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ABSTRACT  

Background. Autonomous mobile robots require robust real-time obstacle avoidance 
algorithms to navigate dynamic environments safely. The Artificial Potential Field (APF) 
method remains widely adopted for local path planning due to its computational efficiency 
and conceptual simplicity. However, conventional implementations suffer from two well-
documented limitations: local minima and computational inefficiencies. This study 
investigates two probabilistic APF variants – a Gaussian formulation (ODG-PF) and a 
Laplace-based approach to address these limitations 

Materials and Methods. A comparative framework was developed using ROS2/Gazebo 
with TurtleBot3 as target platform. The Gaussian APFM (ODG-PF) and Laplace APFM were 
mathematically modeled, with key differences in their repulsive force calculations: Gaussian 
uses squared terms, while Laplace employs absolute values. Both methods were tested in 
identical static environments with 25 repeated runs (28 steps each). Performance metrics 
included computational time and path length, analyzed via boxplots, kernel density 
estimation, and Mann-Whitney U tests (p<0.05). 

Results and Discussion. The Laplace APFM demonstrated superior efficiency, with 
34% faster median execution time (68 µs vs. 104 µs) and tighter interquartile range (28 µs 
vs. 52 µs). Its unimodal time distribution contrasted with the Gaussian's bimodal pattern, 
attributed to simpler arithmetic operations. While both methods achieved collision-free 
navigation, Laplace generated statistically shorter paths (p=0.0001), though with marginally 
higher variability. The Gaussian method's squaring operations introduced computational 
overhead without navigational benefits. 

Conclusion. The Laplace-based APFM outperforms its Gaussian counterpart in 
computational speed and path optimization, making it ideal for resource-constrained 
systems. These findings suggest that simpler mathematical formulations can yield superior 
real-world performance in obstacle avoidance applications. Future work should validate 
these findings in dynamic environments and explore hybrid implementations with global 
planners. 

Keywords: cyber-physical system, information technologies, obstacle avoidance, 
mobile robotic platforms, IoT concepts, wheeled mobile platform 

INTRODUCTION  

In the field of robotics, a significant area of research and development is focused on 
autonomous mobile robots. These advanced systems are designed to navigate 
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independently and make context-specific decisions in real time. This capability enables 
them to operate without human intervention, responding adaptively to dynamic 
environments based on continuous sensory input. 

Autonomous mobile robots are employed across a wide range of applications. 
Examples include service robots in hospitality environments, such as waiter robots that 
deliver food and beverages, and transport robots used in industrial settings to move goods 
efficiently. A particularly prominent example is autonomous vehicles, commonly referred to 
as self-driving cars. These systems integrate sophisticated sensor arrays and 
computational algorithms to interpret their surroundings, allowing them to navigate complex 
traffic scenarios and reach destinations without human control. 

These examples underscore the wide-ranging applicability of autonomous mobile 
robots and emphasize their potential to transform numerous sectors, including hospitality, 
logistics, and the automotive industry. The continued development and optimization of 
these systems remain a central focus within the robotics research community, with ongoing 
efforts directed toward advancing their functional capabilities and broadening their domains 
of deployment. 

One of core software components in autonomous mobile robots is the set of algorithms 
dedicated to path planning and obstacle avoidance. These algorithms are essential for 
enabling functionalities such as autonomous parking, evasive maneuvers in emergency 
scenarios, and ultimately, full autonomy in navigation and control. 

Path planning is typically categorized into two main types: global and local. Global 
path planning relies on data from Geographic Information Systems (GIS) in conjunction 
with global localization techniques. This approach requires the robot to possess a 
comprehensive, large-scale understanding of its environment, enabling navigation over 
extended distances - such as traversing urban areas or intercity routes. 

In contrast, local path planning requires only the robot’s relative position and real-time 
perception of obstacles within its immediate environment. This form of planning focuses on 
short-range navigation and dynamic interactions with the surroundings, such as avoiding 
pedestrians on a sidewalk or maneuvering around other vehicles in traffic. Local path 
planning is crucial for ensuring safe and responsive behavior in unpredictable and rapidly 
changing environments. 

A wide range of algorithms has been developed to address both global and local path 
planning challenges. Each of these algorithms presents distinct advantages and limitations, 
and their selection can have a substantial influence on the overall efficiency, reliability, and 
safety of autonomous navigation. Comprehensive reviews of these path planning 
techniques, including their underlying methodologies and application domains, can be 
found in the literature [1, 2, 3, 4]. 

