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ABSTRACT

Background. Autonomous mobile robots require robust real-time obstacle avoidance
algorithms to navigate dynamic environments safely. The Artificial Potential Field (APF)
method remains widely adopted for local path planning due to its computational efficiency
and conceptual simplicity. However, conventional implementations suffer from two well-
documented limitations: local minima and computational inefficiencies. This study
investigates two probabilistic APF variants — a Gaussian formulation (ODG-PF) and a
Laplace-based approach to address these limitations

Materials and Methods. A comparative framework was developed using ROS2/Gazebo
with TurtleBot3 as target platform. The Gaussian APFM (ODG-PF) and Laplace APFM were
mathematically modeled, with key differences in their repulsive force calculations: Gaussian
uses squared terms, while Laplace employs absolute values. Both methods were tested in
identical static environments with 25 repeated runs (28 steps each). Performance metrics
included computational time and path length, analyzed via boxplots, kernel density
estimation, and Mann-Whitney U tests (p<0.05).

Results and Discussion. The Laplace APFM demonstrated superior efficiency, with
34% faster median execution time (68 ps vs. 104 ps) and tighter interquartile range (28 ps
vs. 52 ps). Its unimodal time distribution contrasted with the Gaussian's bimodal pattern,
attributed to simpler arithmetic operations. While both methods achieved collision-free
navigation, Laplace generated statistically shorter paths (p=0.0001), though with marginally
higher variability. The Gaussian method's squaring operations introduced computational
overhead without navigational benefits.

Conclusion. The Laplace-based APFM outperforms its Gaussian counterpart in
computational speed and path optimization, making it ideal for resource-constrained
systems. These findings suggest that simpler mathematical formulations can yield superior
real-world performance in obstacle avoidance applications. Future work should validate
these findings in dynamic environments and explore hybrid implementations with global
planners.

Keywords: cyber-physical system, information technologies, obstacle avoidance,
mobile robotic platforms, 10T concepts, wheeled mobile platform

INTRODUCTION

In the field of robotics, a significant area of research and development is focused on
autonomous mobile robots. These advanced systems are designed to navigate
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independently and make context-specific decisions in real time. This capability enables
them to operate without human intervention, responding adaptively to dynamic
environments based on continuous sensory input.

Autonomous mobile robots are employed across a wide range of applications.
Examples include service robots in hospitality environments, such as waiter robots that
deliver food and beverages, and transport robots used in industrial settings to move goods
efficiently. A particularly prominent example is autonomous vehicles, commonly referred to
as self-driving cars. These systems integrate sophisticated sensor arrays and
computational algorithms to interpret their surroundings, allowing them to navigate complex
traffic scenarios and reach destinations without human control.

These examples underscore the wide-ranging applicability of autonomous mobile
robots and emphasize their potential to transform numerous sectors, including hospitality,
logistics, and the automotive industry. The continued development and optimization of
these systems remain a central focus within the robotics research community, with ongoing
efforts directed toward advancing their functional capabilities and broadening their domains
of deployment.

One of core software components in autonomous mobile robots is the set of algorithms
dedicated to path planning and obstacle avoidance. These algorithms are essential for
enabling functionalities such as autonomous parking, evasive maneuvers in emergency
scenarios, and ultimately, full autonomy in navigation and control.

Path planning is typically categorized into two main types: global and local. Global
path planning relies on data from Geographic Information Systems (GIS) in conjunction
with global localization techniques. This approach requires the robot to possess a
comprehensive, large-scale understanding of its environment, enabling navigation over
extended distances - such as traversing urban areas or intercity routes.

In contrast, local path planning requires only the robot’s relative position and real-time
perception of obstacles within its immediate environment. This form of planning focuses on
short-range navigation and dynamic interactions with the surroundings, such as avoiding
pedestrians on a sidewalk or maneuvering around other vehicles in traffic. Local path
planning is crucial for ensuring safe and responsive behavior in unpredictable and rapidly
changing environments.

A wide range of algorithms has been developed to address both global and local path
planning challenges. Each of these algorithms presents distinct advantages and limitations,
and their selection can have a substantial influence on the overall efficiency, reliability, and
safety of autonomous navigation. Comprehensive reviews of these path planning
techniques, including their underlying methodologies and application domains, can be
found in the literature [1, 2, 3, 4].

Obstacle detection and avoidance constitute a critical component of local path
planning algorithms, serving a vital role in ensuring the safety of both the autonomous
system and its surrounding environment. This area has been the focus of extensive
research over several decades, leading to the development of numerous methodological
approaches. Many of these techniques have demonstrated practical effectiveness and
have been successfully implemented in real-world applications.

