The Ca-Tb-Co-O system: phase diagram and crystal structures

Oksana ZAREMBA^{1*}, Nataliya-Mariya ANTONYSHYN¹, Roman GLADYSHEVSKII¹

Received April 1, 2024; accepted July 1, 2024 https://doi.org/10.30970/cma17.0442

The phase diagram of the CaO–Tb₂O₃ (Tb₇O₁₂)–CoO system was built based on X-ray diffraction of 21 ceramic polycrystalline samples synthesized by a two-stage solid-state reaction method in air. The formation of two four-component oxides was observed. The existence of the CaTbCoO₄ phase (structure type La₂CuO₄, Pearson symbol oS28, space group Cmce, a = 0.53021(5), b = 1.1778(1), c = 0.52331(5) nm, $R_B = 0.079$) was revealed for the first time, whereas the formation of the Ca₂TbCo₂O₆ compound (structure type Ca₃Co₂O₆, Pearson symbol hR66, space group R-3c, a = 0.9040(1), c = 1.0625(2) nm, $R_B = 0.146$) was confirmed under the experimental conditions. Examination of other Ca_{0.5}R_{0.5}CoO₃ samples (R = rare-earth element) indicated the absence of perovskite phases in the corresponding systems, but confirmed the formation of CaRCoO₄ compounds with the tetragonal K₂NiF₄ (R = Pr³⁺, Nd³⁺, and Sm³⁺) or orthorhombic La₂CuO₄ (R = Eu³⁺ and Gd³⁺) structure types.

Oxides / Solid-state synthesis / X-ray diffraction / Phase diagram / Crystal structure

Introduction

Systems containing alkali-earth (A), rare-earth (R), 3d-transition (T) metals and oxygen have attracted the attention of researchers in various fields of science for a long time. This is primarily due to the formation of compounds with perovskite-type structures, which display a number of interesting properties for practical applications. According to literature data, isothermal cross-sections have already been constructed for the Ca-R-Co-O systems with R = La [1], Nd [2], Sm [3], Eu [4], Gd [5], and Ho [6] at 885°C, and for the Ca–R–Co–O systems with R = La and Sm [7] at 1100°C. Four-component phases have been reported in all of the Ca-R-Co-O systems, except those with R = Ce, Pm, and Tm [8]. The major part of the compounds adopts GdFeO₃-, K₂NiF₄-, La₂CuO₄-, or Ca₃Co₂O₆-type structures. In this work we have performed a systematic study of the Ca-Tb-Co-O system.

Experimental details and results

A two-stage solid-state reaction method was applied for the synthesis of polycrystalline samples in the Ca-Tb-Co-O system and samples of composition

 $Ca_{0.5}R_{0.5}CoO_3$ (R = Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu) in related systems, starting from CaCO₃, CoCO₃ and rare-earth metal oxide powders of high purity. At first the reagents were mixed, manually ground for 5 minutes after adding each component, and heated in a muffle furnace at 1000°C for 24 h in air. The resulting mixtures were ground, pressed into pellets and annealed in a tube furnace at 1200°C for 8 h in air. Phase and structural analyses were performed using X-ray powder diffraction (XRPD) data collected on a DRON-2.0 M diffractometer (Bragg-Brentano geometry, Fe $K\alpha$ radiation, $20^{\circ} \le 2\theta \le 80^{\circ}$). The structure refinement (including cell parameters, atomic coordinates, site occupancies) was done by the Rietveld method, applying the DBWS program [9]. To evaluate the correctness of the selected models, the reliability factor $R_{\rm B}$ was used.