Obstacle detection and avoidance constitute a critical component of local path 
planning algorithms, serving a vital role in ensuring the safety of both the autonomous 
system and its surrounding environment. This area has been the focus of extensive 
research over several decades, leading to the development of numerous methodological 
approaches. Many of these techniques have demonstrated practical effectiveness and 
have been successfully implemented in real-world applications. 

To effectively avoid collisions, a robot must not only detect obstacles but also 
dynamically recalculate its path and modify its trajectory in real time. Real-time responsive-
ness is essential for navigating complex and dynamic environments safely and efficiently. 

The initial step in obstacle avoidance involves the robot detecting potential obstacles 
using its onboard sensors. Once an obstacle is identified, the system must generate a new 
trajectory that enables safe navigation around the object. This alternative path must be 
computed with minimal latency to ensure that the robot can adjust its motion in real time, 
thereby preventing collisions and maintaining smooth path. 

Additionally, the robot must be able to adapt to dynamic changes in its environment. 
For example, if a new obstacle unexpectedly occurs in its path, the robot needs to rapidly 
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detect the obstacle, compute an alternative route, and adjust its trajectory in real time to 
ensure safe navigation. 

This demonstrates the complexity inherent in autonomous mobile robots and 
highlights the critical importance of ongoing research in this domain. The development and 
optimization of robust obstacle detection and avoidance algorithms remain central to 
robotics research, with the objective of improving the safety, reliability, and efficiency in 
terms of path length, computational time and resources of autonomous systems. 

The obstacle avoidance problem can be framed as follows: A robot is situated within 
an unknown environment. The robot is expected to reach a specified target location or 
following a goal direction, all while navigating around any obstacles that may occur on its 
path. More detailed overview of the problem is presented in [1, 2]. 

MATERIALS AND METHODS  

The Artificial Potential Field Method (APFM) is a well-established approach in robotics, 
widely applied in path planning and obstacle avoidance tasks. Originally proposed by 
Khatib [5], the method models the robot’s environment as a virtual potential field, where the 
target location produces an attractive force, while obstacles produce repulsive forces. The 
robot, treated as a particle under the influence of these virtual forces, is guided toward the 
goal while being repelled from surrounding obstacles. Its motion is determined by the 
resultant force vector calculated as the superposition of these attractive and repulsive 
components. The mathematical formulation of these forces is represented by Eqs. (1)-(3). 

 𝐟total =  𝐟rep +  𝐟attr, (1) 

 𝐟attr = 𝑘attr ∙
𝐫goal − 𝐫

|𝐫goal − 𝐫|
, (2) 

 𝐟rep =  {
−𝑘rep ∙ ∑ (

1

𝑑𝑖
−

1

𝑑max
) ∙ 𝐬𝑖

𝑛

𝑖=1
,    𝑖𝑓 𝑑𝑖 < 𝑑max

       0,                                                    𝑖𝑓𝑑𝑖 ≥ 𝑑max 

, (3) 

where 𝐬𝑖 = (𝐫 −  𝐨𝑖)/|𝐫 −  𝐨𝑖|, 𝐫goal is the position vector of the goal point and 𝐫 is the 

position vector of the vehicle, 𝐨𝑖 – the position vector of each obstacle. 

Despite its widespread use, the traditional Artificial Potential Field method (APFM) has 
several limitations. One of the primary issues is the occurrence of local minima, where the 
robot may become trapped in a position that is not the target, as the attractive force towards 
the goal and the repulsive forces from obstacles cancel each other out. Additionally, the 
method can result in situations where the target becomes unreachable, or the robot follows 
inefficient paths due to suboptimal force interactions [2, 6]. To overcome these issues, 
improved versions of the APF method have been proposed. One of such modifications of 
classic APFM is based on probabilities. In the following subsections, we examine these 
modifications within the mathematical models of the method in detail. 

Mathematical model of Gauss APFM 
The Obstacle-Dependent Gaussian Potential Field (ODG-PF) method was developed 

and implemented to facilitate obstacle detection and assess the probability of collision and is 
presented in detail in [7]. This study introduces a novel approach to calculating attractive and 
repulsive fields, as well as an innovative direction decision strategy. Comprehensive 
simulations and experimental evaluations were conducted, comparing the ODG-PF method 
with other potential field-based obstacle avoidance techniques. The results demonstrate that 
the ODG-PF method outperforms existing approaches in the majority of tested scenarios. 
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During the development of the mathematical model, the authors introduce a pair of 

values (𝜃, 𝑑), where 𝜃 represents the measurement angle in degrees, and 𝑑 denotes the 

distance to an object in meters. To obtain data in this format, the authors propose using a 
movable ultrasonic distance sensor. Alternatively, a one-dimensional LiDAR can be 
employed to scan the working environment. 