To effectively avoid collisions, a robot must not only detect obstacles but also
dynamically recalculate its path and modify its trajectory in real time. Real-time responsive-
ness is essential for navigating complex and dynamic environments safely and efficiently.

The initial step in obstacle avoidance involves the robot detecting potential obstacles
using its onboard sensors. Once an obstacle is identified, the system must generate a new
trajectory that enables safe navigation around the object. This alternative path must be
computed with minimal latency to ensure that the robot can adjust its motion in real time,
thereby preventing collisions and maintaining smooth path.

Additionally, the robot must be able to adapt to dynamic changes in its environment.
For example, if a new obstacle unexpectedly occurs in its path, the robot needs to rapidly
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detect the obstacle, compute an alternative route, and adjust its trajectory in real time to
ensure safe navigation.

This demonstrates the complexity inherent in autonomous mobile robots and
highlights the critical importance of ongoing research in this domain. The development and
optimization of robust obstacle detection and avoidance algorithms remain central to
robotics research, with the objective of improving the safety, reliability, and efficiency in
terms of path length, computational time and resources of autonomous systems.

The obstacle avoidance problem can be framed as follows: A robot is situated within
an unknown environment. The robot is expected to reach a specified target location or
following a goal direction, all while navigating around any obstacles that may occur on its
path. More detailed overview of the problem is presented in [1, 2].

MATERIALS AND METHODS

The Artificial Potential Field Method (APFM) is a well-established approach in robotics,
widely applied in path planning and obstacle avoidance tasks. Originally proposed by
Khatib [5], the method models the robot’s environment as a virtual potential field, where the
target location produces an attractive force, while obstacles produce repulsive forces. The
robot, treated as a particle under the influence of these virtual forces, is guided toward the
goal while being repelled from surrounding obstacles. Its motion is determined by the
resultant force vector calculated as the superposition of these attractive and repulsive
components. The mathematical formulation of these forces is represented by Egs. (1)-(3).

fiotal = frep + faters (1)
Fooq1 — T
fater = Kater L' (2)
|rgoal - r|
K Zn (1 ! ) if d; <d
frep = rep i=1 di dmax Si, lf i max’ (3)
O' ifdi = dmax

where s; = (r — 0;)/|r — 04|, o is the position vector of the goal point and r is the

position vector of the vehicle, 0; — the position vector of each obstacle.

Despite its widespread use, the traditional Artificial Potential Field method (APFM) has
several limitations. One of the primary issues is the occurrence of local minima, where the
robot may become trapped in a position that is not the target, as the attractive force towards
the goal and the repulsive forces from obstacles cancel each other out. Additionally, the
method can result in situations where the target becomes unreachable, or the robot follows
inefficient paths due to suboptimal force interactions [2, 6]. To overcome these issues,
improved versions of the APF method have been proposed. One of such modifications of
classic APFM is based on probabilities. In the following subsections, we examine these
modifications within the mathematical models of the method in detail.

Mathematical model of Gauss APFM

The Obstacle-Dependent Gaussian Potential Field (ODG-PF) method was developed
and implemented to facilitate obstacle detection and assess the probability of collision and is
presented in detail in [7]. This study introduces a novel approach to calculating attractive and
repulsive fields, as well as an innovative direction decision strategy. Comprehensive
simulations and experimental evaluations were conducted, comparing the ODG-PF method
with other potential field-based obstacle avoidance techniques. The results demonstrate that
the ODG-PF method outperforms existing approaches in the majority of tested scenarios.
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During the development of the mathematical model, the authors introduce a pair of
values (6, d), where 6 represents the measurement angle in degrees, and d denotes the
distance to an object in meters. To obtain data in this format, the authors propose using a
movable ultrasonic distance sensor. Alternatively, a one-dimensional LIDAR can be
employed to scan the working environment.

At the initial stage, it is necessary to define a threshold distance dy,. All objects
located closer to the robot than d;,, are considered as obstacles. This parameter can signi-
ficantly influence the performance of the algorithm and therefore requires empirical tuning.
Obstacles are defined using additional parameters represented as a pair (Ostart) Oend )
where O¢.,r¢ is the angle at which the obstacle is first detected, and 8.4 is the angle at
which the detection of the same obstacle ends. This approach enables obstacle
identification from one-dimensional LiDAR input data. In addition to angular boundaries, it
is necessary to compute supplementary parameters for each obstacle: d; the average
distance to the k-th obstacle; @, = Oepnq — Ostart IS the angular width occupied by the
obstacle. Additionally, the robot is modeled as a square with side length wy,pot in meters.