Discussion

Examination of $Ca_{0.5}R_{0.5}CoO_3$ samples, where R = rare-earth metal

Knowledge about the interaction of the components in A-R-T-O systems is widely desired, due to the multiple applications of the compounds, in particular

¹ Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya St. 6, 79005 Lviv, Ukraine

^{*} Corresponding author. E-mail: oksana.zaremba@lnu.edu.ua

perovskites, which form in them. This prompted us to start the investigation from examining samples with the nominal composition $Ca_{0.5}R_{0.5}CoO_3$ to determine whether perovskite phases form under the experimental conditions. The results of the phase analysis by X-ray diffraction of polycrystalline samples are presented in Table 1. All of the $Ca_{0.5}R_{0.5}CoO_3$ samples were multiphase and did surprisingly not contain any phase with perovskite structure. The samples with Pr and Nd contained in equilibrium $CaPrCoO_4$ / $CaNdCoO_4$ and CoO. The $Ca_{0.5}R_{0.5}CoO_3$ samples, where R = Sm, Eu, Gd, and Tb, turned out to be three-phase, since

they contained in addition a four-component phase with the $Ca_3Co_2O_6$ structure type. We have consequently confirmed the existence of $\sim CaRCoO_4$ compounds in the systems with Pr, Nd, Sm, Eu, and Gd. According to Thorogood *et al.* [10], for larger ions (Pr³+, Nd³+, and Sm³+), the tetragonal structure type K_2NiF_4 is formed, while for smaller ions (Eu³+ and Gd³+) the related orthorhombic structure type La_2CuO_4 is preferred (Table 2). The study of the $Ca_{0.5}Tb_{0.5}CoO_3$ sample revealed a new compound with approximate composition $CaTbCoO_4$, which crystallizes with the La_2CuO_4 structure type.

Table 1 Results of the phase analysis by XRPD of polycrystalline samples of nominal composition $Ca_{0.5}R_{0.5}CoO_3$.

No	Nominal	Phase	Structure	Pearson	Space	Content,
composition			type	symbol	group	wt.%
1	$Ca_{0.5}Pr_{0.5}CoO_3$	CaPrCoO ₄	K ₂ NiF ₄	<i>tI</i> 14	I4/mmm	86.8
	Cu _{0.51} 1 _{0.5} COO ₃	CoO	NaCl	cF8	Fm-3m	13.2
2	$Ca_{0.5}Nd_{0.5}CoO_3$	CaNdCoO ₄	K ₂ NiF ₄	<i>tI</i> 14	I4/mmm	82.4
		CoO	NaCl	cF8	Fm-3m	17.6
	Ca _{0.5} Sm _{0.5} CoO ₃	CaSmCoO ₄	K ₂ NiF ₄	<i>tI</i> 14	I4/mmm	64.1
3		CoO	NaCl	cF8	Fm-3 <i>m</i>	19.6
		$Ca_2SmCo_2O_6$	Ca ₃ Co ₂ O ₆	hR66	R-3c	16.3
		Ca ₂ EuCo ₂ O ₆	$Ca_3Co_2O_6$	hR66	R-3c	39.5
4	$Ca_{0.5}Eu_{0.5}CoO_3$	CaEuCoO4	La ₂ CuO ₄	oS28	Cmce	38.4
		CoO	NaCl	cF8	<i>Fm</i> -3 <i>m</i>	22.1
	Ca _{0.5} Gd _{0.5} CoO ₃	CaGdCoO4	La ₂ CuO ₄	oS28	Стсе	61.8
5		$Ca_2GdCo_2O_6$	Ca ₃ Co ₂ O ₆	hR66	R-3c	21.0
		CoO	NaCl	cF8	<i>Fm</i> -3 <i>m</i>	17.2
	Ca _{0.5} Tb _{0.5} CoO ₃	CaTbCoO ₄	La ₂ CuO ₄	oS28	Стсе	60.3
6		$Ca_2TbCo_2O_6$	$Ca_3Co_2O_6$	hR66	R-3c	23.0
		CoO	NaCl	cF8	<i>Fm</i> -3 <i>m</i>	16.7
	Ca _{0.5} Dy _{0.5} CoO ₃	Ca ₂ DyCo ₂ O ₆	Ca ₃ Co ₂ O ₆	hR66	R-3c	62.0
7		$\mathrm{Dy_2O_3}$	$(Mn_{0.5}Fe_{0.5})_2O_3$	cI80	Ia-3	23.0
		CoO	NaCl	cF8	<i>Fm</i> -3 <i>m</i>	15.0
	Ca _{0.5} Ho _{0.5} CoO ₃	Ca ₂ HoCo ₂ O ₆	Ca ₃ Co ₂ O ₆	hR66	R-3c	61.9
8		Ho_2O_3	$(Mn_{0.5}Fe_{0.5})_2O_3$	cI80	Ia-3	23.6
		CoO	NaCl	cF8	<i>Fm</i> -3 <i>m</i>	14.5
	Ca _{0.5} Er _{0.5} CoO ₃	Ca ₂ ErCo ₂ O ₆	Ca ₃ Co ₂ O ₆	hR66	R-3c	60.9
9		Er_2O_3	$(Mn_{0.5}Fe_{0.5})_2O_3$	cI80	Ia-3	20.0
		CoO	NaCl	cF8	<i>Fm</i> -3 <i>m</i>	19.1
10	Ca _{0.5} Tm _{0.5} CoO ₃	Ca ₂ TmCo ₂ O ₆	Ca ₃ Co ₂ O ₆	hR66	R-3c	39.5
		Tm_2O_3	$(Mn_{0.5}Fe_{0.5})_2O_3$	cI80	Ia-3	36.1
		CoO	NaCl	cF8	<i>Fm</i> -3 <i>m</i>	24.4
11	Ca _{0.5} Yb _{0.5} CoO ₃	Yb_2O_3	$(Mn_{0.5}Fe_{0.5})_2O_3$	cI80	Ia-3	42.9
		Ca ₂ YbCo ₂ O ₆	Ca ₃ Co ₂ O ₆	hR66	R-3c	32.2
		CoO	NaCl	cF8	<i>Fm</i> -3 <i>m</i>	24.9
	Ca _{0.5} Lu _{0.5} CoO ₃	Lu ₂ O ₃	$(Mn_{0.5}Fe_{0.5})_2O_3$	cI80	Ia-3	54.6
12		CoO	NaCl	cF8	<i>Fm</i> -3 <i>m</i>	29.7
		Ca ₂ LuCo ₂ O ₆	Ca ₃ Co ₂ O ₆	hR66	R-3c	15.7