At the initial stage, it is necessary to define a threshold distance 𝑑thr. All objects 

located closer to the robot than 𝑑thr are considered as obstacles. This parameter can signi-

ficantly influence the performance of the algorithm and therefore requires empirical tuning. 

Obstacles are defined using additional parameters represented as a pair (𝜃start, 𝜃end ), 

where 𝜃start is the angle at which the obstacle is first detected, and 𝜃end is the angle at 

which the detection of the same obstacle ends. This approach enables obstacle 
identification from one-dimensional LiDAR input data. In addition to angular boundaries, it 

is necessary to compute supplementary parameters for each obstacle: 𝑑𝑘 the average 

distance to the 𝑘-th obstacle; 𝛷𝑘 =  𝜃end −  𝜃start is the angular width occupied by the 

obstacle. Additionally, the robot is modeled as a square with side length 𝑤robot in meters. 

Although in many experiments or computer simulations the dimensions of the robot 
are often neglected - treating it as a point mass to simplify simulations and mathematical 
models - considering the robot's physical dimensions is essential for improving the model's 
practicality and aligning it more closely with real-world conditions. While this increases the 
complexity of the model to some extent, it also enhances its practical value. The authors 
propose a hybrid approach: the robot's dimensions are taken into account, but they are 
incorporated into the model by modifying the perceived size of surrounding obstacles using 
specific formulas. In this way, obstacles are effectively enlarged from the robot's 
perspective, while the robot itself continues to be modeled as a point mass. 

To account for the dimensions of the robot, it is necessary to recalculate the angle 
according to the following equation: 

 𝜑𝑘 = 2𝜎𝑘 = 2atan [𝑑𝑘 ∙ tan (
𝛷𝑘

2
) +

𝑤robot

2
 , 𝑑𝑘] (4) 

The next step involves calculating the repulsive force exerted by each obstacle 
according to Eq. (5). 

 𝑓𝑘(𝜃𝑖) =  𝐴𝑘 ∙ exp [−
(𝜃𝑘 − 𝜃𝑖)2

2𝜎𝑘
2 ], (5) 

where 𝜃𝑘 denotes the central angle of the obstacle, and 𝜎𝑘 represents half of the angular 

width occupied by the obstacle. 

The coefficient 𝐴𝑘 is selected such that the Gaussian function fully encompasses the 

obstacle and is computed according to Eq. (6). 

 𝐴𝑘 =  𝑑̃𝑘 ∙ exp(0.5), (6) 

where 𝑑̃𝑘 =  𝑑max − 𝑑𝑘, and 𝑑max is sensor range distance. 

As with other artificial potential field-based methods, the repulsive force 𝑓𝑘 represents 

the field generated by the 𝑘-th obstacle. Thus, the overall repulsive field is computed as 

the sum of the repulsive forces from all individual obstacles according to the Eq. (7). 

 𝑓rep(𝜃𝑖) = ∑ 𝐴𝑘 ∙ exp [−
(𝜃𝑘 −  𝜃𝑖)2

2𝜎𝑘
2 ]

𝑛

𝑘=1
 (7) 
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The next step is the computation of the attractive field using Eq. (8). This field 

represents the force that draws the robot toward the specified direction 𝜃goal. 

Consequently, the resulting field is calculated according to Eq. (9) and determines the safe 
movement direction for the robot at the current iteration (Eq. (10)). The safe movement 
direction is computed as the argument at which the total potential field function reaches its 
minimum. This is a significant modification, as it simplifies the computation compared to 

the classical approach. Parameter 𝛾 is selected experimentally and is set to 𝛾 = 0.06 

 𝑓attr(𝜃𝑖) =  𝛾 ∙ |𝜃goal −  𝜃𝑖|, (8) 

 𝑓total(𝜃𝑖) =  𝑓attr(𝜃𝑖) + 𝑓rep(𝜃𝑖),  (9) 

 𝜃dir = arg min (𝑓total). (10) 

In the traditional method, the movement direction is determined using the arctangent 
between two vectors, which increases computational complexity - particularly for resource-
constrained systems. Another advantage of this approach is its compatibility with data 
obtained solely from ultrasonic distance sensors or one-dimensional LiDAR sensors. This 
choice of data format considerably reduces computational load, especially when compared 
to algorithms that rely on obstacle detection and segmentation from images (i.e., computer 
vision and image processing techniques). It is also worth noting that the authors conducted 
experiments in both static and dynamic environments and reported that the algorithm 
requires no additional adjustments or modifications to operate effectively in the presence 
of moving obstacles. 