Although in many experiments or computer simulations the dimensions of the robot
are often neglected - treating it as a point mass to simplify simulations and mathematical
models - considering the robot's physical dimensions is essential for improving the model's
practicality and aligning it more closely with real-world conditions. While this increases the
complexity of the model to some extent, it also enhances its practical value. The authors
propose a hybrid approach: the robot's dimensions are taken into account, but they are
incorporated into the model by modifying the perceived size of surrounding obstacles using
specific formulas. In this way, obstacles are effectively enlarged from the robot's
perspective, while the robot itself continues to be modeled as a point mass.

To account for the dimensions of the robot, it is necessary to recalculate the angle
according to the following equation:

1) w
@y = 20, = 2atan [dk *tan (7’() + % ,dk] (4)
The next step involves calculating the repulsive force exerted by each obstacle
according to Eq. (5).

— 6)°

0
fk(8;) = Ay - exp [—( d , (%)
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where 8, denotes the central angle of the obstacle, and o), represents half of the angular
width occupied by the obstacle.

The coefficient Ay, is selected such that the Gaussian function fully encompasses the
obstacle and is computed according to Eq. (6).

Ar = d, - exp(0.5), (6)

where dj, = dax — di, and d,, .« is Sensor range distance.

As with other artificial potential field-based methods, the repulsive force f; represents
the field generated by the k-th obstacle. Thus, the overall repulsive field is computed as
the sum of the repulsive forces from all individual obstacles according to the Eq. (7).

n O — 0,)?
frep(6i) = Zk:lAk " exp [—u (7)

2
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78 Electronics and Information Technologies * 2025 ¢ Issue 30



Benchmarking Gauss and Laplace Artificial Potential Field...

The next step is the computation of the attractive field using Eq. (8). This field
represents the force that draws the robot toward the specified direction 64y
Consequently, the resulting field is calculated according to Eq. (9) and determines the safe
movement direction for the robot at the current iteration (Eq. (10)). The safe movement
direction is computed as the argument at which the total potential field function reaches its
minimum. This is a significant modification, as it simplifies the computation compared to
the classical approach. Parameter y is selected experimentally and is setto y = 0.06

fattr(gi) =Y |9goal - Qilr (8)
frota(0)) = farer (6:) + frep(gi)r 9
B4ir = argmin (fioral)- (10)

In the traditional method, the movement direction is determined using the arctangent
between two vectors, which increases computational complexity - particularly for resource-
constrained systems. Another advantage of this approach is its compatibility with data
obtained solely from ultrasonic distance sensors or one-dimensional LIiDAR sensors. This
choice of data format considerably reduces computational load, especially when compared
to algorithms that rely on obstacle detection and segmentation from images (i.e., computer
vision and image processing techniques). It is also worth noting that the authors conducted
experiments in both static and dynamic environments and reported that the algorithm
requires no additional adjustments or modifications to operate effectively in the presence
of moving obstacles.

Mathematical model of Laplace APFM

Following the analysis of the work presented in [7], we identified opportunities to
extend this line of research by exploring alternative probability density functions for
modeling the repulsive force. To maintain symmetry in the initial modeling phase, we
selected the Laplace distribution due to its simplicity and analytical tractability. In our
subsequent work [8], we proposed a mathematical formulation of the repulsive field based
on the Laplace function, providing a foundation for further investigation into its applicability
and performance in robot navigation tasks.

All preliminary steps described for the artificial potential field method (APFM) based
on the Gaussian function remain unchanged. Specifically, the environment is scanned and
obstacles are detected, followed by their expansion to account for safety margins. The
primary modification lies in the calculation of the repulsive force. By substituting the
Gaussian function with the Laplace function, we derived the Eq. (11) to describe the
repulsive force within the proposed framework.

V216, — 9i|> (11)

f(0;) = Ay -exp (—
Ok

where 6;, denotes the central angle of the obstacle, and g}, represents half of the angular

width occupied by the obstacle.

Upon analysis of Eq. (11), it becomes evident that this formulation offers compu-
tational advantages, as it eliminates the need to square the value inside the exponential
term — instead relying solely on the absolute value, which simplifies the calculation.

The coefficient A;, serves the same purpose in shaping the repulsive field as in the
Gaussian variation. It is adjusted such that the Laplace function adequately covers the
spatial extent of the obstacle, ensuring a precise representation of the repulsive force in its
proximity, and is calculated using Eq. (12). The derivation of this coefficient is based on the
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so-called sigma rule, which has been adapted for the Laplace probability density function
(PDF). This approach allows for the systematic tuning of the function's spread in relation to
the dimensions of the obstacle.

