Chem. Met. Alloys 16 (2023) 26-31
Ivan Franko National University of Lviv
http://publications.lnu.edu.ua/chemetal

The ternary system Hf-Al-Sn: isothermal section of the phase diagram at 600°C and crystal structures of the compounds

Danylo MARYSKEVYCH^{1*}, Yaroslav TOKAYCHUK¹, Roman GLADYSHEVSKII¹

Received March 24, 2023; accepted June 29, 2023 https://doi.org/10.30970/cma16.0436

The isothermal section at 600°C of the phase diagram of the ternary system Hf–Al–Sn was constructed in the whole concentration range, using X-ray powder diffraction and energy-dispersive X-ray spectroscopy. A limited solid solution of inclusion type (up to 11.1 at.% Al), based on the binary compound HfsSn3, forms in the system. The crystal structure of HfsAlSn3 (boundary composition of the solid solution HfsAl_xSn3) belongs to the structure type HfsCuSn3 (Pearson symbol hP18, space group P63/mcm, a = 8.5594(15), c = 5.7996(12) Å, z = 2), which is a ternary filled-up variant of the structure type MnsSi3, to which the structure of the binary compound HfsSn3 belongs. Three ternary compounds exist at 600° C: HfAl_{2.636(2)}Sn_{0.364(2)} (structure type ht-TiAl₃, tI8, tI4/mmm, a = 3.95575(10), c = 8.9473(2) Å, z = 2), HfsAl_{2.70(4)}Sn_{0.30(4)} (MnsSi3, hP16, P63/mcm, a = 8.0910(6), c = 5.6515(4) Å, z = 2), and HfsAl_{1.33(3)-0.782(10)}Sn_{1.67(2)-2.218(10)} (NbsSiSn2, tI32, tI4/mcm, a = 10.9331(9)-11.0348(6), c = 5.5012(5)-5.5611(3) Å, z = 4). The structure of HfAl_{2.64}Sn_{0.36} is derived from the cubic close-packed structure and the coordination polyhedra are cuboctahedra.

 $Hafnium\ /\ Aluminum\ /\ Tin\ /\ X-ray\ powder\ diffraction\ /\ Phase\ diagram\ /\ Solid\ solution\ /\ Ternary\ compound\ /\ Crystal\ structure$

Introduction

The phase diagram of the ternary system Hf-Al-Sn has so far not been investigated. The formation of one ternary compound has been reported [1]: Hf₅AlSn₂ (structure type Nb₅SiSn₂, Pearson symbol tI32, space group I4/mcm) [2]. The unit-cell parameters were determined (a = 11.014, c = 5.542 Å), and the structure type was assigned, but the positional and occupancy parameters or the homogeneity range were not determined. Among related ternary systems, isothermal sections of the phase diagrams have been constructed for the systems Ti-Al-Sn (at 900°C in the region 33.3-100 at.% Ti) [3], Zr-Al-Sn (at 600°C) [4], and Hf-Ga-Sn (at 600°C) [5]. Crystallographic data for the ternary compounds that form in the ternary $\{Ti,Zr\}-Al-Sn$ and Hf–Ga–Sn summarized in Table 1. Common features for these systems are the formation of solid solutions based on the binary compounds, mainly in the transition metalrich part of the system, and the existence of ternary compounds with Nb₅SiSn₂-type structure. Limited solid solutions based on the Mn₅Si₃-type (hP16, P6₃/mcm) binary stannides Ti₅Sn₃, Zr₅Sn₃, and Hf₅Sn₃ form by different mechanisms: via partial substitution of Al atoms for Sn atoms in the Zr–Al–Sn system, or via inclusion of additional Al or Ga atoms in the systems Ti–Al–Sn and Hf–Ga–Sn. In the system Hf–Ga–Sn the inclusion-type solid solution Hf₅Ga_xSn₃ extends to the composition Hf₅GaSn₃ [5,7], which is characterized by an ordered Hf₅CuSn₃-type atom arrangement (hP18, $P6\sqrt{mcm}$).