Mathematical model of Laplace APFM 
 Following the analysis of the work presented in [7], we identified opportunities to 

extend this line of research by exploring alternative probability density functions for 
modeling the repulsive force. To maintain symmetry in the initial modeling phase, we 
selected the Laplace distribution due to its simplicity and analytical tractability. In our 
subsequent work [8], we proposed a mathematical formulation of the repulsive field based 
on the Laplace function, providing a foundation for further investigation into its applicability 
and performance in robot navigation tasks. 

All preliminary steps described for the artificial potential field method (APFM) based 
on the Gaussian function remain unchanged. Specifically, the environment is scanned and 
obstacles are detected, followed by their expansion to account for safety margins. The 
primary modification lies in the calculation of the repulsive force. By substituting the 
Gaussian function with the Laplace function, we derived the Eq. (11) to describe the 
repulsive force within the proposed framework. 

 𝑓𝑘(𝜃𝑖) =  𝐴𝑘 ∙ exp (−
√2 ∙ |𝜃𝑘 −  𝜃𝑖|

𝜎𝑘
), (11) 

where 𝜃𝑘 denotes the central angle of the obstacle, and 𝜎𝑘 represents half of the angular 

width occupied by the obstacle. 
Upon analysis of Eq. (11), it becomes evident that this formulation offers compu-

tational advantages, as it eliminates the need to square the value inside the exponential 
term – instead relying solely on the absolute value, which simplifies the calculation. 

The coefficient 𝐴𝑘 serves the same purpose in shaping the repulsive field as in the 

Gaussian variation. It is adjusted such that the Laplace function adequately covers the 
spatial extent of the obstacle, ensuring a precise representation of the repulsive force in its 
proximity, and is calculated using Eq. (12). The derivation of this coefficient is based on the 
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so-called sigma rule, which has been adapted for the Laplace probability density function 
(PDF). This approach allows for the systematic tuning of the function's spread in relation to 
the dimensions of the obstacle. 

 𝐴𝑘 =  𝑑̃𝑘 ∙ exp(√2), (12) 

where 𝑑̃𝑘 =  𝑑max − 𝑑𝑘, and 𝑑max is sensor range distance. 

To account for the influence of each obstacle, the total obstacle field is determined by 
summing the repulsive fields produced by all obstacles. Consequently, the resulting 

function becomes a function of the angle 𝜃𝑖 

 𝑓rep(𝜃𝑖) = ∑ 𝐴𝑘 ∙ exp (−
√2 ∙ |𝜃𝑘 −  𝜃𝑖|

𝜎𝑘

)
𝑛

𝑘=1
. (13) 

The subsequent stage involves the computation of the attractive field, which follows 
the same formulation as in the Gaussian-based modification. This field represents the force 
that draws the robot toward the target direction of movement. When combined with the 
repulsive field, the attractive field contributes to shaping the robot’s trajectory, enabling it 
to avoid obstacles while steadily progressing toward the goal. The second distinction at this 
stage lies in the necessity to experimentally adjust the coefficient 𝛾 for the Laplace-based 

formulation. Parameter 𝛾 is selected experimentally and is set to 𝛾 = 6.36. Total field 

produced by the system is calculated using Eq. (9), and the safe direction of robot 
movement is determined using Eq. (10). 

Evaluation framework 
In robotics research and development, the use of standardized software frameworks 

and simulation environments is essential for efficient algorithm design, validation, and 
deployment. One of the most prominent and widely adopted frameworks is the Robot 
Operating System (ROS), which provides a comprehensive set of tools, libraries, and 
conventions for developing modular and scalable robotic applications. ROS enables 
seamless communication between different software components through a publish-
subscribe architecture and supports integration with a wide variety of sensors, actuators, 
and control algorithms. Its flexibility and strong community support have made it a de facto 
standard in both academic and industrial robotics. 

In parallel, simulation environments play a critical role in the development pipeline by 
offering safe, controlled, and reproducible testing scenarios. Among these, Gazebo stands 
out as one of the most robust and feature-rich robotic simulators. It provides realistic 
physics-based modeling of robot dynamics, environmental interactions, and sensor 
feedback, making it well-suited for prototyping and validating complex robotic behaviors 
without the risks or costs associated with physical testing. When used in conjunction with 
ROS, Gazebo allows for rapid iteration and debugging of robotic systems in a simulated 
3D environment, closely mirroring real-world conditions. 

