Chem. Met. Alloys 17 (2024) 24-31
Ivan Franko National University of Lviv
http://publications.lnu.edu.ua/chemetal

Crystal structures of the phases in the DyNi3Al9-DyNi3Ga9 system

Oleh LESKO¹, Nataliya MUTS^{1*}, Yaroslav TOKAYCHUK¹, Roman GLADYSHEVSKII¹

Received April 1, 2024; accepted July 1, 2024 https://doi.org/10.30970/cma17.0441

The subsystem DyNi₃Al₉-DyNi₃Ga₉ was investigated by X-ray powder diffraction. Both boundary compounds crystallize with the partly ordered DyNi₃Al₉ type (Pearson symbol hR99, space group R32), which contains monoatomic layers with single rare-earth atoms and (Al,Ga)₃ triangles in the ratio 2:1. The solid solutions based on the ternary compounds were found to extend to the limiting compositions DyNi₃(Al_{0.82}Ga_{0.18})₉ (a = 7.2589(1), c = 27.4045(6) Å) and DyNi₃(Al_{0.44}Ga_{0.56})₉ (a = 7.24477(9), c = 27.4508(4) Å), respectively, at 600°C. Complete refinements were performed for several compositions. The samples contained in addition variable amounts of a Ni₂(Al,Ga)₃ phase with Ni₂Al₃-type structure and a new phase. The crystal structure of the new quaternary compound Dy_{0.67}Ni₂(Al,Ga)₅ was refined from X-ray powder diffraction data and was found to belong to the structure type Sc_{0.6}Fe₂Si_{4.9} (Pearson symbol hP20, space group $P6_3/mmc$). The homogeneity range extends from the composition Dy_{0.67}Ni₂(Al_{0.74}Ga_{0.26})₅ to Dy_{0.67}Ni₂(Al_{0.31}Ga_{0.69})₅ at 600°C and the unit-cell parameters change from a = 4.19886(9), c = 15.8614(4) Å for the former to a = 4.17494(7), c = 15.9229(4) Å for the latter. It follows that the cell volume increases when Ga atoms are replaced by Al atoms.

Dy-Ni-Al-Ga system / X-ray diffraction / Crystal structure / Aluminides

Introduction

The Dy-Ni-Al and Dy-Ni-Ga systems are rich in intermetallic compounds; a total of 35 ternary phases have been reported [1-3]. Several isostructural phases form, such as the compounds with stoichiometry 1:1:4 (structure type YNiAl₄, Pearson symbol oS24, space group Cmcm), 1:3:2 (YCo₃Ga₂, hP18, P6/mmm), 1:1:2 (MgCuAl₂, oS16, Cmcm), 3:6:2 (Ce₃Ni₆Si₂, cI44, Im-3m), and 2:1:2 (W₂CoB₂, oI10, Immm). Our attention was drawn to the isostructural compounds formed in the Al- and Ga-rich regions, in particular DyNi₃Al₉, which crystallizes with a partially disordered (own) structure type (hR99, R32, a = 7.2723, c = 27.344 Å) [4], and DyNi₃Ga₉, which adopts the same structure type (a = 7.2455, c = 27.4346 Å) [5]. The aluminide was also found to crystallize with the related type Yb_{0.67}Ni₂Al₆ presenting a higher degree of disorder reflected in a smaller unit cell (hP11, P-6m2, a = 4.2008, c = 9.1262 Å) [6].

In this work, our aim was to synthesize and investigate samples along the line DyNi₃Al₉–DyNi₃Ga₉: determine the solubility of the fourth component (Ga or Al) in the ternary compounds with stoichiometry 1:3:9, search for new phases in the quaternary system and determine their crystal structure.

Experimental

Seven DyNi₃Al_xGa_{9-x} samples (x = 0, 1.5, 2.25, 3.375, 5.625, 6.75, 9) were synthesized by arc-melting elements of the following purities: Dy ≥ 99.89 mass%, Ni ≥ 99.89 mass%, Al ≥ 99.85 mass%, and Ga ≥ 99.89 mass%. The mass of each sample was 1 g and the weight loss during the preparation was less than 1 % of the total mass. The alloys were annealed at 600°C for 126 d in evacuated quartz ampoules, and subsequently quenched in cold water.

