Chemistry of Metals and Alloys

Chem. Met. Alloys 16 (2023) 14-21Ivan Franko National University of Lvivhttp://publications.lnu.edu.ua/chemetal

The SrO-Pr₂O₃-CoO system

Oksana ZAREMBA^{1*}, Myroslava KURYLAS¹, Roman GLADYSHEVSKII¹

- ¹ Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya St. 6, 79005 Lviv, Ukraine
- * Corresponding author. E-mail: oksana.zaremba@lnu.edu.com

Received March 15, 2023; accepted June 29, 2023 https://doi.org/10.30970/cma16.0434

The phase diagram of the SrO-Pr₂O₃-CoO system was constructed based on the results of X-ray diffraction of polycrystalline samples synthesized by solid-state reaction. Under the conditions of the experiment, the isothermal section contains 9 one-phase, 17 two-phase, and 9 three-phase regions. The formation of three substitutional solid solutions with extended homogeneity ranges was observed: Sr_{1-x}Pr_xCoO₃ with cubic perovskite-type structure (CaTiO₃, Pearson symbol *cP*5, space group *Pm*-3*m*), Pr_{1-x}Sr_xCoO₃ with orthorhombic perovskite-type structure (GdFeO₃, Pearson symbol *oP*20, space group *Pnma*), and Sr_{2-x}Pr_xCoO₄ (tetragonal Ruddlesden-Popper-type structure K₂NiF₄, Pearson symbol *tI*14, space group *I4/mmm*). The character of the interaction of the components in the SrO-Pr₂O₃-CoO system is similar to that observed in the related system SrO-Nd₂O₃-CoO.

Oxides / Solid-state synthesis / X-ray diffraction / Phase diagram / Crystal structure

Introduction

Studies of A–R–T–O systems containing an alkaline-earth (A), a rare-earth (R), and a transition metal (T), and oxygen, are relevant due to the formation of compounds that (despite rather simple crystal structures) exhibit a wide range of attractive electrical and magnetic characteristics and are promising materials for practical applications [1-3]. Analysis of literature data on four-component compounds in the SrO– R_2 O₃–CoO systems indicated the formation of Sr_{1-x} R_x CoO₃ phases for all of the rare-earth metals, except Pm and Lu [4]. However, the phases differ in terms of crystal structure and Sr/R ratio, which was a motivation for a more detailed study.

Numerous phases with 1:1:3 stoichiometry belong to the perovskite family. The aristotype of this broad structure family is the cubic CaTiO₃ type. In the literature this structure is often called cubic or ideal (undeformed) perovskite [5,6], since the mineral itself has a distorted structure. Ideal perovskite consists of a three-dimensional framework of regular [TiO₆] octahedra connected by vertices; the calcium atoms are placed in the cuboctahedral voids formed between the octahedra (Fig. 1). The ideal cubic structure has a number of derivatives that are produced by deformation of the structure and, accordingly, are

characterized by lower symmetry. One of the most common derivatives is the GdFeO₃ type, which is orthorhombic [7] (Fig. 2). It arises due to mismatch between the size of the (A,R) atoms and the size of the cuboctahedral void (the A,R atoms are too small). Thanks to the deformation, the coordination polyhedron around the (A,R) atom transforms from a cuboctohedron (coordination number CN = 12) to a square antiprism (CN = 8), while the coordination polyhedron around the T atom remains an octahedron [TO_6].

In the SrO– R_2 O₃–CoO systems the formation of a Sr_{2-x} R_x CoO₄ substitutional solid solutions with a tetragonal Ruddlesden-Popper-type structure K₂NiF₄ has also been observed [8]. For the large atoms (K) the coordination environment can be described as a one-capped square antiprism (or three-capped trigonal prism) of fluorine atoms [KF₉], while for the smaller cations (Ni) the coordination polyhedron is an octahedron [NiF₆] (Fig. 3).

A literature search showed that phase diagrams have been constructed only for the $SrO-R_2O_3-CoO$ systems where R is La, Nd, Sm, and Gd [9]. The aim of the present work was to establish the existence of four-component phases in the $SrO-Pr_2O_3-CoO$ system, to study their crystal structures and to build the corresponding phase equilibria.