No	Refined composition	Structure type	a, nm	b, nm	c, nm	$R_{ m B}$
1	Ca _{0.84(2)} Pr _{1.16(2)} CoO ₄	K ₂ NiF ₄	0.37537(5)	_	1.1984(2)	0.101
2	$Ca_{0.98(2)}Nd_{1.02(2)}CoO_4$	K ₂ NiF ₄	0.37434(5)	_	1.1937(2)	0.106
3	$Ca_{0.90(1)}Sm_{1.10(1)}CoO_4$	K ₂ NiF ₄	0.37304(3)	_	1.1857(1)	0.137
4	$Ca_{0.90(1)}Eu_{1.10(1)}CoO_4$	La ₂ CuO ₄	0.52802(5)	1.1833(1)	0.52493(5)	0.058
5	$Ca_{0.82(1)}Gd_{1.18(1)}CoO_4$	La ₂ CuO ₄	0.52371(5)	1.1760(1)	0.53028(5)	0.143
6	Can 84(1) Tb1 16(1) CoO4	La ₂ CuO ₄	0.53021(5)	1.1778(1)	0.52331(5)	0.079

Table 2 Refined composition and cell parameters of CaRCoO₄ phases from XRPD of Ca_{0.5}R_{0.5}CoO₃ samples.