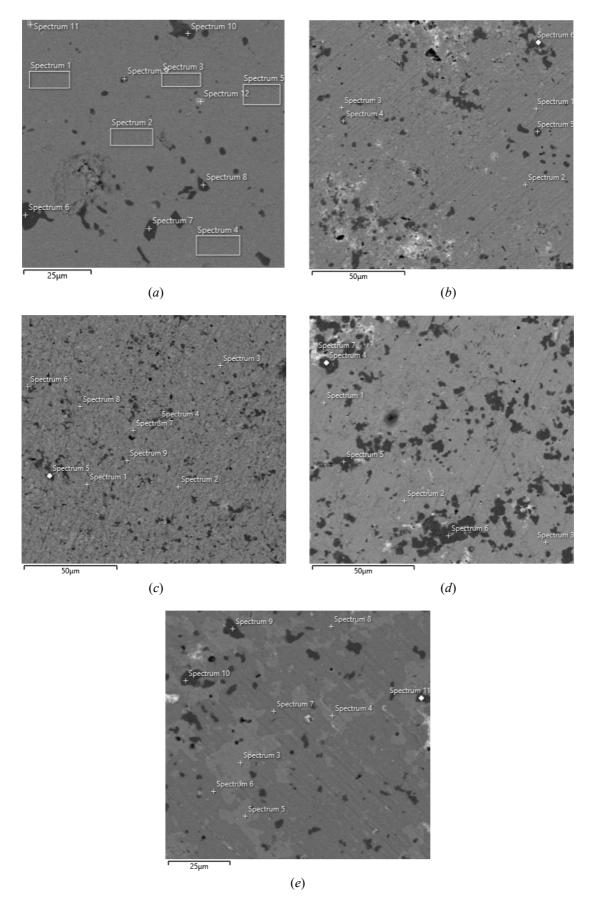
Phase analysis and crystal structure refinements were performed using X-ray powder diffraction patterns recorded at room temperature on a DRON-2.0M diffractometer (Fe $K\alpha$ radiation, 2θ angular range 20-120°, step 0.05°) and a STOE Stadi P diffractometer (Cu $K\alpha_1$ radiation, 2θ angular range 6-110.625°, step 0.015°) using the program package FullProf Suite [7]. TYPIX database [8] was used to identify the structure types and standardize the structural parameters. The compositions of the samples and quaternary phases energy-dispersive analyzed by spectroscopy (EDX), performed on a scanning electron microscope TESCAN Vega3 LMU equipped with an energy-dispersive X-ray analyzer Oxford Instruments Aztec ONE with an X-Max^N20 detector.

¹ Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya St. 6, 79005 Lviv, Ukraine

^{*} Corresponding author. Tel.: +380322600388; e-mail: nataliya.muts@lnu.edu.ua

3. Results and discussion

The results of the local EDX analyses of the DyNi₃Al_xGa_{9-x} (x = 1.5, 2.25, 3.375, 5.625, 6.75) samples showed good agreement with the nominal composition (Table 1). Images of a polished surface of the DyNi₃Al_{1.5}Ga_{7.5}, DyNi₃Al_{2.25}Ga_{6.75}, DyNi₃Al_{3.375}Ga_{5.625}, DyNi₃Al_{5.625}Ga_{3.375}, DyNi₃Al_{6.75}Ga_{2.25} samples are shown in Fig. 1. The samples close to the boundary compounds contained important amounts of a DyNi3Al9-type phase, however, all the samples were found to be multiphase: the DyNi₃Al_{1.5}Ga_{7.5}, DyNi₃Al_{2.25}Ga_{6.75}, DyNi₃Al_{3.375}Ga_{5.625}, and DyNi₃Al_{5.625}Ga_{3.375} samples contained two phases, and the DyNi₃Al_{6.75}Ga_{2.25} sample contained three phases. An additional phase found in all the samples was a solid solution Ni₂(Al,Ga)₃, with Ni₂Al₃-type structure. The compound was found to dissolve very small amounts of the rare-earth element; the highest solubility of Dy was observed for the $DyNi_3Al_{3.375}Ga_{5.625}$ sample.


The X-ray powder diffraction patterns revealed the existence of a new phase with Sc_{0.6}Fe₂Si_{4.9}-type structure (Pearson symbol *hP*20, space group *P*6₃/*mmc*) in the DyNi₃Ga₉ (trace amounts, 5.9(1) mass%), DyNi₃Al_{2.25}Ga_{6.75} (17.2(2) mass%), DyNi₃Al_{3.375}Ga_{5.625} (main phase, 84.8(7) mass%), DyNi₃Al_{5.625}Ga_{3.375} (main phase, 77.2(6) mass%), and DyNi₃Al_{6.75}Ga_{2.25} (43.0(5) mass%) samples (Table 2). The content of Ni₂(Al,Ga)₃ varied from 3(1) mass% for the DyNi₃Al_{1.5}Ga_{7.5} sample to 22.8(2) mass% for DyNi₃Al_{5.625}Ga_{3.375} sample. The change of the unit-cell parameters for the phase with Ni₂Al₃-type, as well as the results of EDX, indicate the solubility of Ga in the binary compound Ni₂Al₃ (the maximum solubility of Ga is 29.2(9) at.% according to EDX for

the DyNi₃Al_{1.5}Ga_{7.5} sample). Belyaina et al. [9], during their investigation of the phase equilibria in the Ni-Al-Ga system at 700°C, determined the presence of extended solid solutions of the isostructural compounds Ni₂Al₃ and Ni₂Ga₃. However, the compounds did not form a continuous solid solution at 700°C because of the existence of a two-phase field along the $Ni_2Al_3-Ni_2Ga_3$ line (~30-50 at.% Ga) [9]. The unit-cell parameters of the phase with Ni₂Al₃-type structure identified in the samples synthesized here are in good agreement with the parameters reported in the literature: Ni₂Al₃ (a = 4.0359, c = 4.8956 Å), c = 4.8879 Å), (a = 4.0473, $Ni_2(Al_{0.5}Ga_{0.5})_3$ $Ni_2(Al_{0.58}Ga_{0.42})_3$ (a = 4.0418, c = 4.8874 Å), and Ni_2Ga_3 (a = 4.0532, c = 4.8857 Å). X-ray diffraction patterns of the polycrystalline DyNi₃Al_xGa_{9-x} (x = 0, 1.5, 2.25, 3.375, 5.625, 6.75, 9) samples are shown in Figs. 2-3.