Ay = di - exp(V2), (12)

where dj, = dyax — di, and dy, .« is Sensor range distance.

To account for the influence of each obstacle, the total obstacle field is determined by
summing the repulsive fields produced by all obstacles. Consequently, the resulting
function becomes a function of the angle 6;

ep@ =Y ayeep (-2 0) (13)

Oy

The subsequent stage involves the computation of the attractive field, which follows
the same formulation as in the Gaussian-based modification. This field represents the force
that draws the robot toward the target direction of movement. When combined with the
repulsive field, the attractive field contributes to shaping the robot’s trajectory, enabling it
to avoid obstacles while steadily progressing toward the goal. The second distinction at this
stage lies in the necessity to experimentally adjust the coefficient y for the Laplace-based
formulation. Parameter y is selected experimentally and is set to y = 6.36. Total field
produced by the system is calculated using Eq. (9), and the safe direction of robot
movement is determined using Eq. (10).

Evaluation framework

In robotics research and development, the use of standardized software frameworks
and simulation environments is essential for efficient algorithm design, validation, and
deployment. One of the most prominent and widely adopted frameworks is the Robot
Operating System (ROS), which provides a comprehensive set of tools, libraries, and
conventions for developing modular and scalable robotic applications. ROS enables
seamless communication between different software components through a publish-
subscribe architecture and supports integration with a wide variety of sensors, actuators,
and control algorithms. Its flexibility and strong community support have made it a de facto
standard in both academic and industrial robotics.

In parallel, simulation environments play a critical role in the development pipeline by
offering safe, controlled, and reproducible testing scenarios. Among these, Gazebo stands
out as one of the most robust and feature-rich robotic simulators. It provides realistic
physics-based modeling of robot dynamics, environmental interactions, and sensor
feedback, making it well-suited for prototyping and validating complex robotic behaviors
without the risks or costs associated with physical testing. When used in conjunction with
ROS, Gazebo allows for rapid iteration and debugging of robotic systems in a simulated
3D environment, closely mirroring real-world conditions.

These software tools not only streamline the development process but also enable
researchers to perform extensive benchmarking and testing under varied environmental
conditions, which is crucial for ensuring the reliability and robustness of robotic algorithms,
especially those involved in autonomous navigation and obstacle avoidance. A more
detailed review of the rationale behind the selection of ROS 2, Gazebo, and the TurtleBot3
platform is provided in [9].

Motivated by these capabilities, in [9] we introduced a dedicated testing framework
built upon ROS and Gazebo, specifically designed to evaluate obstacle avoidance
strategies. This framework utilizes the TurtleBot3 Burger robot model — a widely used
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platform in the ROS ecosystem known for its affordability, modularity, and compatibility with
both simulation and real-world deployment. The framework allows for the systematic
assessment of obstacle avoidance algorithms in simulated environments that closely
approximate the conditions encountered in real-world scenarios. By leveraging this
simulation infrastructure, we aim to validate the correctness and performance of our
proposed mathematical model prior to its application on physical robotic systems.

The proposed framework creates a virtual indoor environment populated with static
obstacles, simulating common navigation challenges typically encountered by mobile
robots. Within this simulated environment, the TurtleBot3 Burger robot is located in the
center of the room and is tasked with navigating autonomously while avoiding collisions
with the surrounding obstacles. Virtual room with obstacles in Gazebo simulator is
presented on Fig. 1. The primary objective is to evaluate the robot’s ability to traverse space
safely and efficiently using the implemented obstacle avoidance algorithms.

In addition to the core simulation setup, the framework includes auxiliary software
components for debugging, performance monitoring, and statistical analysis. These tools
enable visualization and logging of key data such as LiDAR readings, computed potential
fields, and the robot's steering angle at each time step, which are essential for
understanding the robot’s perception and control behavior. This facilitates the identification
of performance issues and the refinement of navigational algorithms. The framework also
supports the generation of statistical visualizations, including box plots, kernel density
estimates (KDEs), and histograms for specified data. Furthermore, it performs non-
parametric Mann-Whitney tests and computes statistical indicators such as the mean,
median, standard deviation, min, max, IQR and p-values. The results of this analysis are
presented in the following sections.

Fig. 1. View of virtual room with obstacles in Gazebo simulator. Robot is located in the center of the room.
Obstacles are colored in red.

RESULTS AND DISCUSSION

In our previous work [9], we demonstrated that the Atrtificial Potential Field Method
(APFM) based on the Laplace distribution generates smooth paths and enables reliable
obstacle avoidance in environments with static obstacles, achieving collision-free navi-
gation. In the present study, we extend that analysis by performing a comparative statistical
evaluation of the Gaussian-based and Laplace-based APFM approaches. Specifically, we
compare the total path lengths produced by both algorithms under identical environmental
conditions. Additionally, we analyze the computational efficiency of each method.