These software tools not only streamline the development process but also enable 
researchers to perform extensive benchmarking and testing under varied environmental 
conditions, which is crucial for ensuring the reliability and robustness of robotic algorithms, 
especially those involved in autonomous navigation and obstacle avoidance. A more 
detailed review of the rationale behind the selection of ROS 2, Gazebo, and the TurtleBot3 
platform is provided in [9]. 

Motivated by these capabilities, in [9] we introduced a dedicated testing framework 
built upon ROS and Gazebo, specifically designed to evaluate obstacle avoidance 
strategies. This framework utilizes the TurtleBot3 Burger robot model – a widely used 
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platform in the ROS ecosystem known for its affordability, modularity, and compatibility with 
both simulation and real-world deployment. The framework allows for the systematic 
assessment of obstacle avoidance algorithms in simulated environments that closely 
approximate the conditions encountered in real-world scenarios. By leveraging this 
simulation infrastructure, we aim to validate the correctness and performance of our 
proposed mathematical model prior to its application on physical robotic systems. 

The proposed framework creates a virtual indoor environment populated with static 
obstacles, simulating common navigation challenges typically encountered by mobile 
robots. Within this simulated environment, the TurtleBot3 Burger robot is located in the 
center of the room and is tasked with navigating autonomously while avoiding collisions 
with the surrounding obstacles. Virtual room with obstacles in Gazebo simulator is 
presented on Fig. 1. The primary objective is to evaluate the robot’s ability to traverse space 
safely and efficiently using the implemented obstacle avoidance algorithms. 

In addition to the core simulation setup, the framework includes auxiliary software 
components for debugging, performance monitoring, and statistical analysis. These tools 
enable visualization and logging of key data such as LiDAR readings, computed potential 
fields, and the robot’s steering angle at each time step, which are essential for 
understanding the robot’s perception and control behavior. This facilitates the identification 
of performance issues and the refinement of navigational algorithms. The framework also 
supports the generation of statistical visualizations, including box plots, kernel density 
estimates (KDEs), and histograms for specified data. Furthermore, it performs non-
parametric Mann–Whitney tests and computes statistical indicators such as the mean, 
median, standard deviation, min, max, IQR and p-values. The results of this analysis are 
presented in the following sections. 

 

Fig. 1. View of virtual room with obstacles in Gazebo simulator. Robot is located in the center of the room. 
Obstacles are colored in red.  

RESULTS AND DISCUSSION  

In our previous work [9], we demonstrated that the Artificial Potential Field Method 
(APFM) based on the Laplace distribution generates smooth paths and enables reliable 
obstacle avoidance in environments with static obstacles, achieving collision-free navi-
gation. In the present study, we extend that analysis by performing a comparative statistical 
evaluation of the Gaussian-based and Laplace-based APFM approaches. Specifically, we 
compare the total path lengths produced by both algorithms under identical environmental 
conditions. Additionally, we analyze the computational efficiency of each method. 

The angle toward the goal in all the algorithms in this study is fixed and set to  

𝜃goal = 0°. That is to say, there is no goal position but the fixed angle and the purpose of 
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the obstacle avoidance algorithms in this paper is to do their best to keep the fixed heading 
without colliding with anything. 

The tests were performed on a virtual machine running Ubuntu 20.04, equipped with 
8 GB of RAM and 8 virtual CPU cores. The virtual environment was hosted on a physical 
machine featuring an AMD Ryzen 7 3700X processor, 32 GB of RAM, a Samsung 970 
EVO Plus NVMe M.2 SSD, and an NVIDIA RTX 3070 GPU. 

Statistical analysis of computational time between Gauss and Laplace APFMs   
To assess the performance of two modified versions of the APFM navigation algorithm 

– Laplace and Gauss – a comprehensive comparative analysis was conducted. Each algo-
rithm was executed 25 times, with each run comprising 28 discrete steps, as shown in Fig. 
2, where the highlighted steps correspond to those for which execution time was measured. 
The primary evaluation metric was the total computational time required per highlighted 
steps, measured in microseconds. This procedure resulted in a dataset of 700 samples for 
each method. The statistical outcomes derived from this analysis are presented in Table 1. 