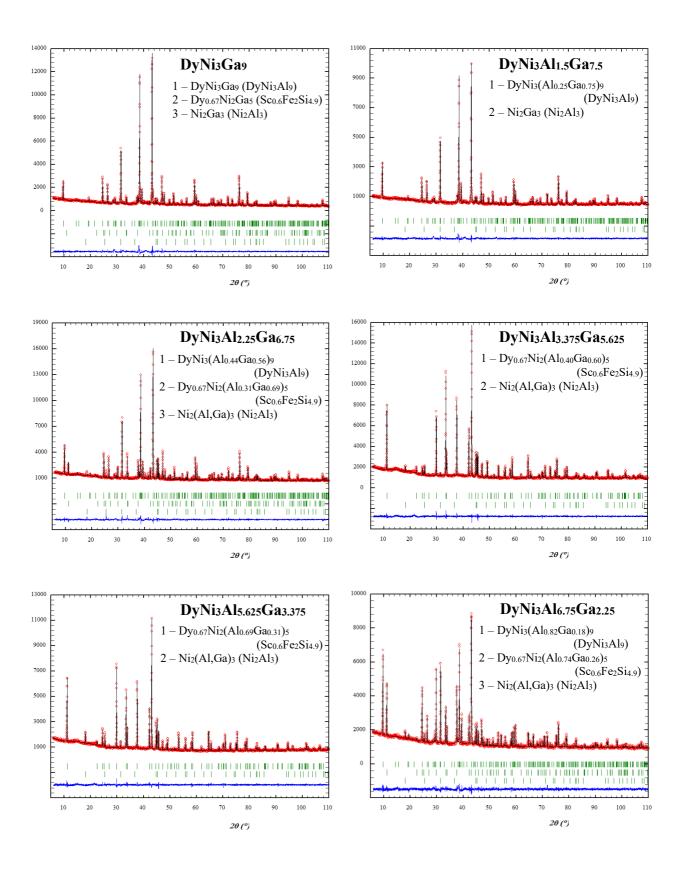

The solubility of aluminum in the ternary compound DyNi₃Ga₉ and the solubility of gallium in DyNi₃Al₉ were established. The solid solution based on the DyNi₃Ga₉ compound was found to extend to the composition DyNi₃(Al_{0.44}Ga_{0.56})₉ and on the DyNi₃Al₉side the limiting composition was DyNi₃(Al_{0.82}Ga_{0.18})₉. The atomic coordinates for the initial model (DyNi₃Al₉type) for the crystal structure refinements were taken from the earlier determinations of DyNi₃Ga₉ [5] and DyNi₃Al₉ [4]. The atomic coordinates and isotropic displacement parameters for the solid solutions DyNi₃(Al_xGa_{1-x})₉ and DyNi₃(Al_{1-x}Ga_x)₉ with structure type DyNi₃Al₉ are listed in Tables 3 and 4. The occupancies of the Dy and Ga (or mixed Al/Ga) sites in Wyckoff positions 6c, 18f, 3b and 9e were refined, taking into consideration the fact that the sum of the occupancies of the Dy1 and Ga (or Al/Ga)7 sites, and of the Dy2 and Ga (or Al/Ga)2 sites must be equal to 1.

Table 1 Results of the EDX analysis of the DyNi₃Al_xGa_{9-x} (x = 1.5, 2.25, 3.375, 5,625, 6.75) samples.