The binary systems that delimit the ternary system Hf-Ga-Sn are known in the whole concentration range and the corresponding phase diagrams have been constructed [8,9]. Seven binary gallides were found in the system Hf-Ga. The formation and crystal structures of eight binary aluminides have been reported in the Hf-Al system and of four binary stannides in the system Hf–Sn [1]. Crystallographic data for the binary compounds formed in the systems Hf-Al and Hf-Sn are given in Table 2. The system Ga-Sn is characterized by a eutectic reaction at 228°C and 97.4 at.% Sn and the absence of binary compounds. At 600°C (temperature used in the present investigation) tin is liquid, i.e. a liquid region will exist in the Sn-rich corner of the isothermal section of the phase diagram of the system Hf-Al-Sn.

¹ Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya St. 6, 79005 Lviv, Ukraine

^{*} Corresponding author. E-mail: danylo.maryskevych@lnu.edu.ua

Table 1 Crystallographic data for ternary compounds reported in the systems {Ti,Zr}-Al-Sn and Hf-Ga-Sn.

Compound	Ctanatana tria	Pearson Space		Cell para	Reference	
Compound	Structure type	symbol	group	а	С	Reference
Ti ₅ AlSn ₂	Nb_5SiSn_2	<i>tI</i> 32	I4/mcm	10.558	5.262	[6]
$ZrAl_{2.68}Sn_{0.32}$	TiAl ₃	tI8	I4/mmm	3.98855	9.0848	[4]
$Zr_5Al_{2.71}Sn_{0.29}$	W_5Si_3	<i>tI</i> 32	I4/mcm	11.0530	5.4071	[4]
$Zr_5Al_{1.68-0.40}Sn_{1.32-2.60}$	W ₅ Si ₃ (Nb ₅ SiSn ₂)	<i>tI</i> 32	I4/mcm	11.1005-11.1829	5.4537-5.5449	[4]
$Hf_5Ga_{1.24-0.52}Sn_{1.76-2.48}$	Nb_5SiSn_2	<i>tI</i> 32	I4/mcm	10.9154-11.0203	5.51311-5.56591	[5]

Table 2 Crystallographic data for binary compounds reported in the systems Hf-Al and Hf-Sn.

Commound	Structure	Pearson	Chase group	C	Reference		
Compound	type	symbol	Space group	а	b	С	Reference
Hf ₂ Al	$CuAl_2$	<i>tI</i> 12	I4/mcm	6.776	_	5.372	[10]
stab-Hf ₅ Al ₃	Mn_5Si_3	<i>hP</i> 16	P6 ₃ /mcm	8.052	_	5.690	[11]
Hf_3Al_2	Zr_3Al_2	<i>tP</i> 20	$P4_2/mnm$	7.535	_	6.906	[12]
Hf_4Al_3	Zr_4Al_3	hP7	P6/mmm	5.343	_	5.422	[13]
HfAl	TlI	oS8	Стст	3.253	10.831	4.282	[14]
Hf_2Al_3	Zr_2Al_3	oF40	Fdd2	9.529	13.763	5.522	[15]
$HfAl_2$	$MgZn_2$	<i>hP</i> 12	P6 ₃ /mmc	5.288	_	8.739	[16]
ht-HfAl ₃	ht-TiAl ₃	<i>tI</i> 8	I4/mmm	3.893	_	8.925	[13]
rt-HfAl ₃	$ZrAl_3$	<i>tI</i> 16	I4/mmm	3.9849	_	17.1443	[17]
HfSn ₂	CrSi ₂	hP9	$P6_{2}22$	5.4816	_	7.6113	[5]
HfSn	FeSi	cP8	$P2_{1}3$	5.594	_	_	[18]
Hf_5Sn_4	Ti ₅ Ga ₄	<i>hP</i> 18	P6 ₃ /mcm	8.740	_	5.910	[19]
Hf_5Sn_3	Mn_5Si_3	<i>hP</i> 16	P6 ₃ /mcm	8.36562	_	5.70775	[5]

This work presents the results of an experimental investigation of the phase equilibria in the ternary system Hf–Al–Sn at 600°C in the whole concentration range. The crystallographic parameters for Hf₅AlSn₃, which corresponds to the limiting composition of the inclusion-type solid solution Hf₅Al_xSn₃ (x = 0-1) and for three new ternary compounds, have been derived from X-ray powder diffraction.