In the context of execution time analysis for robotic algorithms, the Interquartile Range 
(IQR) method for outlier detection and removal was used due to its robustness and 
distribution-independent nature. Execution time measurements may occasionally include 
anomalous values caused by transient system states, background processes, or irregular 
hardware scheduling events - none of which reflect the true performance of the algorithm. 
The IQR method effectively identifies and excludes these statistical outliers by focusing on 
the central 50% of the data and filtering out values that lie beyond 1.5 times the interquartile 
range from the first and third quartiles. This ensures that the resulting statistical analysis 
reflects the typical behavior of the algorithm, providing more reliable and interpretable 
performance metrics. Given that our data may not follow a perfectly normal distribution, this 
non-parametric approach is especially well-suited for maintaining analytical integrity. 

Following the outlier filtering step based on the interquartile range (IQR) method, the 
Gaussian dataset retained 637 samples, while the Laplace dataset retained 654 samples.  

 

Fig. 2. Pseudocode of general robot navigation algorithm based APFM family algorithms. Steps for which 
execution time was measured are highlighted. 
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Table 1. The calculated statistical values of computational time for Laplace and 
Gauss APFMs  

APFM 
variation 

Statistical values of computational time, us 

Mean Median Std Min Max IQR 

Laplace 76.690 68.000 26.453 26.000 159.000 28.000 

Gauss 107.419 104.000 44.909 34.000 237.000 52.000 

 
The relatively small number of excluded data points indicates a high degree of consistency 
in the measurements. The resulting datasets are therefore more representative of the 
typical performance of each method, enhancing the reliability and interpretability of the 
subsequent statistical analysis. 

Fig. 3 presents a boxplot comparison of the execution times for the Laplace and Gauss 
variants of the APFM navigation algorithm. The median execution time for the Laplace 
algorithm is significantly lower than that of the Gauss variant, indicating superior 
computational efficiency. Additionally, Laplace exhibits a narrower interquartile range 
(IQR), suggesting more consistent performance across runs. In contrast, the Gauss 
algorithm shows greater variability, with a wider IQR and a higher number of outliers, some 
exceeding 200 microseconds. These results indicate that the Laplace-based 
implementation not only executes faster on average but also provides more stable timing 
behavior which might be crucial for real-time applications. 

Fig. 4 presents execution time histograms for the Laplace and Gauss variants of the 
APFM navigation algorithm. The Laplace histogram (left) demonstrates a sharply peaked 
distribution centered around 65–70 microseconds, with the majority of samples clustered 
within a relatively narrow range. This indicates both high efficiency and temporal 
consistency. A small number of outliers are present beyond 100 microseconds, but they 
remain infrequent. 

In contrast, the Gauss histogram (right) displays a broader and more dispersed 
distribution, with a secondary concentration around 120 microseconds and a notable tail 
extending beyond 200 microseconds. The wider spread and presence of multiple local 
peaks suggest greater variability and occasional latency spikes in execution time. These 
findings align with the results shown in the corresponding boxplot (Fig. 4), confirming the 
Laplace variant's advantage in both average performance and stability. 

 

Fig. 3. Boxplot visualization of the experiment results for computational time of Laplace and Gauss modifications.  
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 (a) (b) 

Fig. 4. Histograms of computational time for Laplace (a) and Gauss (b) algorithms. The number of bins is 100. 

 
The Kernel Density Estimation (KDE) plot shown in Fig. 5 further illustrates the 

distribution of execution times for both algorithms. The Laplace variant demonstrates a 
unimodal distribution that is narrow and centered around lower execution times, indicating 
consistent and efficient performance. In contrast, the Gauss variant exhibits a clear bimodal 
distribution, suggesting the presence of two dominant execution time regimes. This pheno-
menon may be attributed to the underlying mathematical operations used in each algorithm. 

Specifically, the Laplace variant employs the absolute value function 𝑎𝑏𝑠(𝑣𝑎𝑙𝑢𝑒), which is 

a simple and fast operation. Conversely, the Gauss variant utilizes the square function 

𝑝𝑜𝑤(𝑣𝑎𝑙𝑢𝑒, 2) under the exponent part, which can be more computationally demanding, 

particularly when implemented via a generic power function rather than optimized 
multiplication. This squaring operation introduces a nonlinear amplification of input values, 
leading to greater variability in computational load depending on the magnitude of the input. 
As a result, certain steps in the Gauss variant may trigger longer execution paths, 
contributing to the observed bimodal behavior in its execution time distribution. 

For statistical testing we used a nonparametric Mann-Whitney U test, which produced 

p-value = 0.0. Since p-value < 0.05, the difference is considered statistically significant. 

Statistical analysis of path lengths between Gauss and Laplace APFMs  
To evaluate the performance of Laplace and Gauss modifications of the APFM algo-

rithms, we have compared the total path length traversed by the mobile robot during 25 
repeated runs for each algorithm. The primary metric of interest was the total distance 
covered in each trial. Calculated statistical values are presented in Table 2. 