There is a regular decrease in the volume of the unit cell of the phases with the approximate composition $CaRCoO_4$ when going from Pr to Tb, both for the compounds with K_2NiF_4 - and La_2CuO_4 -type structures (Fig. 1), that is associated with a gradual decrease of the radii of the rare-earth elements with increasing atomic number [11]. The $Ca_{0.5}R_{0.5}CoO_3$ samples, where R = Dy, Ho, Er, Tm, Yb, and Lu, were also three-phase, but did not contain any phase with 1:1:1:4 stoichiometry. Instead, the diffraction diagrams showed the presence of solid solutions based on the $Ca_3Co_2O_6$ phase, CoO and the corresponding R_2O_3 oxide.

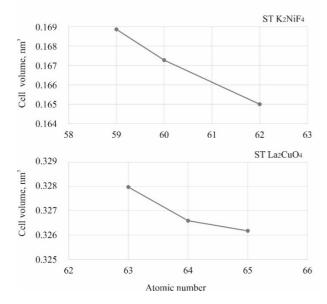


Fig. 1 Cell volume of CaRCoO₄ phases *versus* atomic number of the rare-earth metal.

The system CaO-Tb2O3(Tb7O12)-CoO

The interaction of the components in the CaO–Tb₂O₃(Tb₇O₁₂)–CoO system was studied based on X-ray diffraction of 21 polycrystalline samples (Table 3). It should be noted that the initial Tb₂O₃ reagent (structure type (Mn_{0.5}Fe_{0.5})₂O₃, Pearson symbol *cI*80, space group *Ia*-3) was, after the synthesis,

observed in the form of Tb₇O₁₂ (structure type Pr₇O₁₂, Pearson symbol hR57, space group R-3). This phase dissolves a significant amount of CaO. Fig. 2 shows the phase diagram of the CaO-Tb₂O₃(Tb₇O₁₂)-CoO system. There are 5 single-phase, 9 two-phase, and 5 three-phase regions under the conditions of our study. According to Pearson's Crystal Data [8], several compounds have been reported in the Tb₂O₃-CoO and CaO-CoO boundary systems (including the compound Ca₃Co₂O₆), while there are no data on the formation of compounds in the system CaO-Tb₂O₃. Under the conditions of our experiment, no compound was observed in any of the boundary systems. The existence of the compound Ca₂TbCo₂O₆ (ST Ca₃Co₂O₆), with point composition, was confirmed. It is in equilibrium with the phases CaTbCoO₄, CoO, CaO, and the solid solution of CaO in terbium oxide. The existence of the phase of approximate composition CaTbCoO₄ (structure type La₂CuO₄), observed in the Ca_{0.5}Tb_{0.5}CoO₃ sample, was confirmed. This phase is in equilibrium with CoO, Ca₂TbCo₂O₆, and the solid solution based on terbium oxide. The results of the crystal structure refinements of the two fourcomponent phases are shown in Table 4 and Table 5. Despite the fact that the compound CaTbCoO₄ has orthorhombic, and Ca₂TbCo₂O₆ hexagonal symmetry, both structures are characterized by the same coordination environment of the Co atoms, which are surrounded by 6 oxygen atoms forming an octahedron (Fig. 3).

Summary

A systematic investigation of the Ca–R–Co–O systems, revealed that they do not contain four-component perovskite phases under ordinary experimental conditions. Instead, the existence of CaRCoO₄ compounds with R = Pr, Nd, Sm, Eu, and Gd was confirmed, and a new compound, CaTbCoO₄, was discovered with a La₂CuO₄-type structure. The phase equilibria in the CaO–Tb₂O₃(Tb₇O₁₂)–CoO system were constructed, confirming the existence of the Ca₂TbCo₂O₆ compound, in addition to the previously unreported CaTbCoO₄ phase. These findings add to our understanding of complex oxide systems with potential prospects for practical applications.

Table 3 Results of the phase analysis by XRPD of polycrystalline samples of the CaO-Tb₂O₃-CoO system.