Experimental

12 two-component and 42 three-component alloys were synthesized by arc melting from high-purity metals $(Hf \ge 99.95 \text{ mass}\%,$ $A1 \ge 99.99 \text{ mass}\%,$ $Sn \ge 99.99 \text{ mass}\%$), using a water-cooled copper hearth and a tungsten electrode under an argon atmosphere, purified by using Ti sponges as a getter. To achieve homogeneity, the samples were melted twice. The resulting alloys were wrapped into tantalum foil to ensure their isolation, sealed in quartz ampoules under vacuum, and annealed at 600°C for 720 h. Finally, the ampoules with the samples were quenched into cold water. The weight losses, which were controlled at all stages of the synthesis, did not exceed 1 mass%.

Phase analysis and structure refinements were performed using X-ray powder diffraction data collected at room temperature on diffractometers DRON-2.0M (Fe $K\alpha$ -radiation, angular range

 $20^{\circ} \le 2\theta \le 120\text{-}140^{\circ}$, step 0.05°) and STOE Stadi P (Cu $K\alpha_1$ -radiation, angular range $6^{\circ} \le 2\theta \le 110^{\circ}$, step 0.015°). The profile and structural parameters were refined by the Rietveld method, using the program package FullProf Suite [20]. For the ternary phases, atomic coordinates reported for the structure types or for related phases were chosen as starting models for the refinement. Backgrounds were defined by a polynomial function using the Fourier filtering technique. The phase equilibria and the compositions of the individual phases were analyzed by energydispersive X-ray spectroscopy (EDX), performed on a scanning electron microscope TESCAN Vega3 LMU equipped with an energy-dispersive X-ray analyzer Oxford Instruments Aztec ONE with a detector X-Max^N20.

Results and discussion

Binary compounds

By means of X-ray diffraction, the existence and crystal structures of 9 binary compounds in the systems Hf–Al and Hf–Sn at 600°C were confirmed: Hf₂Al (structure type CuAl₂), Hf₃Al₂ (Zr₃Al₂), Hf₄Al₃ (Zr₄Al₃), HfAl (TII), Hf₂Al₃ (Zr₂Al₃), HfAl₂ (MgZn₂), rt-HfAl₃ (ZrAl₃), Hf₅Sn₃ (Mn₅Si₃), and HfSn₂ (CrSi₂). The binary aluminide stab-Zr₅Al₃ and the stannides HfSn and Hf₅Sn₄, reported in literature, were not observed under the conditions applied here.

Isothermal section of the phase diagram of the ternary system Hf–Al–Sn at 600°C

The isothermal section of the phase diagram of the ternary system Hf–Al–Sn at 600° C is shown in Fig. 1. It contains 15 single-phase, 30 two-phase, and 16 three-phase fields. The largest number of equilibria (6) form the solid solution Hf₅Al_xSn₃ (x = 0-1). At 600° C, Sn and the alloys of the binary system Al–Sn (up to 80 at.% Al) are liquid. The boundary of the liquid phase in the ternary system was extrapolated from its limits in the binary systems: 3.0 at.% Hf in the system Hf–Sn and 20 at.% Sn in the system Al–Sn. Three phases, Al, HfSn₂, and HfAl_{2.64}Sn_{0.36}, are in equilibrium with the liquid phase at 600° C.