The angle toward the goal in all the algorithms in this study is fixed and set to
0g0a1 = 0°. That is to say, there is no goal position but the fixed angle and the purpose of
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the obstacle avoidance algorithms in this paper is to do their best to keep the fixed heading
without colliding with anything.

The tests were performed on a virtual machine running Ubuntu 20.04, equipped with
8 GB of RAM and 8 virtual CPU cores. The virtual environment was hosted on a physical
machine featuring an AMD Ryzen 7 3700X processor, 32 GB of RAM, a Samsung 970
EVO Plus NVMe M.2 SSD, and an NVIDIA RTX 3070 GPU.

Statistical analysis of computational time between Gauss and Laplace APFMs

To assess the performance of two modified versions of the APFM navigation algorithm
— Laplace and Gauss — a comprehensive comparative analysis was conducted. Each algo-
rithm was executed 25 times, with each run comprising 28 discrete steps, as shown in Fig.
2, where the highlighted steps correspond to those for which execution time was measured.
The primary evaluation metric was the total computational time required per highlighted
steps, measured in microseconds. This procedure resulted in a dataset of 700 samples for
each method. The statistical outcomes derived from this analysis are presented in Table 1.

In the context of execution time analysis for robotic algorithms, the Interquartile Range
(IQR) method for outlier detection and removal was used due to its robustness and
distribution-independent nature. Execution time measurements may occasionally include
anomalous values caused by transient system states, background processes, or irregular
hardware scheduling events - none of which reflect the true performance of the algorithm.
The IQR method effectively identifies and excludes these statistical outliers by focusing on
the central 50% of the data and filtering out values that lie beyond 1.5 times the interquartile
range from the first and third quartiles. This ensures that the resulting statistical analysis
reflects the typical behavior of the algorithm, providing more reliable and interpretable
performance metrics. Given that our data may not follow a perfectly normal distribution, this
non-parametric approach is especially well-suited for maintaining analytical integrity.

Following the outlier filtering step based on the interquartile range (IQR) method, the
Gaussian dataset retained 637 samples, while the Laplace dataset retained 654 samples.

Scan Environment: Acquire sample using 1D LiDAR

Detect obstacles

Enlarge obstacles
Measured

Execution
Time

Calculate repulsive force

Calculate attractive force

Calculate total force

Determine Safe Direction: Calculate the safe directional angle

Check if safe direction equals target direction

If not equal: Rotate to safe direction

Move forward for 1 second

Rotate back to target direction

Else: Move forward for 1 second

Fig. 2. Pseudocode of general robot navigation algorithm based APFM family algorithms. Steps for which
execution time was measured are highlighted.
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Table 1. The calculated statistical values of computational time for Laplace and
Gauss APFMs

APFM Statistical values of computational time, us
variation Mean Median Std Min Max IQR
Laplace 76.690 68.000 26.453 26.000 159.000 28.000
Gauss 107.419 104.000 44.909 34.000 237.000 52.000

The relatively small number of excluded data points indicates a high degree of consistency
in the measurements. The resulting datasets are therefore more representative of the
typical performance of each method, enhancing the reliability and interpretability of the
subsequent statistical analysis.

Fig. 3 presents a boxplot comparison of the execution times for the Laplace and Gauss
variants of the APFM navigation algorithm. The median execution time for the Laplace
algorithm is significantly lower than that of the Gauss variant, indicating superior
computational efficiency. Additionally, Laplace exhibits a narrower interquartile range
(IQR), suggesting more consistent performance across runs. In contrast, the Gauss
algorithm shows greater variability, with a wider IQR and a higher number of outliers, some
exceeding 200 microseconds. These results indicate that the Laplace-based
implementation not only executes faster on average but also provides more stable timing
behavior which might be crucial for real-time applications.

Fig. 4 presents execution time histograms for the Laplace and Gauss variants of the
APFM navigation algorithm. The Laplace histogram (left) demonstrates a sharply peaked
distribution centered around 65-70 microseconds, with the majority of samples clustered
within a relatively narrow range. This indicates both high efficiency and temporal
consistency. A small number of outliers are present beyond 100 microseconds, but they
remain infrequent.

In contrast, the Gauss histogram (right) displays a broader and more dispersed
distribution, with a secondary concentration around 120 microseconds and a notable tail
extending beyond 200 microseconds. The wider spread and presence of multiple local
peaks suggest greater variability and occasional latency spikes in execution time. These
findings align with the results shown in the corresponding boxplot (Fig. 4), confirming the
Laplace variant's advantage in both average performance and stability.

