUYEHHS!
noMunok. ¥ manbyTHboMy BapTo JOCniavMTv kombGiHOBaHi nigxoau Anst 6aratopiBHEBUX i
6araToropnsoHTHUX NPOrHO3iB.

Knrouyoei cnoea: aHania 4acoBuMx psdiB, MalUMHHE HaB4YaHHs, po3gpibHe
nporHo3yBaHHs, ARIMA, LSTM, ce3oHHicTb
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