The binary compounds dissolve less than 1 at.% of the third component, except Hf_5Sn_3 (structure type Mn_5Si_3), which dissolves 11.1 at.% Al, forming a solid solution of inclusion type. Three ternary compounds exist in the system Hf_-Al_-Sn at $600^{\circ}C$: $HfAl_{2.64}Sn_{0.36}$ and $Hf_5Al_{2.70}Sn_{0.30}$ have narrow homogeneity ranges, whereas the compound $Hf_5Al_{1.33-0.78}Sn_{1.67-2.22}$ has

a homogeneity range of 6.9 at.% Al(Sn) at a constant Hf content of 62.5 at.%.

The crystal structure at the limiting composition of the solid solution $Hf_5Al_xSn_3$ (x=0-1) was refined by the Rietveld method using a diffraction pattern collected on the DRON-2.0M diffractometer. Atom coordinates and isotropic displacement parameters for Hf_5AlSn_3 are listed in Table 3. The structure belongs to the structure type Hf_5CuSn_3 (hP18, $P6_3/mcm$, a=8.5594(15), c=5.7996(12) Å), which represents a ternary filled variant of the structure type Mn_5Si_3 , to which the structure of the binary stannide Hf_5Sn_3 belongs.

The Al atoms in the structure of Hf_5AlSn_3 occupy the site at the origin of the unit cell, filling Hf_6 octahedra that are empty in the structure of the binary compound Hf_5Sn_3 . The structure is similar to the earlier reported structures of the ternary phases Zr_5AlSn_3 [4] and Hf_5GaSn_3 [7] and can be described as a 3D-framework of $AlHf_6$ and $HfSn_6$ octahedra, in a similar way as already done for Zr_5AlGe_3 [21].

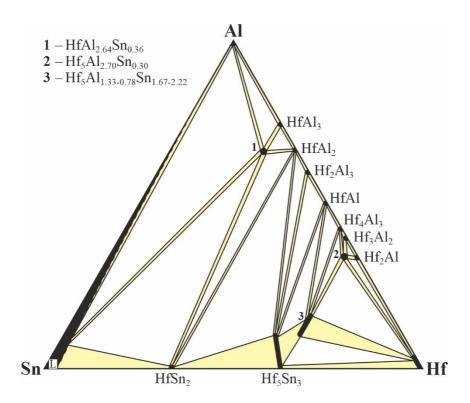
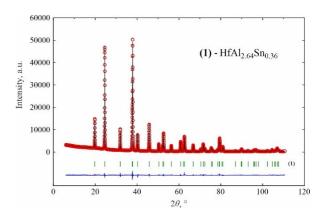


Fig. 1 Isothermal section of the phase diagram of the ternary system Hf–Al–Sn at 600°C.

Table 3 Atom coordinates and isotropic displacement parameters for Hf₅AlSn₃ (Hf₅CuSn₃, hP18, $P6_3/mcm$, a = 8.5594(15), c = 5.7996(12) Å, $R_B = 0.0546$).

Site	Wyckoff position	х	y	Z	$B_{\rm iso}$, Å ²
Hf1	6g	0.2706(6)	0	1/4	0.42(7)
Hf2	4d	1/3	2/3	0	0.51(7)
Al	2b	0	0	0	1.02(12)
Sn	6g	0.6119(8)	0	1/4	0.68(8)


Crystal structures of the ternary compounds

According to the X-ray diffraction phase analysis, substitution of Sn atoms for Al atoms in the ZrAl₃-type binary aluminide HfAl₃ led to the formation of the ternary compound HfAl_{2.64}Sn_{0.36} with ht-TiAl₃-type structure. We may assume that the ternary phase HfAl_{2.64}Sn_{0.36}, observed at 600°C, is an extension of the high-temperature modification of the binary compound HfAl₃, stabilized by Sn atoms at lower temperatures. The crystallographic parameters of the ternary phase were refined by the Rietveld method, using X-ray powder diffraction pattern of a single-phase alloy of nominal composition Hf25Al66Sn9, collected on the powder diffractometer STOE Stadi P (Fig. 2). The atom coordinates in the structure of the related ternary compound ZrAl_{2.68}Sn_{0.32} [4] were used as starting model for the refinement. Experimental details and crystallographic data for HfAl_{2.64}Sn_{0.36} are listed in Table 4. Atom coordinates and isotropic displacement parameters are given in Table 5.