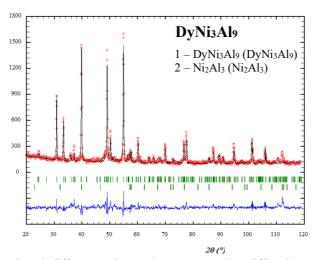

Sample, composition, at.%, [EDX composition, at.%]	Spectrum (see Fig. 1)	Average composition, at.%	Phase, [structure type]
DyNi ₃ Al _{1.5} Ga _{7.5}	1-5	$Dy_{7.1(4)}Ni_{22.2(3)}Al_{11(1)}Ga_{59.8(8)}$	DyNi ₃ (Al _{0.25} Ga _{0.75}) ₉ [DyNi ₃ Al ₉]
$\begin{array}{c} Dy_{7.7}Ni_{23.1}Al_{11.5}Ga_{57.7} \\ \underline{[Dy_{6.7}Ni_{23.0}Al_{12.5}Ga_{57.8}]} \end{array}$	6-10	$Dy_{0.8(7)}Ni_{35(2)}Al_{35(2)}Ga_{29.2(9)}$	Ni ₂ (Al,Ga) ₃ [Ni ₂ Al ₃]
DyNi ₃ Al _{2.25} Ga _{6.75}	1-3	$Dy_{7.9(1)}Ni_{25.3(5)}Al_{17.7(2)}Ga_{49.1(6)}$	DyNi ₃ (Al _{0.44} Ga _{0.56}) ₉ [DyNi ₃ Al ₉]
$\begin{array}{c} Dy_{7.7}Ni_{23.1}Al_{17.3}Ga_{51.9} \\ [Dy_{7.3}Ni_{24.5}Al_{18.6}Ga_{49.6}] \end{array}$	4-6	$Dy_{0.6(1)}Ni_{37.7(6)}Al_{42.9(2)}Ga_{18.8(3)}$	Ni ₂ (Al,Ga) ₃ [Ni ₂ Al ₃]
DyNi ₃ Al _{3.375} Ga _{5.625}	1-3	$Dy_{9.0(5)}Ni_{24.8(1)}Al_{25(2)}Ga_{41.2(9)}$	Dy _{0,67} Ni ₂ (Al _{0.40} Ga _{0.60}) ₅ [Sc _{0.6} Fe ₂ Si _{4.9}]
Dy _{7.7} Ni _{23.1} Al _{26.0} Ga _{43.2} [Dy _{7.9} Ni _{23.8} Al _{22.2} Ga _{46.1}]	4-6	$Dy_{1.5(9)}Ni_{37.7(3)}Al_{43.5(2)}Ga_{17.3(2)}$	Ni ₂ (Al,Ga) ₃ [Ni ₂ Al ₃]
DyNi ₃ Al _{5.625} Ga _{3.375}	1-3	$Dy_{9.5(2)}Ni_{21.8(2)}Al_{44.6(5)}Ga_{24.1(8)}$	Dy _{0,67} Ni ₂ (Al _{0.69} Ga _{0.31}) ₅ [Sc _{0.6} Fe ₂ Si _{4.9}]
$\begin{array}{c} Dy_{7.7}Ni_{23.1}Al_{43.3}Ga_{25.9} \\ \underline{[Dy_{7.1}Ni_{24.1}Al_{48.1}Ga_{20.7}]} \end{array}$	4-5	$Dy_{0.4(1)}Ni_{36(1)}Al_{59(1)}Ga_{4.6(3)}$	Ni ₂ Al ₃ [Ni ₂ Al ₃]
DyNi ₃ Al _{6.75} Ga _{2.25}	3-5	$Dy_{9.1(1)}Ni_{21.9(8)}Al_{49.9(9)}Ga_{19.1(6)}$	DyNi ₃ (Al _{0.82} Ga _{0.18}) ₉ [Sc _{0.6} Fe ₂ Si _{4.9}]
$Dy_{7.7}Ni_{23.1}Al_{51.9}Ga_{17.3}$	6-8	$Dy_{7.8(4)}Ni_{24.3(8)}Al_{54.2(2)}Ga_{13.7(3)}$	DyNi ₃ Ga ₉ [DyNi ₃ Al ₉]
$[Dy_{7.4}Ni_{23.6}Al_{54.3}Ga_{14.7}]$	9-11	$Dy_{0.7(3)}Ni_{36.3(9)}Al_{59.9(8)}Ga_{3.1(7)}$	Ni ₂ Al ₃ [Ni ₂ Al ₃]

Fig. 1 Photos of a surface of the DyNi₃Al_{1.5}Ga_{7.5} (*a*), DyNi₃Al_{2.25}Ga_{6.75} (*b*), DyNi₃Al_{3.375}Ga_{5.625} (*c*), DyNi₃Al_{5.625}Ga_{3.375} (*d*), and DyNi₃Al_{6.75}Ga_{2.25} (*e*) samples.

Fig. 2 Observed, calculated and difference (bottom) X-ray powder diffraction patterns for the DyNi₃Ga₉, DyNi₃Al_{1.5}Ga_{7.5}, DyNi₃Al_{2.25}Ga_{6.75}, DyNi₃Al_{3.375}Ga_{5.625}, DyNi₃Al_{5.625}Ga_{3.375}, and DyNi₃Al_{6.75}Ga_{2.25} samples; Cu $K\alpha_1$ radiation.

Fig. 3 Observed, calculated and difference (bottom) X-ray powder diffraction patterns for the DyNi₃Al₉ sample; Fe $K\alpha_1$ radiation.