	Nominal		C4	D	C	C
No	composition	Phase	Structure	Pearson symbol	Space group	Content, wt.%
	CaO-CoO	CaO	type NaCl	cF8	Fm-3m	58.6
1	(60:40 mol.%)	CoO	NaCl	cF8	Fm-3m Fm-3m	41.4
-	(00.40 11101.70)	$Ca_2TbCo_2O_6$	Ca ₃ Co ₂ O ₆	hR66	R-3c	42.8
2	$CaO-1/2Tb_2O_3-CoO$	CaO	NaCl	cF8	Fm-3m	31.0
2	(55:5:40 mol.%)	CoO	NaCl	cF8	Fm-3m	26.2
		CoO	NaCl	cF8	Fm-3m	43.0
3	$CaO-1/2Tb_2O_3-CoO$	$Ca_2TbCo_2O_6$	Ca ₃ Co ₂ O ₆	hR66	R-3c	38.4
3	(40:5:55 mol.%)	CaO	NaCl	cF8	Fm-3m	18.6
-		Ca ₂ TbCo ₂ O ₆	Ca ₃ Co ₂ O ₆	hR66	R-3c	70.7
4	$CaO-1/2Tb_2O_3-CoO$	CaO	NaCl	cF8	Fm-3m	17.5
7	(50:10:40 mol.%)	CoO	NaCl	cF8	Fm-3m	11.8
	CaO-1/2Tb ₂ O ₃ -CoO					
5	(45:15:40 mol.%)	Ca ₂ TbCo ₂ O ₆	Ca ₃ Co ₂ O ₆	hR66	R-3c	100
	CaO-1/2Tb ₂ O ₃ -CoO	CaTbCoO ₄	La ₂ CuO ₄	oS28	Cmce	60.3
6	(25:25:50 mol.%)	Ca ₂ TbCo ₂ O ₆	Ca ₃ Co ₂ O ₆	hR66	R-3c	23.0
	(23.23.30 moi.70)	CoO	NaCl	cF8	Fm-3m	16.7
	CaO-1/2Tb ₂ O ₃ -CoO	$Ca_2TbCo_2O_6$	Ca ₃ Co ₂ O ₆	hR66	R-3c	65.8
7	(60:10:30 mol.%)	CaO	NaCl	cF8	Fm-3m	27.6
	,	CoO	NaCl	cF8	Fm-3m	6.6
8	CaO-1/2Tb ₂ O ₃ (10:90 mol.%)	$\mathrm{Tb_{7}O_{12}}$	Pr ₇ O ₁₂	hR57	R-3	100
_	CaO-1/2Tb ₂ O ₃	Tb ₇ O ₁₂	Pr ₇ O ₁₂	hR57	R-3	94.7
9	(20:80 mol.%)	CaO	NaCl	cF8	<i>Fm</i> -3 <i>m</i>	5.3
10	CaO-1/2Tb ₂ O ₃	Tb ₇ O ₁₂	Pr ₇ O ₁₂	hR57	R-3	87.6
10	(30:70 mol.%)	CaO	NaCl	cF8	<i>Fm</i> -3 <i>m</i>	12.4
11	CaO-1/2Tb ₂ O ₃	Tb ₇ O ₁₂	Pr ₇ O ₁₂	hR57	R-3	84.8
11	(40:60 mol.%)	CaO	NaCl	cF8	Fm-3m	15.2
	CaO-1/2Tb ₂ O ₃ -CoO	Ca ₂ TbCo ₂ O ₆	Ca ₃ Co ₂ O ₆	hR66	R-3c	54.9
12	(40.0: 26.7:33.3 mol.%)	CaTbCoO ₄	La ₂ CuO ₄	oS28	Cmce	38.0