The crystal structure of the ternary compound $HfAl_{2.636(2)}Sn_{0.364(2)}$ belongs to the tetragonal structure type ht-TiAl₃ (tI8, I4/mmm, a = 3.95575(10), c = 8.9473(2) Å) and contains three sites in special Wyckoff positions: 2a and 2b are occupied exclusively by Hf and Al atoms, respectively, and position 4d is occupied by a statistical mixture of Al and Sn atoms. Alternative refinements confirmed that the substitution of Sn atoms for Al atoms in the structure of ht-HfAl₃ occurs on only one crystallographic site. Similar structural features were observed in the structure of ZrAl_{2.68}Sn_{0.32} [4]. Complete ordering of Al and Sn atoms in the Wyckoff positions 2b and 4d would lead to the composition HfAl₂Sn and the structure type

UCuAl₂, which is a ternary ordered variant of the structure type ht-TiAl₃.

At 600°C the ternary phase HfAl_{2.64}Sn_{0.36} is a distinct ternary compound forming an equilibrium with the ZrAl₃-type binary compound rt-HfAl₃. Constant unit-cell parameters in different multiphase samples indicate the absence of significant solubility of Sn in the binary aluminide rt-HfAl₃ and a near to point composition for the ternary compound at 600°C. The composition of the latter determined by EDX analysis (Hf_{1.00(2)}Al_{2.64(2)}Sn_{0.36(2)}) is in excellent agreement with the composition derived from the Rietveld refinement.

Fig. 2 Experimental (circles), calculated (continuous line) and difference between experimental and calculated (bottom) X-ray powder diffraction patterns of the sample $Hf_{25}Al_{66}Sn_9$ (radiation $Cu\ K\alpha_1$). Vertical bars indicate the positions of reflections for $HfAl_{2.64}Sn_{0.36}$.

Table 4 Experimental details and crystallographic data for HfAl_{2.64}Sn_{0.36}.

Refined composition	HfAl _{2.636(2)} Sn _{0.364(2)}
Structure type	TiAl ₃
Pearson symbol	tI8
Space group	I4/mmm
Unit-cell parameters a, c, Å	3.95575(10), 8.9473(2)
Cell volume V , $Å^3$	140.008(6)
Formula units per cell Z	2
Density D_X , g cm ⁻³	6.603
Preferred orientation: value / [direction]	0.903(2) / [110]
Reliability factor $R_{\rm B}$	0.0201
Profile parameters U, V, W	0.195(4), -0.034(3), 0.0171(6)
Shape parameter	0.524(4)
Asymmetry parameters	0.059(2), 0.0004(7)
Reliability factors $R_{\rm p}$, $R_{\rm wp}$, γ^2	0.0421, 0.0601, 1.31

Table 5 Atom coordinates, site occupancies and isotropic displacement parameters for HfAl_{2.636(2)}Sn_{0.364(2)} (TiAl₃, tI8, tI4/mmm, a = 3.95575(10), c = 8.9473(2) Å).

Site	Wyckoff position	х	у	Z	$B_{\rm iso}$, Å ²
Hf	2 <i>a</i>	0	0	0	0.601(10)
Al	2b	0	0	1/2	1.17(9)
M (0.818(1)Al+0.182(1)Sn)	4 <i>d</i>	0	1/2	1/4	0.97(4)

The tetragonal structure types ht-TiAl₃, UCuAl₂, and ZrAl₃ are built from close-packed layers in *c* stacking and are consequently substitution derivatives of the parent f.c.c. type Cu (*cF*4, *Fm*-3*m*). The coordination polyhedra of all the atoms in these structures are cuboctahedra. Ternary compounds with ht-TiAl₃-type structure, ZrAl_{2.52}Ge_{0.48} and HfAl_{2.40}Ge_{0.60}, also exist in the related systems {Zr,Hf}-Al-Ge [17].