Table 2 Results of the phase analysis of the DyNi₃Al_xGa_{9-x} (x = 0, 1.5, 2.25, 3.375, 5,625, 6.75, 9) samples.

x	Sample	Phase [structure type], content, mass%	Unit-cell parameters, Å
0	DyNi ₃ Ga ₉	DyNi ₃ Ga ₉ [DyNi ₃ Al ₉], 91.0(8) Dy _{0,67} Ni ₂ Ga ₅ [Sc _{0.6} Fe ₂ Si _{4.9}], 5.9(1) Ni ₂ Ga ₃ [Ni ₂ Al ₃], 3.1(1)	a = 7.24541(11), c = 27.4342(5) a = 7.2455, c = 27.4346 [5] a = 4.152041(1), c = 15.972(1) a = 4.0523(3), c = 4.8874(5)
1.5	DyNi ₃ Al _{1.5} Ga _{7.5}	DyNi ₃ (Al _{0.25} Ga _{0.75}) ₉ [DyNi ₃ Al ₉], 97(1) Ni ₂ Ga ₃ [Ni ₂ Al ₃], 3(1)	a = 7.2439(1), c = 27.4435(6) a = 4.0402(2), c = 4.8843(4)
2.25	DyNi ₃ Al _{2.25} Ga _{6.75}	DyNi ₃ (Al _{0.44} Ga _{0.56}) ₉ [DyNi ₃ Al ₉], 73(1) Dy _{0.67} Ni ₂ (Al _{0.31} Ga _{0.69}) ₅ * [Sc _{0.6} Fe ₂ Si _{4.9}], 17.2(2) Ni ₂ (Al,Ga) ₃ [Ni ₂ Al ₃], 9.8(1)	a = 7.24477(9), c = 27.4508(4) a = 4.17494(7), c = 15.9229(4) a = 4.04044(8), c = 4.8866(1)
3.375	DyNi ₃ Al _{3.375} Ga _{5.625}	Dy _{0,67} Ni ₂ (Al _{0.40} Ga _{0.60}) ₅ [Sc _{0.6} Fe ₂ Si _{4.9}], 84.8(7) Ni ₂ (Al,Ga) ₃ [Ni ₂ Al ₃], 15.2(5)	a = 4.17888(7), c = 15.9092(3) a = 4.03851(9), c = 4.8881(1)
5.625	DyNi ₃ Al _{5.625} Ga _{3.375}	Dy _{0,67} Ni ₂ (Al _{0.69} Ga _{0.31}) ₅ [Sc _{0.6} Fe ₂ Si _{4.9}], 77.2(6) Ni ₂ (Al,Ga) ₃ [Ni ₂ Al ₃], 22.8(2)	a = 4.19379(7), c = 15.8701(3) a = 4.04350(9), c = 4.89311(13)
6.75	DyNi ₃ Al _{6.75} Ga _{2.25}	DyNi ₃ (Al _{0.82} Ga _{0.18}) ₉ [DyNi ₃ Al ₉], 46.9(6) Dy _{0,67} Ni ₂ (Al _{0.74} Ga _{0.26}) ₅ [Sc _{0.6} Fe ₂ Si _{4.9}], 43.0(5) Ni ₂ (Al,Ga) ₃ [Ni ₂ Al ₃], 10.1(1)	a = 7.2589(1), c = 27.4045(6) a = 4.19886(9), c = 15.8614(4) a = 4.0489(1), c = 4.8957(2)
9	DyNi ₃ Al ₉	DyNi ₃ Al ₉ [DyNi ₃ Al ₉], 96(6) Ni ₂ Al ₃ [Ni ₂ Al ₃], 4(2)	a = 7.2806(2), c = 27.393(2) a = 7.2723, c = 27.344 [4] a = 4.0477(5), c = 4.9045(9)

^{*} composition from EDX analysis

The compound Dy_{0.67}Ni₂(Al,Ga)₅ new structure type $Sc_{0.6}Fe_2Si_{4.9}$, to the and the atomic coordinates for the initial model were taken from [10]. The homogeneity range extends, least, from the composition $Dy_{0.67}Ni_2(Al_{0.31}Ga_{0.69})_5$ to $Dy_{0.67}Ni_2(Al_{0.74}Ga_{0.26})_5$ at The unit-cell parameters 600°C. vary from a = 4.17494(7), c = 15.9229(4) Å, V = 240.355(8) Å³ $Dy_{0.67}Ni_2(Al_{0.31}Ga_{0.69})_5$ to a = 4.19886(9), c = 15.8614(4) Å, $V = 242.178(9) \text{ Å}^3$ $Dy_{0.67}Ni_2(Al_{0.74}Ga_{0.26})_5$. It follows that the cell volume increases when Ga atoms are replaced by Al atoms. The unit-cell parameters for the DyNi₃(Al_xGa_{1-x})₉, DyNi₃(Al_{1-x}Ga_x)₉ and Dy_{0.67}Ni₂(Al₁Ga)₅ phases are given in Fig. 4. Atomic coordinates and isotropic displacement parameters for the Dy_{0.67}Ni₂(Al,Ga)₅ phase with Sc_{0.6}Fe₂Si_{4.9}-type structure at the compositions Dy_{0.67}Ni₂(Al_{0.40}Ga_{0.60})₅, Dy_{0.67}Ni₂(Al_{0.69}Ga_{0.31})₅, and Dy_{0.67}Ni₂(Al_{0.74}Ga_{0.26})₅ are presented in Table 5. Details of the structural refinements on X-ray powder diffraction data for the DyNi₃Al_xGa_{9-x} (x = 3.375, 5.625, and 6.75) samples annealed at 600°C are given in Table 6.