200

Fmcacmn:

100

Execution Time (us)

50

Laplace Gauss

Fig. 3. Boxplot visualization of the experiment results for computational time of Laplace and Gauss modifications.
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Fig. 4. Histograms of computational time for Laplace (a) and Gauss (b) algorithms. The number of bins is 100.

The Kernel Density Estimation (KDE) plot shown in Fig. 5 further illustrates the
distribution of execution times for both algorithms. The Laplace variant demonstrates a
unimodal distribution that is narrow and centered around lower execution times, indicating
consistent and efficient performance. In contrast, the Gauss variant exhibits a clear bimodal
distribution, suggesting the presence of two dominant execution time regimes. This pheno-
menon may be attributed to the underlying mathematical operations used in each algorithm.
Specifically, the Laplace variant employs the absolute value function abs(value), which is
a simple and fast operation. Conversely, the Gauss variant utilizes the square function
pow(value, 2) under the exponent part, which can be more computationally demanding,
particularly when implemented via a generic power function rather than optimized
multiplication. This squaring operation introduces a nonlinear amplification of input values,
leading to greater variability in computational load depending on the magnitude of the input.
As a result, certain steps in the Gauss variant may trigger longer execution paths,
contributing to the observed bimodal behavior in its execution time distribution.

For statistical testing we used a nonparametric Mann-Whitney U test, which produced
p-value = 0.0. Since p-value < 0.05, the difference is considered statistically significant.

Statistical analysis of path lengths between Gauss and Laplace APFMs

To evaluate the performance of Laplace and Gauss modifications of the APFM algo-
rithms, we have compared the total path length traversed by the mobile robot during 25
repeated runs for each algorithm. The primary metric of interest was the total distance
covered in each trial. Calculated statistical values are presented in Table 2.

Laplace
0.020 Gauss
0.015
2
)
o
o 0.010
0.005
0.000
0 50 100 150 200 250

Execution Time (us)

Fig. 5. Kernel density estimation of the same experiment results.
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Table 2. The calculated statistical values of path length for Laplace and Gauss
APFMs

APFM Statistical values of path length, m
variation Mean Median Std Min Max IQR
Laplace 3.993 4.000 0.052 3.840 4.060 0.070
Gauss 4.045 4.060 0.035 3.970 4.090 0.040

Due to the relatively small size of the dataset, preprocessing via the interquartile range
(IQR) method was not employed. This decision was further supported by the absence of
any significant interference between the path length data and potential system load, making
such preprocessing unnecessary.

Visualization of the data through boxplots, histograms and kernel density estimation
(KDE) are presented on Fig. 6. Left box on Fig. 6a represents data for Laplace modification,
right box — Gauss modification. The black line inside each box represents the median value
of the distribution, while the whiskers denote the minimum and maximum values that are
not considered outliers. The boxplot reveals that the Laplace variant tends to produce
slightly shorter path lengths compared to the Gauss modification, as indicated by the lower
median and the overall downward shift of the Laplace box. The Laplace distribution also
exhibits a wider box along the vertical axis, indicating a greater spread in the middle 50%
of the data. This observation is consistent with the higher standard deviation reported in
Table 2. Additionally, an outlier is present in the Laplace group, further emphasizing the
increased dispersion. In contrast, the Gauss modification shows a narrower box and a
lower standard deviation, reflecting more consistent, though slightly longer, path lengths.

Left histogram on Fig. 6b represents data for Laplace modification, right histogram —
Gauss modification. The histograms illustrate the distribution of path lengths generated by
the Laplace and Gauss modifications. The Laplace histogram shows a broader spread with
a visible concentration of values around a slightly lower distance range, supporting the
observation from boxplots that it tends to generate shorter paths. Additionally, the wider
spread across bins suggests greater variability. The Gauss histogram, in contrast, displays

4.10
(a) (b) 6
6
| 0y 34
4.05 ‘ Ga 5]
3 =
o o
— [ [
< 25
o 2 o
__4.00
S 0 0
; 3.85 3.90 3.95 4.00 4.05 4.00 4.05
g Distance (m) Distance (m)
2395 Kernel Density Estimation (KDE)
a 125 (c) Laplace
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2 75
&
o 5.0
3.85 2.5
0.0
Laplace Gauss 3.75 3.80 3.85 3.90 3.95 4.00 4.05 4.10 4.15
Distance (m)

Fig. 6. Boxplot visualization of the experiment results (a); Histograms of path length for each method. Number
of bins is set to 10 (b); Kernel density estimation of the same experiment results (c).
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a more concentrated distribution centered around higher distance values, with most paths
falling within a narrower range.