Two ternary compounds exist at 62.5 at.% of Hf in the system Hf–Al–Sn at 600°C: a new ternary compound Hf₅Al_{2.70}Sn_{0.30} with a point composition, and the compound Hf₅Al_{1.33-0.78}Sn_{1.67-2.22} with a homogeneity region of 6.9 at.% of Al(Sn), which includes the composition Hf₅AlSn₂ reported in [2]. The crystal structures of these compounds were determined by means of X-ray powder diffraction using experimental patterns (diffractometer DRON-2.0M) collected from the multiphase samples Hf_{62.5}Al_{34.5}Sn₃ and Hf_{62.5}Al₉Sn_{32.5}.

The sample Hf_{62.5}Al_{34.5}Sn₃ contained three phases: the ternary compound Hf₅Al_{2.70}Sn_{0.30} (69 mass%) and the binary aluminides Hf₃Al₂ (17 mass%) and Zr₂Al (14 mass%). The crystal structure of the ternary compound Hf₅Al_{2.70(4)}Sn_{0.30(4)} belongs to the hexagonal structure type Mn₅Si₃, which is characterized by three sites (Table 6). Two sites, in Wyckoff positions 6g and 4d, are occupied by Hf atoms and the third site (6g) by a statistical mixture of Al and Sn atoms. The coordination polyhedra of the atoms in the structure of the ternary compound Hf₅Al_{2.70}Sn_{0.30} are typical for Mn₅Si₃-type phases: 15-vertex polyhedra, which can be described as pentagonal prisms with five additional atoms, for the site Hf1, 14-vertex Frank-Kasper polyhedra for Hf2, and defect icosahedra around the atoms of p-block elements. The composition of the ternary phase as determined by EDX analysis $(Hf_{4.99(3)}Al_{2.69(3)}Sn_{0.32(5)})$ agrees with the composition derived from the Rietveld refinement. The compound synthesized here can correspond to the phase stab-Hf₅Al₃ with Mn₅Si₃-type structure, which does not exist in the binary system at 600°C, but can form when stabilized by admixtures.

The sample Hf_{62.5}Al₉Sn_{32.5} contained two phases: the ternary phase Hf₅Al_{0.78}Sn_{2.22}, which corresponds to the Sn-rich border of the homogeneity region of $Hf_5Al_{1.33-0.78}Sn_{1.67-2.22}$ (89 mass%) and the binary stannide Hf₅Sn₃ (11 mass%). The crystal structure of the ternary phase $Hf_5Al_{0.782(10)}Sn_{2.218(10)}$ belongs tetragonal structure type Nb₅SiSn₂ which is a ternary ordered variant of the binary structure type W₅Si₃. The structure is characterized four crystallographic sites (Table 6): the sites in Wyckoff positions 16k and 4bare occupied by Hf atoms, position 8h by Sn atoms, and position 4a by a statistical mixture of Al and Sn atoms.

The polyhedra around the atoms in the structure of this ternary phase are typical for Nb_5SiSn_2 -type compounds: 15- and 14-vertex Frank-Kasper polyhedra around sites Hf1 and Hf2, respectively, defect icosahedra around the Sn atoms in the position 8h, and square antiprisms with two additional atoms around the p-block element atoms in position 4a.

The homogeneity range of the tetragonal phase as determined by EDX analysis, $Hf_{5.01(3)}Al_{1.33(3)}Sn_{1.67(2)}$ - $Hf_{5.00(3)}Al_{0.78(2)}Sn_{2.22(2)}$, agrees with the results of the X-ray phase analysis and the Rietveld refinements. Within the homogeneity range the unit-cell parameters increase with increasing Sn content: a = 10.9331(9)-11.0348(6), c = 5.5012(5)-5.5611(3) Å.