The structure of the new quaternary compound $Dy_{0.67}Ni_2(Al_{0.74}Ga_{0.26})_5$ contains $Dy_{0.67}(Al_{0.74}Ga)$ layers built from Dy atoms (Wyckoff position 2c) and triangles, formed by a statistical mixture of Al and Ga

atoms (position 6h), in the ratio 2:1. As in the case of the phases with DyNi₃Al₉-type structure the occupancies of the Dy and mixed Al/Ga sites in

Wyckoff positions 2c and 6h were refined, fixing the sum of the occupancies of the Dy1 and (Al/Ga)1 atoms to 1.

Table 3 Atomic coordinates and displacement parameters for DyNi₃Ga₉, DyNi₃(Al_{0.25}Ga_{0.75})₉, and DyNi₃(Al_{0.44}Ga_{0.56})₉ (structure type DyNi₃Al₉, Pearson symbol *hR*99, space group *R*32).

Atom	Wyckoff	Atomic coordinates			Occument	$B_{\rm iso}$, Å ²
Atom	position	х	y	Z	Occupancy	Diso, A
DyNi₃Ga₉ $(a = 7.24541(11), c = 27.4342(5) \text{ Å})$						
Dy1	6 <i>c</i>	0	0	0.3332(4)	0.781(6)	0.46(9)
Dy2	3 <i>b</i>	0	0	0	0.402(4)	0.46(9)
Ni	18 <i>f</i>	0.3264(15)	0.0099(15)	0.08218(11)	1	0.64(9)
Ga1	18 <i>f</i>	0.3287(14)	0.3384(11)	0.06637(1)	1	0.75(5)
Ga2	9 <i>e</i>	0.212(2)	0	0	0.598(4)	0.75(5)
Ga3	9 <i>d</i>	0.3483(14)	0	0.5000	1	0.75(5)
Ga4	6 <i>c</i>	0	0	0.4510(4)	1	0.75(5)
Ga5	6 <i>c</i>	0	0	0.2181(5)	1	0.75(5)
Ga6	6 <i>c</i>	0	0	0.1154(5)	1	0.75(5)
Ga7	18 <i>f</i>	-0.008(8)	0.198(4)	0.3296(11)	0.219(6)	0.75(5)
		DyNi3(Al _{0.25}	(a = 7.2)	2439(1), c = 27.44	435(6) Å)	_
Dy1	6 <i>c</i>	0	0	0.3321(3)	0.783(6)	0.82(11)
Dy2	3 <i>b</i>	0	0	0	0.386(3)	0.82(11)
Ňi	18 <i>f</i>	0.32106(14)	0.0038(14)	0.0821(1)	1	1.13(9)
Ga1/Al1	18 <i>f</i>	0.3318(16)	0.3360(11)	0.0663(1)	0.830(9)/0.170(9)	1.16(9)
Ga2	9e	0.2106(18)	0	0	0.649(4)	1.10(5)
Ga3/Al3	9 <i>d</i>	0.3439(13)	0	1/2	0.891(9)/0.109(9)	1.47(12)
Ga4/Al4	6 <i>c</i>	0	0	0.4503(4)	0.614(2)/0.386(2)	0.74(5)
Ga5/Al5	6 <i>c</i>	0	0	0.2168(5)	0.583(3)/0.417(3)	0.098(4)
Al6/Ga6	6 <i>c</i>	0	0	0.1149(6)	0.725(2)/0.275(2)	2.81(5)
Ga7	18 <i>f</i>	0.006(6)	0.194(4)	0.331(1)	0.170(3)	1.10(2)
		DyNi3(Al _{0.44}	$Ga_{0.56}$)9 $a = 7.24$	4477(9), c = 27.43	508(4) Å)	_
Dy1	6 <i>c</i>	0	0	0.33193(18)	0.759(1)	0.45(6)
Dy2	3 <i>b</i>	0	0	0	0.230(7)	0.45(6)
Ni	18 <i>f</i>	0.3328(9)	0.0152(9)	0.08237(11)	1	1.32(9)
Ga1/Al1	18 <i>f</i>	0.3193(9)	0.3427(11)	0.06582(11)	0.561(2)/0.439(2)	0.43(4)
Ga2	9e	0.2042(18)	0	0	0.444(4)	0.43(4)
Ga3/Al3	9 <i>d</i>	0.3395(13)	0	1/2	0.571(9)/0.429(9)	0.43(4)
Ga4/Al4	6 <i>c</i>	0	0	0.4527(3)	0.384(2)/0.386(2)	0.43(4)
Ga5/Al5	6 <i>c</i>	0	0	0.2180(4)	0.333(10)/0.667(10)	0.43(4)
Al6/Ga6	6 <i>c</i>	0	0	0.1155(5)	0.726(10)/0.274(10)	0.43(4)
Ga7	18 <i>f</i>	0.020(4)	0.201(3)	0.3267(7)	0.166(4)	0.43(4)

Table 4 Atomic coordinates and displacement parameters for DyNi₃(Al_{0.82}Ga_{0.18})₉ (structure type DyNi₃Al₉, Pearson symbol hR99, space group R32, a = 7.2589(1), c = 27.4045(6) Å).