 

Fig. 5. Kernel density estimation of the same experiment results. 
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Table 2. The calculated statistical values of path length for Laplace and Gauss 
APFMs  

APFM 
variation 

Statistical values of path length, m 

Mean Median Std Min Max IQR 

Laplace 3.993 4.000 0.052 3.840 4.060 0.070 

Gauss 4.045 4.060 0.035 3.970 4.090 0.040 

 
 
Due to the relatively small size of the dataset, preprocessing via the interquartile range 

(IQR) method was not employed. This decision was further supported by the absence of 
any significant interference between the path length data and potential system load, making 
such preprocessing unnecessary. 

Visualization of the data through boxplots, histograms and kernel density estimation 
(KDE) are presented on Fig. 6. Left box on Fig. 6a represents data for Laplace modification, 
right box – Gauss modification. The black line inside each box represents the median value 
of the distribution, while the whiskers denote the minimum and maximum values that are 
not considered outliers. The boxplot reveals that the Laplace variant tends to produce 
slightly shorter path lengths compared to the Gauss modification, as indicated by the lower 
median and the overall downward shift of the Laplace box. The Laplace distribution also 
exhibits a wider box along the vertical axis, indicating a greater spread in the middle 50% 
of the data. This observation is consistent with the higher standard deviation reported in 
Table 2. Additionally, an outlier is present in the Laplace group, further emphasizing the 
increased dispersion. In contrast, the Gauss modification shows a narrower box and a 
lower standard deviation, reflecting more consistent, though slightly longer, path lengths.  

Left histogram on Fig. 6b represents data for Laplace modification, right histogram – 
Gauss modification. The histograms illustrate the distribution of path lengths generated by 
the Laplace and Gauss modifications. The Laplace histogram shows a broader spread with 
a visible concentration of values around a slightly lower distance range, supporting the 
observation from boxplots that it tends to generate shorter paths. Additionally, the wider 
spread across bins suggests greater variability. The Gauss histogram, in contrast, displays 

 

Fig. 6. Boxplot visualization of the experiment results (a); Histograms of path length for each method. Number 
of bins is set to 10 (b); Kernel density estimation of the same experiment results (c).  
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a more concentrated distribution centered around higher distance values, with most paths 
falling within a narrower range. 

The Fig. 6c represents kernel density estimation plot, which shows the distribution of 
path lengths generated by the Laplace and Gauss modifications. Dashed curve 
corresponds to the Laplace modification, dotted curve – Gauss modification. The height of 
each curve at a given distance value represents the relative likelihood of that distance 
occurring. The Laplace curve appears shifted slightly to the left, indicating that it tends to 
produce shorter path lengths on average. The shape of the curve is also broader and less 
peaked, reflecting higher variability in path lengths - consistent with the boxplot and 
standard deviation data. On the other hand, the Gauss curve is more concentrated around 
its peak, suggesting a more stable and consistent distribution of path lengths, although the 
average value is slightly higher than that of the Laplace method. Overall, the KDE plot 
complements the histogram and boxplot by providing a smooth, continuous representation 
of the data distributions, highlighting both central tendency and spread. 

In summary, the observations from the plots in Fig. 6 indicate that the Laplace-based 
approach tends to produce shorter path lengths on average, albeit with greater variability. 
In contrast, the Gauss-based method demonstrates more consistent performance, though 
at the expense of slightly longer average path lengths. 

For statistical testing we used a nonparametric Mann-Whitney U test, which produced 

p-value = 0.0001. Since p-value < 0.05, the difference is considered statistically 

significant. This suggests that the Laplace algorithm tends to produce shorter paths lengths 
compared to the Gauss algorithm. 

CONCLUSION  

This study conducted a comprehensive comparison of Gaussian and Laplace-based 
Artificial Potential Field Methods (APFMs) for real-time obstacle avoidance in autonomous 
mobile robots. Through extensive simulations in a Gazebo-ROS environment using the 
TurtleBot3 platform, the Laplace-based APFM demonstrated notable advantages in 
computational efficiency and path optimization over its Gaussian counterpart. 

The Laplace method achieved significantly faster execution times, with a median of 
68 microseconds compared to 104 microseconds for the Gaussian approach. This perfor-
mance boost stems from its mathematical simplicity, relying on absolute value calculations 
rather than the squaring operations required by the Gaussian method. Further analysis via 
Kernel Density Estimation (KDE) revealed that the Laplace variant exhibited a stable, 
unimodal distribution of execution times, while the Gaussian method displayed a bimodal 
distribution with occasional latency spikes, indicating less predictable performance. 