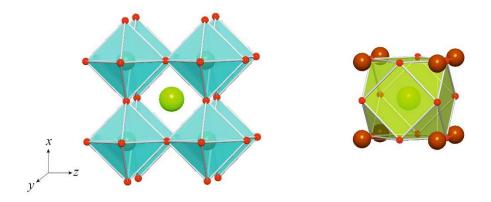


Fig. 1 The structure type $CaTiO_3$ and coordination polyhedra around Ca (cuboctahedron) and Ti (octahedron) atoms.

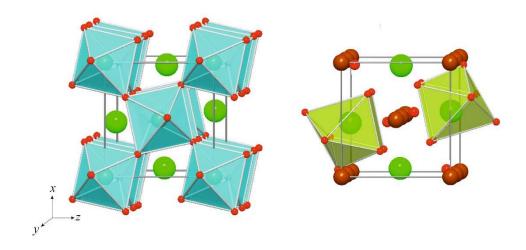


Fig. 2 The structure type $GdFeO_3$ and coordination polyhedra around Gd (tetragonal antiprism) and Fe (octahedron) atoms.

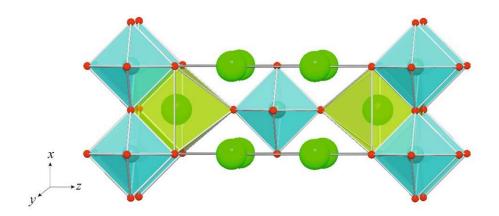


Fig. 3 The structure type K_2NiF_4 and coordination polyhedra around K (one-capped square antiprism) and Ni (octahedron) atoms.

Experimental details

The synthesis of polycrystalline samples was carried out by solid-state reaction in two stages. High-purity powders of strontium and cobalt carbonates and rare-earth metal oxides were used as reagents. Firstly, the initial components were weighed, mixed and ground in an agate mortar for 5 min manually. Then, the homogeneous mixtures were heated in corundum crucibles for 24 h at 1000°C under air in a muffle furnace, in order to decompose the carbonates. The degree of decomposition was monitored by weighing the mixtures before and after heating (more than 99 mass %). Finally, the obtained mixtures were ground again, pressed into pellets (the weight of a pellet was ~ 0.5 g) and sintered under air for 8 h at 1200°C in a tube furnace. The change in color of the pellets after sintering (compared to the mixtures of the starting materials), as well as the hardness and brittleness of the samples after sintering, indicated that solid-phase reactions had occurred. X-ray powder diffraction data for phase and structural analyses were collected on a DRON-2.0 M diffractometer (Fe $K\alpha$ radiation, 2θ range $20-80^{\circ}$). The structures were refined by the Rietveld method (DBWS program [10]). The refinements, which included refinement of the cell parameters, atomic coordinates and site occupancies, were evaluated by the Bragg reliability factor $R_{\rm B}$.

Results and discussion

The investigation was started from the synthesis and analysis of polycrystalline samples with the nominal composition $Sr_{0.5}R_{0.5}CoO_3$, where R is a rare-earth metal, in order to establish the existence of four-component perovskites in the SrO-R₂O₃-CoO systems. The results of the phase analysis based on X-ray powder diffraction are presented in Table 1. It was revealed that perovskite phases of approximate composition Sr_{0.5}R_{0.5}CoO₃ form in the systems where R = Pr, Nd, Sm, Eu, Gd, and Tb. No deviation from the ideal cubic perovskite type (CaTiO₃, Pearson symbol cP5, space group Pm-3m) was detected. The refined compositions and cell parameters of these phases are given in Table 2. The cell parameters decrease when going from Pr to Tb, but the change is not linear, which is due to the different Sr/R ratios in the phases.

The samples of composition $Sr_{0.5}R_{0.5}CoO_3$ where R is Dy, Ho, Er, Tm, Yb, or Lu, turned out to be three-phase, containing in equilibrium R_2O_3 , CoO, and a quaternary phase with cubic perovskite-type structure (CaTiO₃), which can be assumed to be the limiting composition of a solid solution based on cubic $SrCoO_3$ ([4]). The cell parameters of the perovskite phase increase when going from Dy to Lu, which is caused by a gradual change in the Sr/R ratio (Table 3).