Atom Wyckoff position		Atomic coordinates			Occupancy	$B_{\rm iso}$, Å ²
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Occupancy	Diso, A	
Dy1	6 <i>c</i>	0	0	0.3335(7)	0.660(3)	1.18(9)
Dy2	3 <i>b</i>	0	0	0	0.578(6)	1.18(9)
Ni	18 <i>f</i>	0.319(3)	0.009(3)	0.08177(11)	1	1.30(11)
A11	18 <i>f</i>	0.342(4)	0.339(3)	0.0665(2)	1	0.04(9)
Ga2	9e	0.211(8)	0	0	0.422(6)	0.04(9)
A13	9 <i>d</i>	0.348(3)	0	0.5	1	0.04(9)
Al4	6 <i>c</i>	0	0	0.4434(9)	1	0.04(9)
A15	6 <i>c</i>	0	0	0.217(2)	1	0.04(9)
Al6	6 <i>c</i>	0	0	0.117(1)	1	0.04(9)
Ga7	18 <i>f</i>	-0.0088(11)	0.206(7)	0.335(2)	0.340(3)	0.75(5)

Table 5 Atomic coordinates and displacement parameters for $Dy_{0.67}Ni_2(Al_{0.40}Ga_{0.60})_5$, $Dy_{0.67}Ni_2(Al_{0.69}Ga_{0.31})_5$ and $Dy_{0.67}Ni_2(Al_{0.74}Ga_{0.26})_5$ (structure type $Sc_{0.6}Fe_2Si_{4.9}$, Pearson symbol hP20, space group $P6_3/mmc$).

A 4	Wyckoff	Atomic coordinates			0	D & 2		
Atom position		X	y	Z	Occupancy	$B_{\rm iso}$, Å ²		
	$\mathbf{Dy_{0.67}Ni_{2}(Al_{0.40}Ga_{0.60})_{5}} \ (a = 4.17888(7), \ c = 15.9092(3) \ \text{Å})$							
Dy1	2c	1/3	2/3	1/4	0.67	0.78(4)		
Ni	4 <i>f</i>	1/3	2/3	0.60945(8)	1	1.25(5)		
Ga1/Al1	6 <i>h</i>	0.5395(5)	0.0789(10)	1/4	0.25(2)/0.08(2)	1.31(11)		
Ga2/Al2	4 <i>f</i>	1/3	2/3	0.04615(11)	0.23(2)/0.77(2)	1.31(7)		
Ga3/Al3	4 <i>e</i>	0	0	0.13434(8)	0.891(9)/0.109(9)	1.50(5)		
	$\mathbf{Dy_{0.67}Ni_{2}(Al_{0.69}Ga_{0.31})_{5}} \ (a = 4.19379(7), \ c = 15.8701(3) \ \text{Å})$							
Dy1	2c	1/3	2/3	1/4	0.67	0.46(4)		
Ni	4 <i>f</i>	1/3	2/3	0.60972(10)	1	1.06(6)		
Ga1/Al1	6 <i>h</i>	0.5363(8)	0.0726(15)	1/4	0.18(3)/0.15(3)	1.65(17)		
Ga2/Al2	4 <i>f</i>	1/3	2/3	0.04652(19)	0.03(1)/0.97(1)	1.46(11)		
Ga3/Al3	4 <i>e</i>	0	0	0.13611(13)	0.48(2)/0.52(2)	1.61(8)		
$\mathbf{Dy_{0.67}Ni_{2}(Al_{0.74}Ga_{0.26})_{5}} \ (a = 4.19886(9), \ c = 15.8614(4) \ \text{Å})$								
Dy1	2c	1/3	2/3	1/4	0.67	0.34(8)		
Ni	4 <i>f</i>	1/3	2/3	0.61020(15)	1	0.87(9)		
All/Gal	6 <i>h</i>	0.5352(14)	0.070(3)	1/4	0.14(3)/0.19(3)	2.2(4)		
A12	4 <i>f</i>	1/3	2/3	0.0458(3)	1	0.93(15)		
Al3/Ga3	4 <i>e</i>	0	0	0.1359(2)	0.64(2)/0.36(2)	1.53(17)		

Table 6 Experimental details of the structure refinements of the DyNi₃Al_xGa_{9-x} (x = 3.375, 5.625, 6.75) samples (diffractometer STOE Stadi P, Cu $K\alpha_1$ radiation).