The Fig. 6¢ represents kernel density estimation plot, which shows the distribution of
path lengths generated by the Laplace and Gauss modifications. Dashed curve
corresponds to the Laplace modification, dotted curve — Gauss modification. The height of
each curve at a given distance value represents the relative likelihood of that distance
occurring. The Laplace curve appears shifted slightly to the left, indicating that it tends to
produce shorter path lengths on average. The shape of the curve is also broader and less
peaked, reflecting higher variability in path lengths - consistent with the boxplot and
standard deviation data. On the other hand, the Gauss curve is more concentrated around
its peak, suggesting a more stable and consistent distribution of path lengths, although the
average value is slightly higher than that of the Laplace method. Overall, the KDE plot
complements the histogram and boxplot by providing a smooth, continuous representation
of the data distributions, highlighting both central tendency and spread.

In summary, the observations from the plots in Fig. 6 indicate that the Laplace-based
approach tends to produce shorter path lengths on average, albeit with greater variability.
In contrast, the Gauss-based method demonstrates more consistent performance, though
at the expense of slightly longer average path lengths.

For statistical testing we used a nonparametric Mann-Whitney U test, which produced
p-value = 0.0001. Since p-value<0.05, the difference is considered statistically
significant. This suggests that the Laplace algorithm tends to produce shorter paths lengths
compared to the Gauss algorithm.

CONCLUSION

This study conducted a comprehensive comparison of Gaussian and Laplace-based
Artificial Potential Field Methods (APFMs) for real-time obstacle avoidance in autonomous
mobile robots. Through extensive simulations in a Gazebo-ROS environment using the
TurtleBot3 platform, the Laplace-based APFM demonstrated notable advantages in
computational efficiency and path optimization over its Gaussian counterpart.

The Laplace method achieved significantly faster execution times, with a median of
68 microseconds compared to 104 microseconds for the Gaussian approach. This perfor-
mance boost stems from its mathematical simplicity, relying on absolute value calculations
rather than the squaring operations required by the Gaussian method. Further analysis via
Kernel Density Estimation (KDE) revealed that the Laplace variant exhibited a stable,
unimodal distribution of execution times, while the Gaussian method displayed a bimodal
distribution with occasional latency spikes, indicating less predictable performance.

In terms of path planning, both methods successfully facilitated collision-free
navigation. However, the Laplace-based APFM generated statistically shorter paths
(p — value < 0.05), albeit with slightly higher variability. This suggests that the Laplace
method may offer greater agility in dynamic environments, though further testing is needed
to confirm its robustness against moving obstacles. The computational efficiency of the
Laplace approach makes it particularly well-suited for resource-constrained robotic
systems, where real-time responsiveness is critical.

Despite these promising results, certain limitations need consideration. The study
focused on static environments, leaving open questions about performance in scenarios
with dynamic obstacles.

In summary, the Laplace-based APFM emerges as a compelling alternative for real-
time obstacle avoidance, offering a balance between computational efficiency and
navigational effectiveness. Its advantages in speed and path optimization position it as a
viable solution for autonomous systems operating in dynamic or resource-constrained
environments. Future work should investigate its adaptability in more complex scenarios
and explore integrations with complementary navigation algorithms.
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Ihor Berizka & lvan Karbovnyk

BIPTYAJIbHE NOPIBHAHHSA ®YHKLINA FAYCA TA JIAMJIACA Y METOOAX
LUTYYHUX NOTEHLUIMHMX NONIB ANA YHUKHEHHSA NEPELLKOL Y
PEAJIbHOMY YACI

lzop Bepi3ka©*, leaH Kapb6oeHuk

JIbsiecbkuli HayioHanbHUl yHieepcumem iMeHi IeaHa ®paHka,
Kaghedpa padiohisuku ma KOMITomepHUX mexHosoeid,

8yr. 2eH. TapHascbkozo 107, Jibeie, 79017,

AHOTALIA

BcTtyn. ABTOHOMHI MOGinbHI po6oTn nNoTpebytoTb HaAiMHUX anropuTMIB YHUKHEHHS
nepeLukog y peansHoMy yaci Ans 6esneyHoi Hasirauii B AMHamiyHoMy cepeposui. MeTtoa
Ha OCHOBI LUTYYHWX NOTEHUiNHMX nonis (APFM) LUMpoko BUKOPUCTOBYETLCA AN NIOKanbHOro
nnaHyBaHHA TPAEKTOpii, OAHAK MOro TpaauuiviHi peanidauii MalTb Hedoniku y BUrNSAi
nokanbHUX MiHIMyMiB Ta o00u4McnoBanbHOi HeedeKTMBHOCTI. Y UbOMY [OCHIIXEHHI
po3rnsHyTo ABi MMOBIpHiCHI Moamndikauii APFM — Ha ocHoBi poanoginis Mayca Ta llannaca
— 3 METOI NOAONAaHHSA LMX 0OMEXEHb.