The isothermal section of the phase diagram of the ternary system Hf–Al–Sn at 600° C determined here, shows similar features with the earlier reported related systems {Ti,Zr,Hf}–{Al,Ga}–{Si,Ge,Sn,Sb}. Typical for the systems with Al is the existence of binary and ternary compounds with close-packed structures (structure types ht-TiAl₃ and ZrAl₃) along the isoconcentrates 25 at.% Hf at high Al content [1]. The existence of a ternary phase with Nb₅SiSn₂-type structure in the system Hf–Al–Sn makes this system similar to the systems {Ti,Zr}–Al–Sn and Hf–Ga–Sn. A peculiarity of the system investigated here is the formation of the inclusion-type solid solution Hf₅Al_xSn₃ (x = 0-1).

Table 6	Crystallographic	parameters,	atom	coordinates,	site	occupancies	and	isotropic	displacement
paramete	ers for the ternary	compounds H	$f_5Al_{2.70}$	$_{0(4)}Sn_{0.30(4)}$ and	Hf_5A	$Al_{0.782(10)}Sn_{2.218}$	s(10)·		

Site	Wyckoff position	x	у	z	$B_{ m iso}, { m \AA}^2$			
$Hf_5Al_{2.70(4)}Sn_{0.30(4)}$ (Mn_5Si_3 , $hP16$, $P6_3/mcm$, $a = 8.0910(6)$, $c = 5.6515(4)$ Å, $Z = 2$, $R_B = 0.0753$)								
Hf1	6g	0.2421(5)	0	1/4	0.53(6)			
Hf2	4d	1/3	2/3	0	0.60(6)			
M (0.899(13)Al+0.101(13)Sn)	6g	0.6148	0	1/4	1.1(2)			
$Hf_5Al_{0.782(10)}Sn_{2.218(10)}$ (Nb ₅ SiSn ₂ , tI32, I4	4/mcm, a = 11.03	48(6), c = 5.5611	(3) Å, $Z = 4$, $R_B =$	= 0.0704)			
Hf1	16 <i>k</i>	0.0791(4)	0.2226(4)	0	0.55(9)			
Hf2	4 <i>b</i>	0	1/2	1/4	0.58(10)			
Sn	8 <i>h</i>	0.1667(6)	0.6667(6)	1/4	0.89(6)			
0.782(10)A1 + 0.218(10)Sn	4 <i>a</i>	0	0	1/4	0.98(7)			

A similar solid solution has been reported for the system Hf-Ga-Sn [5]. Ternary phases with Hf₅CuSn₃type structure also exist in other related systems with Zr: Zr₅AlGe₃ [21] as a ternary compound and Zr₅AlSn₃ as the boundary composition of a substitution-type solid solution Zr₅Al_xSn_{4-x} [4]. Increasing the Zr or Hf content in the compounds (decrease of the p-block element content) changes the coordination environments of the p-block element atoms: from cuboctahedral (25 at.% Zr(Hf)) to trigonal-prismatic and octahedral (55.5 at.% Zr(Hf)), and squareantiprismatic and icosahedral (62.5 at.% Zr(Hf)).

Conclusions

The isothermal section of the phase diagram of the ternary system Hf–Al–Sn at 600° C is characterized by the existence of a limited inclusion-type solid solution based on the binary compound Hf₅Sn₃ (up to 11.1 at.% Al) and three ternary compounds, HfAl_{2.64}Sn_{0.36} (structure type TiAl₃), Hf₅Al_{2.70}Sn_{0.30} (Mn₅Si₃), and Hf₅Al_{1.33-0.78}Sn_{1.67-2.22} (Nb₅SiSn₂). The structure type TiAl₃ (HfAl_{2.64}Sn_{0.36}) is a member of the family of cubic close-packed structures.

Acknowledgement

This work was carried out under the grant of the Ministry of Education and Science of Ukraine No. 0121U109766.