	(40.0. 20.7.33.3 moi.70)	Tb_7O_{12}	Pr_7O_{12}	hR57	R-3	7.1
	CaO-1/2Tb ₂ O ₃ -CoO	CaTbCoO ₄	La ₂ CuO ₄	oS28	Стсе	62.7
13	(33.4:33.3:33.3 mol.%)	Ca ₂ TbCo ₂ O ₆	Ca ₃ Co ₂ O ₆	hR66	R-3c	30.4
	,	Tb ₇ O ₁₂	Pr_7O_{12}	hR57	R-3	6.9
	$CaO-1/2Tb_2O_3-CoO$	CaTbCoO ₄	La ₂ CuO ₄	oS28	Стсе	79.0
14	(30.0: 36.7:33.3 mol.%)	$Ca_2TbCo_2O_6$	$Ca_3Co_2O_6$	hR66	R-3c	17.9
		Tb ₇ O ₁₂	Pr_7O_{12}	hR57	R-3	3.1
15	$CaO-1/2Tb_2O_3-CoO$	CaTbCoO ₄	La ₂ CuO ₄	oS28	Cmce	90.7
	(26.7:40:33.3 mol.%)	Tb ₇ O ₁₂	Pr ₇ O ₁₂	hR57	R-3	9.3
	CaO-1/2Tb ₂ O ₃ -CoO	CaTbCoO ₄	La ₂ CuO ₄	oS28	Cmce	60.9
16	(20: 46.7:33.3 mol.%)	Tb_7O_{12}	Pr ₇ O ₁₂	hR57	R-3	30.1
\longrightarrow		CoO	NaCl	cF8	Fm-3m	9.0
1.7	CaO-1/2Tb ₂ O ₃ -CoO	Ca ₂ TbCo ₂ O ₆	Ca ₃ Co ₂ O ₆	hR66	R-3c	67.9
17	(30:20:50 mol.%)	CaTbCoO ₄	La ₂ CuO ₄	oS28	Cmce	19.0
		CoO	NaCl	cF8	Fm-3m	13.1
1.0	$CaO-1/2Tb_2O_3-CoO$	Ca ₂ TbCo ₂ O ₆	Ca ₃ Co ₂ O ₆	hR66	R-3c	95.1
18	(40:20:40 mol.%)	CaTbCoO ₄	La ₂ CuO ₄	oS28	Cmce	3.5
	C ₂ O ₋ 1/2Th O ₋ C ₂ O ₋	Tb ₇ O ₁₂	Pr ₇ O ₁₂	hR57	R-3 R-3	1.4
19	$CaO-1/2Tb_2O_3-CoO$	Tb_7O_{12}	Pr ₇ O ₁₂	hR57		57.2 24.2
19	(10:50:40 mol.%)	CoO	NaCl	cF8	Fm-3m	
	CaO-1/2Tb ₂ O ₃ -CoO	CaTbCoO ₄	La ₂ CuO ₄	oS28	Cmce	18.6 50.9
20	(25:50:25 mol.%)	CaTbCoO ₄	La ₂ CuO ₄	oS28	Cmce	
20	(23.30.23 Hi01.70)	Tb_7O_{12}	Pr_7O_{12}	hR57	R-3	36.5
	CaO-1/2Tb ₂ O ₃ -CoO	Ca ₂ TbCo ₂ O ₆	Ca ₃ Co ₂ O ₆	hR66	R-3c	12.6
21		CaO	NaCl	cF8	Fm-3m	42.8
∠1	(60:5:35 mol.%)	Ca ₂ TbCo ₂ O ₆	Ca ₃ Co ₂ O ₆	hR66	R-3c	35.5
		CoO	NaCl	cF8	Fm-3m	21.7