To study the interaction of the components in the SrO-Pr₂O₃-CoO system, 24 four-component polycrystalline samples were synthesized investigated. The phase analysis based X-ray diffraction (Table 4), showed that the initial Pr₂O₃ reagent was oxidized to Pr₇O₁₂, while the SrO phase was mainly observed in the form of Sr(OH)₂(H₂O) hydrate. The phase diagram of the SrO-Pr₂O₃-CoO system, obtained under the conditions of our study, is presented in Fig. 4. As can be seen from the figure, 9 single-phase, 17 two-phase, and 9 three-phase regions exist. We did not observe a two-phase region between two perovskite phases along the isoconcentrate of 50 mol.% (dashed lines), composition-induced but a polymorphic transformation from the CaTiO₃- to the orthorhombic GdFeO₃-type structure takes place when increasing the Pr content. It may be noted that the character of the interaction of the components in the SrO-Pr₂O₃-CoO system (studied at 1200°C) is very similar to that earlier system observed for the SrO-Nd₂O₃-CoO (isothermal section constructed at 1100°C [9]). In the boundary SrO-Pr₂O₃ system we confirmed the formation of a single compound, Sr₂PrO₄, which crystallizes with own structure type and has the following crystallographic characteristics: group Pbam, Pearson symbol *oP*14, space a = 0.6125(1), b = 1.0287(1), c = 0.3591(1) nm.The compound PrCoO₃ with GdFeO₃-type structure was observed in the boundary Pr₂O₃-CoO system: symbol oP20, space group Pnma, Pearson a = 0.5390(2), b = 0.7599(3), c = 0.5359(2) nm.Two compounds were confirmed in the boundary SrO-CoO system: Sr₆Co₅O₁₅ (Ba₆Ni₅O₁₅-type structure, Pearson symbol hR78, space group R32, a =0.9431(3), c = 1.2660(5) nm) and $Sr_3Co_2O_6$ (own structure type, Pearson symbol oI68, space group *Immm*, a = 0.3827(1), b = 1.1463(2), c = 2.0074(3) nm), however, we did not observe any compound at the composition SrCoO₃ under the conditions used here. In the SrO-Pr₂O₃-CoO system the formation of three substitutional solid solutions characterized by extended homogeneity ranges, was revealed: Sr_{1-x}Pr_xCoO₃ with the cubic perovskite structure type CaTiO₃ (Pearson symbol cP5, space group Pm-3m), Pr_{1-x}Sr_xCoO₃ with the orthorhombic perovskite structure type GdFeO₃ (Pearson symbol oP20, space group Pnma), and Sr_{2-x}Pr_xCoO₄ with the structure type K₂NiF₄ (Pearson symbol t114, space group 14/mmm). Refined cell parameters within the solid solutions are presented in Tables 5-7. For both four-component phases with CaTiO₃- and GdFeO₃-type structures, there is a tendency to an increase of the cell volume with increasing strontium content. For the phase with the structure type K₂NiF₄ a decrease of the *a*-parameter and an increase of the c-parameter was observed under similar conditions. The diffraction patterns of singlephase samples within the solid solutions are shown in Figs. 5-7.

Table 1 Results of the phase analysis of polycrystalline samples with nominal composition $Sr_{0.5}R_{0.5}CoO_3$.