References

- [1] P. Villars, K. Cenzual (Eds.), *Pearson's Crystal Data Crystal Structure Database for Inorganic Compounds*, ASM International, Materials Park, OH, USA, Release 2022/23.
- [2] M.A. Pietzka, J.C. Schuster, J. Alloys Compd. 230 (1995) L10-L12. https://doi.org/10.1016/0925-8388(95)02043-8
- [3] M.A. Piezka. U. Gruber, J.C. Schuster. J. Phys. IV, Coll. C7, Suppl. J. Phys. III. 3 (1993) 473-476.
- [4] D. Maryskevych, Ya. Tokaychuk, R. Gladyshevskii, *Chem. Met. Alloys* 15 (2022) 1-7.
 - https://doi.org/10.30970/cma15.0421
- [5] I. Voznyak, Ya. Tokaychuk, R. Gladyshevskii, *Chem. Met. Alloys.* 4 (2011) 175-187. https://doi.org/10.30970/cma4.0200
- [6] J. Wu, B. Liu, Y. Cui, H. Wang, Z. Wang, Z. Ren, G. Cao, Supercond. Sci. Technol. 32 (2019) 045010.
 - https://doi.org/10.1088/1361-6668/ab0453

- [7] I. Voznyak, Ya. Tokaychuk, V. Hlukhyy, T.F. Fässler, R. Gladyshevskii, *J. Alloys Compd.* 512 (2012) 246-251.
 - https://doi.org/10.1016/j.jallcom.2011.09.075
- [8] T.B. Massalski (Ed.), *Binary Alloy Phase Diagrams*, ASM International, OH, 1990.
- [9] P. Villars, H. Okamoto, K. Cenzual (Eds.), ASM Alloy Phase Diagram Database. Release 2006/2022, ASM International.
- [10] H. Nowotny, O. Schob, F. Benesovsky, *Monatsh. Chem.* 92 (1961) 1300-1303. https://doi.org/10.1007/BF00915000
- [11] H. Boller, H. Nowotny, A. Wittmann, *Monatsh. Chem.* 91 (1960) 1174-1184. https://doi.org/10.1007/BF00899845
- [12] L.E. Edshammar, *Acta Chem. Scand.* 14 (1960) 1220. https://doi.org/10.3891/acta.chem.scand.14-1219
- [13] K. Schubert, T.R. Anantharaman, H.O.K. Ata, H.G. Meissner, M. Pötzschke, W. Rossteutscher, E. Stolz, *Naturwissenschaften* 47 (1960) 512. https://doi.org/10.1007/BF00641115
- [14] L.E. Edshammar, Acta Chem. Scand. 15 (1961) 403-406. https://doi.org/10.3891/acta.chem.scand.15-0403
- [15] L.E. Edshammar, *Acta Chem. Scand.* 14 (1960) 2244.
 - https://doi.org/10.3891/acta.chem.scand.14-2244
- [16] L.E. Edshammar, S. Andersson, *Acta Chem. Scand.* 14 (1960) 223-224. https://doi.org/10.3891/acta.chem.scand.14-0223
- [17] D. Maryskevych, Ya. Tokaychuk, R. Gladyshevskii, Solid State Phenom. 289 (2019) 71-76. https://doi.org/10.4028/www.scientific.net/SSP.2 89.71
- [18] O. Schob, E. Parthé, Acta Crystallogr. 17 (1964) 452-453. https://doi.org/10.4028/www.scientific.net/SSP.2 89.71
- [19] K. Schubert, H.G. Meissner, M. Pötzschke, W. Rossteutscher, E. Stolz, Naturwissenschaften 49 (1962) 57. https://doi.org/10.4028/www.scientific.net/SSP.2
- [20] J. Rodríguez-Carvajal, Commission on Powder Diffraction (IUCr), Newsletter 26 (2001) 12-19.
- [21] D. Maryskevych, Ya. Tokaychuk, Yu. Prots, L. Akselrud, R. Gladyshevskii, *Chem. Met. Alloys* 12 (2019) 39-43. https://doi.org/10.30970/cma12.039