In terms of path planning, both methods successfully facilitated collision-free 
navigation. However, the Laplace-based APFM generated statistically shorter paths  

(𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05), albeit with slightly higher variability. This suggests that the Laplace 

method may offer greater agility in dynamic environments, though further testing is needed 
to confirm its robustness against moving obstacles. The computational efficiency of the 
Laplace approach makes it particularly well-suited for resource-constrained robotic 
systems, where real-time responsiveness is critical. 

Despite these promising results, certain limitations need consideration. The study 
focused on static environments, leaving open questions about performance in scenarios 
with dynamic obstacles. 

In summary, the Laplace-based APFM emerges as a compelling alternative for real-
time obstacle avoidance, offering a balance between computational efficiency and 
navigational effectiveness. Its advantages in speed and path optimization position it as a 
viable solution for autonomous systems operating in dynamic or resource-constrained 
environments. Future work should investigate its adaptability in more complex scenarios 
and explore integrations with complementary navigation algorithms. 
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ВІРТУАЛЬНЕ ПОРІВНЯННЯ ФУНКЦІЙ ГАУСА ТА ЛАПЛАСА У МЕТОДАХ 

ШТУЧНИХ ПОТЕНЦІЙНИХ ПОЛІВ ДЛЯ УНИКНЕННЯ ПЕРЕШКОД У 

РЕАЛЬНОМУ ЧАСІ  

Ігор Берізка *, Іван Карбовник 
Львівський національний університет імені Івана Франка,  

кафедра радіофізики та комп’ютерних технологій,  
вул. ген. Тарнавського 107, Львів, 79017,  

АНОТАЦІЯ  

Вступ. Автономні мобільні роботи потребують надійних алгоритмів уникнення 
перешкод у реальному часі для безпечної навігації в динамічному середовищі. Метод 
на основі штучних потенційних полів (APFM) широко використовується для локального 
планування траєкторії, однак його традиційні реалізації мають недоліки у вигляді 
локальних мінімумів та обчислювальної неефективності. У цьому дослідженні 
розглянуто дві ймовірнісні модифікації APFM – на основі розподілів Гауса та Лапласа 
– з метою подолання цих обмежень. 

Матеріали та методи. Розроблено експериментальну платформу з 
використанням ROS/Gazebo для симуляцій під цільову апаратну платформуTurtleBot3. 
Алгоритми штучних потенціальних полів із використанням функції Гауса (ODG-PF) та 
Лапласа були математично змодельовані, причому основною відмінністю є метод 
обчислення відштовхувальної сили: у гаусівській версії використовуються квадрати 
значень, а у версії Лапласа – абсолютні значення. Обидва методи тестувалися в 
однакових статичних середовищах, по 25 запусків кожного (по 28 кроків на запуск). 
Оцінювання продуктивності включало час обчислення у мікросекундах (мкс) та 
довжину траєкторії у метрах (м), які аналізувалися за допомогою boxplot-графіків, 
оцінки щільності розподілу ядра (KDE) та критерію Манна-Уітні (p<0.05). 

Результати. Метод Лапласа показав вищу ефективність, забезпечивши на 34% 
швидший медіанний час виконання (68 мкс у порівнянні з 104 мкс) та вужчий 
міжквартильний розмах (28 мкс у порівнянні з 52 мкс). Модифікація із використанням 
функції Лапласа згенерувала унімодальний розподіл часу виконання (рис. 6), який 
контрастує із бімодальним розподілом Гауссової моделі, що пояснюється простішими 
арифметичними операціями. Обидва методи забезпечили навігацію без зіткнень, 
однак метод із використанням функції Лапласа сформував статистично коротші 
траєкторії (p=0.0001), хоч і з трохи більшою варіативністю. Квадратичні операції 
методу Гауса створили додаткове обчислювальне навантаження без покращення 
навігаційних характеристик. 

Висновки. Метод штучних потенціальних полів на основі розподілу Лапласа 
переважає варіант на основі Гауса за швидкістю обчислень та оптимальністю 
траєкторій, що робить його придатним для систем з обмеженими ресурсами. Подальші 
дослідження мають підтвердити ці результати в умовах динамічного середовища, а 
також дослідити гібридні реалізації з глобальними планувальниками. 

Ключові слова: кібер-фізична система, інформаційні технології, уникнення 
перешкод, мобільна робототехнічна платформа, концепції ІоТ рішень, 
колісна мобільна платформа 
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