Fig. 2 Phase diagram of the CaO-Tb₂O₃(Tb₇O₁₂)-CoO system (1 – CaTbCoO₄, 2 – Ca₂TbCo₂O₆).

Table 4 Atomic coordinates of CaTbCoO₄ from XRPD (ST La₂CuO₄, PS oS28, SG Cmce, a = 0.53021(5), b = 1.1778(1), c = 0.52331(5) nm, $R_B = 0.079$).

Atom	Wyckoff	Atomic coordinates				
Atom	position	x	y	Z		
O1	8e	1/4	0.001	1/4		
0.42(1)Ca + $0.58(1)$ Tb	8 <i>f</i>	0	0.359(1)	0.008(2)		
O2	8 <i>f</i>	0	0.333	0.493		
Co	4 <i>a</i>	0	0	0		

Table 5 Atom coordinates of Ca₂TbCo₂O₆ from XRPD (ST Ca₃Co₂O₆, PS hR66, SG R-3c, a = 0.9040(1), c = 1.0625(2) nm, $R_B = 0.146$).

Atom	Wyckoff	Atomic coordinates			
Atom	position	x	y	z	
O	36 <i>f</i>	0.1766	0.0244	0.1138	
0.69(1)Ca + $0.31(1)$ Tb	18 <i>e</i>	0.3688(5)	0	1/4	
Co1	6 <i>b</i>	0	0	0	
Co2	6 <i>a</i>	0	0	1/4	

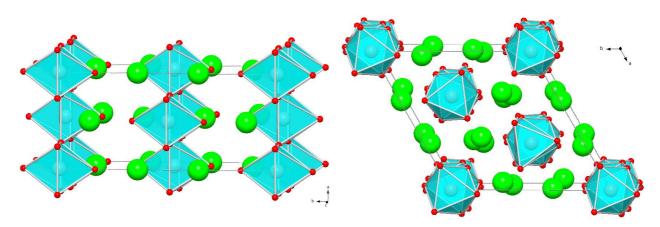


Fig. 3 Arrangement of CoO₆ octahedra in CaTbCoO₄ (left) and Ca₂TbCo₂O₆ (right).

Acknowledgments

OZ is grateful to the Simons Foundation (award No. 1290588) for partial financial support.

References

- [1] W. Wong-Ng, W.J. Laws, Y.G. Yan, *Solid State Sci.* 13 (2013) 107-110. https://doi.org/10.1016/j.solidstatesciences.2012. 11.021
- [2] W. Wong-Ng, W. Laws, K.R. Talley, Q. Huang, Y. Yan, J. Martin, J.A. Kaduk, J. Solid State Chem. 215 (2014) 128-134. https://doi.org/10.1016/j.jssc.2014.03.012
- [3] W. Wong-Ng, W. Laws, S.H. Lapidus, J.A. Kaduk, *Solid State Sci.* 48 (2015) 31-38. https://doi.org/10.1016/j.solidstatesciences.2015. 06.003
- [4] W. Wong-Ng, W. Laws, J.A. Kaduk, Solid State Sci. 58 (2016) 105-110. https://doi.org/10.1016/j.solidstatesciences.2016. 06.007
- [5] W. Wong-Ng, W. Laws, S.H. Lapidus, L. Ribaud, J.A. Kaduk, *Solid State Sci.* 72 (2017) 47-54. https://doi.org/10.1016/j.solidstatesciences.2017. 08.005

- [6] W. Wong-Ng, W. Laws, Q. Huang, J. Hou, S.H. Lapidus, L. Ribaud, J.A. Kaduk, *Solid State Sci*.107 (2020) 106348. https://doi.org/10.1016/j.solidstatesciences.2020. 106348
- [7] Phase Equilibria Diagrams Database, ACS and NIST, Westerville, OH, USA.
- [8] P. Villars, K. Cenzual (Eds.), *Pearson's Crystal Data Crystal Structure Database for Inorganic Compounds*, ASM International, Materials Park, OH, USA.
- [9] D.B. Wiles, A. Sakthivel, R.A. Young, *Program DBWS3.2 for Rietveld Analysis of X-Ray and Neutron Powder Diffraction Patterns*, School of Physics, Georgia Institute of Technology, Atlanta, 1998.
- [10] G.J. Thorogood, P.-Y. Orain, M. Ouvry, B. Piriou, T. Tedesco, K.S. Wallwork, J. Herrmann, M. James, *Solid State Sci.* 13 (2011) 2113-2123. https://doi.org/10.1016/j.solidstatesciences.2011. 08,008
- [11] R.D. Shannon, *Acta Crystallogr. A* 32 (1976) 751-767. https://doi.org/10.1107/S0567739476001551