Matepianu Ta MeToau. Po3pobneHo ekcnepuMeHTanbHy nnatdopmy 3
BukopuctaHHam ROS/Gazebo ans cumynsauin nig uinboBy anapaTHy nnatdgopmy TurtleBot3.
ANropyTMU LITYYHUX NOTEHLianbHNX NOMiB i3 BUKOpUCTaHHAM dyHKuii Mayca (ODG-PF) Ta
Jlannaca 6ynu matemaTnyHO 3MOLENbOBaHi, MPUYOMY OCHOBHOK BiAMIHHICTIO € MeToA
064YMCneHHs BigLWITOBXYBanbHOI CUMK: Y rayCiBCbKill BepCii BUKOPUCTOBYIOTLCS KBagpaTtu
3HayeHb, a y Bepcii JNlannaca — abcontoTHi 3HaveHHs. ObuaBa mMeToaM TecTyBanvcs B
O[HAKOBUX CTaTUYHWUX cepenoBuLLax, no 25 3anyckiB KOXHoro (no 28 KpokiB Ha 3amyck).
OujiHioBaHHA NPOAYKTMBHOCTI BKMHOYANo 4ac obuYMcreHHs Yy MikpocekyHaax (MKc) Ta
OOBXWHY TpaekTopii y meTpax (M), Ski aHanisyBanucsa 3a gonomorot boxplot-rpadikis,
OLiHKM WinbHocTi posnoainy sapa (KDE) Ta kpuTepito ManHa-YiTtHi (p<0.05).

Pesynbratu. Metopq Jlannaca nokasaB BuLLy €(EKTUBHICTb, 3abe3neumBum Ha 34%
WBMALWMA MefiaHHUM 4Yac BMKOHaHHA (68 MKC y nopiBHsHHI 3 104 MKC) Ta BYX4ui
MDKKBapTUINbHWUIA po3Max (28 MKC y nopiBHSHHI 3 52 mkc). Mogudikauis i3 BUKOPUCTaHHAM
dyHKLUii Jlannaca 3reHepyBana yHiMOZanbHUI po3NoAin 4Yacy BUKOHaHHSA (puc. 6), skuii
KOHTpacTye i3 6iMmoaanbHMM po3noainom MayccoBoi Mogeni, WO NOSICHIOETLCS NPOCTILLMMMU
apudmeTnyHMMn onepadismun. ObuaBa meToan 3abesneunny Hagiraujto 6e3 3iTKHEeHb,
ofHaK MeTopq i3 BMKOpUCTaHHAM yHKUii Jlannaca cdopmyBaB CTaTUCTUYHO KOPOTLLI
TpaekTopii (p=0.0001), xo4 i 3 Tpoxu Ginbwow BapiaTuBHicTIO. KBagpatuyHi onepauii
meTony layca cTtBopunu gogaTtkoBe obumcnioBanbHe HaBaHTaKeHHs 6e3 MoKpalleHHS
HaBirauiiHnx xapakTepucTyK.

BucHoBkn. MeTtop LWTy4yHMX MOTEHUianbHUX MOMIB HAa OCHOBI po3noainy Jlannaca
nepeBaXa€ BapiaHT Ha OCHOBi [ayca 3a LWBWMAKICTIO OBYMCNEHb Ta ONTUMAIbHICTIO
TpaeKTopilA, Lo pobuTb KOro NnpuaaTHUM Ansi cuctem 3 obmexeHnmun pecypcamu. MNoganbLui
OOCNioKEeHHst MatloTb NIATBEPAUTU Ui pe3ynbTaTv B yMOBax AMHaMIYHOrO cepefoBuLLa, a
TakoX gocnianTtu ribpuaHi peanisauii 3 rmobanbHUMKM NnaHyBanbHUKaMU.

Knro4oei cnoea: kibep-isvuHa cuctema, iHPOPMAUiNHIi TEXHONOrii, YHUKHEHHS
nepewkon, mMobinbHa poboToTexHiyHa nnaTtdopma, KoHuenuii 10T pieHsb,
koricHa mobinbHa nnatdgopma
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