Sample		DyNi ₃ Al _{3.375} Ga _{5.625}	DyNi ₃ Al _{5.625} Ga _{3.375}	DyNi ₃ Al _{6.75} Ga _{2.25}			
Phase composition		$Dy_{0.67}Ni_2(Al_{0.40}Ga_{0.60})_5$	$Dy_{0.67}Ni_2(Al_{0.69}Ga_{0.31})_5$	Dy _{0.67} Ni ₂ (Al _{0.74} Ga _{0.26}) ₅			
Structure type		$Sc_{0.6}Fe_2Si_{4.9}$					
Pearson symbol		hP20					
Space group		$P6_3/mmc$					
Cell parameters:	a, Å	a = 4.17888(7),	a = 4.19379(7),	a = 4.19886(9),			
•	c, Å	c = 15.9092(3)	c = 15.8701(3)	c = 15.8614(4)			
Cell volume V , nm ³		240.602(7)	241.726(7)	242.178(9)			
Formula units per unit	$\operatorname{cell} Z$		2				
Density D_x , g/cm ³			8.803	8.419			
Preferred orientation [Preferred orientation [direction]		0.999(2) [110]	1.000(3) [110]			
θ range (°) [step]		6-110.625° [0.015]					
Number of measured i	Number of measured reflections		6976				
Number of refined par	ameters	32	26	49			
FWHM parameters:	U	0.038(1),	0.023(1),	0.024(1),			
	V	-0.014(1),	-0.011(1),	-0.013(1),			
	W	0.0118(3)	0.0108(3)	0.0116(3)			
Mixing parameter η		0.472(6)	0.434(8)	0.592(8)			
Asymmetry parameters		0.085(2)	0.091(3)	0.081(2)			
Reliability factors:	$R_{ m B},R_F$	2.77, 2.80,	4.62, 4.56,	5.92, 5.45,			
	$R_{\rm p},R_{ m wp}$	2.57, 3.27,	2.85, 3.67,	2.64, 3.38,			
	$R_{\rm exp}, \chi^2$	2.87, 1.42	3.17, 1.48	2.82, 1.47			

Conclusions

The existence of a new compound with the formula $Dy_{0.67}Ni_2(Al,Ga)_5$ was established based on X-ray powder diffraction and energy-dispersive X-ray spectroscopy. The new compound belongs to the structure type $Sc_{0.6}Fe_2Si_{4.9}$ (Pearson symbol hP20,

space group $P6_3/mmc$). The homogeneity range includes the composition range from $Dy_{0.67}Ni_2(Al_{0.31}Ga_{0.69})_5$ to $Dy_{0.67}Ni_2(Al_{0.74}Ga_{0.26})_5$ at $600^{\circ}C$. The structure of the new compound contains $Dy_{0.67}(Al,Ga)$ layers built from Dy atoms and triangles, formed by a statistical mixture of Ga and Al atoms, in the ratio 2:1.

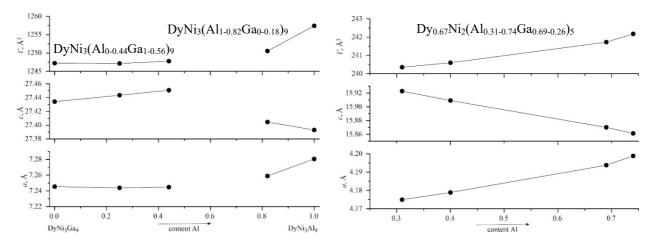


Fig. 4 Unit-cell parameters for the solid solutions DyNi₃(Al_xGa_{1-x})₉, DyNi₃(Al_{1-x}Ga_x)₉, and Dy_{0.67}Ni₂(Al_yGa)₅.

The solid solution based on the DyNi $_3$ Ga $_9$ compound in the system Dy–Ni–Al–Ga extends to the composition DyNi $_3$ (Al $_{0.44}$ Ga $_{0.56}$) $_9$ and the solubility of Ga in DyNi $_3$ Al $_9$ to the composition DyNi $_3$ (Al $_{0.82}$ Ga $_{0.18}$) $_9$.

Acknowledgement

This work was supported by the Ministry of Education and Science of Ukraine under the grant No. 0124U000989.

References

- [1] P. Villars, K. Cenzual (Eds.), *Pearson's Crystal Data Crystal Structure Database for Inorganic Compounds*, ASM International, Materials Park, OH, USA, Release 2023/24.
- [2] L.O. Vasilechko, Yu.N. Grin', *Inorg. Mater.* 32 (1996) 512-515.
- [3] R.M. Rykhal', O.S. Zarechnyuk, V.M. Mandzin, Dopov. Akad. Nauk Ukr. RSR, Ser. A 6 (1980) 77-79.

- [4] R. Gladyshevskii, K. Cenzual, H.D. Flack, E. Parthé, *Acta Crystallogr. B* 49 (1993) 468-474.
- [5] V. Topertser, N. Muts, Ya. Tokaychuk, P. Demchenko, R. Gladyshevskii, XIV Int. Conf. Crystal Chem. Intermetallic Compd., Lviv, Ukraine, September 2019, pp. 22-26.
- [6] O. Matselko, S. Pukas, Yu. Lutsyshyn, R. Gladyshevskii, D. Kaczorowski, J. Solid State Chem. 198 (2013) 50-56.
- [7] J. Rodríguez-Carvajal, Commission on Powder Diffraction (IUCr), Newsletter 26 (2001) 12-19.
- [8] E. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, R. Gladyshevskii, Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types TYPIX, Springer Verlag, Berlin, 1993, Vols. 1-4, 1596 p; electronic version 1996.
- [9] N.M. Belyaina, V.Y. Markiv, O.I. Nakonechna, F. Lozovyi, *J. Alloys Compd.* 593 (2014) 41-49.
- [10] B.Ya. Kotur, M. Bruvo, Sov. Phys. Crystallogr. 36 (1991) 787-789.