No	Nominal	Phase	Structure	Pearson	Space	Content,
INO	composition	composition	type	symbol	group	mass %
1	$Sr_{0.5}Pr_{0.5}CoO_3$	Sr _{0.5} Pr _{0.5} CoO ₃	CaTiO ₃	cP5	Pm-3m	100
2	$Sr_{0.5}Nd_{0.5}CoO_3$	Sr _{0.5} Nd _{0.5} CoO ₃	CaTiO ₃	cP5	Pm-3m	100
3	$Sr_{0.5}Sm_{0.5}CoO_3$	Sr _{0.5} Sm _{0.5} CoO ₃	CaTiO ₃	cP5	Pm-3m	100
4	Sr _{0.5} Eu _{0.5} CoO ₃	Sr _{0.5} Eu _{0.5} CoO ₃	CaTiO ₃	cP5	Pm-3m	94.1
4		CoO	NaCl	cF8	Fm-3m	5.9
5	C* C4 C°O	Sr _{0.5} Gd _{0.5} CoO ₃	CaTiO ₃	cP5	Pm-3m	93.0
3	$Sr_{0.5}Gd_{0.5}CoO_3$	SrCoO ₃	SrZrO ₃	<i>tI</i> 20	I4/mcm	7.0
-	C., Tl. C.O.	Sr _{0.5} Tb _{0.5} CoO ₃	CaTiO ₃	cP5	Pm-3m	92.3
6	$Sr_{0.5}Tb_{0.5}CoO_3$	Tb ₂ O ₃	$(Mn_{0.5}Fe_{0.5})_2O_3$	cI80	Ia-3	7.7
7	Sr _{0.5} Dy _{0.5} CoO ₃	Sr _{1-x} Dy _x CoO ₃	CaTiO ₃	cP5	Pm-3m	72.0
		Dy ₂ O ₃	$(Mn_{0.5}Fe_{0.5})_2O_3$	cI80	Ia-3	20.0
		CoO	NaCl	cF8	Fm-3m	8.0
	Sr _{0.5} Ho _{0.5} CoO ₃	Sr _{1-x} Ho _x CoO ₃	CaTiO ₃	cP5	Pm-3m	65.5
8		Ho ₂ O ₃	$(Mn_{0.5}Fe_{0.5})_2O_3$	cI80	Ia-3	24.2
		CoO	NaCl	cF8	Fm-3m	10.3
	Sr _{0.5} Er _{0.5} CoO ₃	$Sr_{1-x}Er_xCoO_3$	CaTiO ₃	cP5	Pm-3m	59.2
9		Er_2O_3	$(Mn_{0.5}Fe_{0.5})_2O_3$	cI80	Ia-3	29.6
		CoO	NaCl	cF8	Fm-3m	11.2
	Sr _{0.5} Tm _{0.5} CoO ₃	$Sr_{1-x}Tm_xCoO_3$	CaTiO ₃	cP5	Pm-3m	53.6
10		Tm_2O_3	$(Mn_{0.5}Fe_{0.5})_2O_3$	cI80	Ia-3	34.0
		CoO	NaCl	cF8	Fm-3m	12.4
	Sr _{0.5} Yb _{0.5} CoO ₃	$Sr_{1-x}Yb_xCoO_3$	CaTiO ₃	cP5	Pm-3m	53.3
11		Yb ₂ O ₃	$(Mn_{0.5}Fe_{0.5})_2O_3$	cI80	Ia-3	32.8
		CoO	NaCl	cF8	Fm-3m	13.9
	Sr _{0.5} Lu _{0.5} CoO ₃	Sr _{1-x} Lu _x CoO ₃	CaTiO ₃	cP5	Pm-3m	57.3
12		Lu ₂ O ₃	$(Mn_{0.5}Fe_{0.5})_2O_3$	cI80	Ia-3	28.2
Ì		CoO	NaCl	cF8	Fm-3m	14.5

Table 2 Refined composition and cell parameters of $Sr_{0.5}R_{0.5}CoO_3$ perovskites (CaTiO₃ structure type, Pearson symbol cP5, space group Pm-3m).

No	Composition	a, nm	$R_{ m B}$
1	$Sr_{0.54(3)}Pr_{0.46(3)}CoO_3$	0.38249(6)	0.099
2	$Sr_{0.39(3)}Nd_{0.61(3)}CoO_3$	0.38177(5)	0.073
3	$Sr_{0.44(2)}Sm_{0.56(2)}CoO_3$	0.38072(3)	0.055
4	$Sr_{0.59(2)}Eu_{0.41(2)}CoO_3$	0.38115(5)	0.065
5	$Sr_{0.55(2)}Gd_{0.45(2)}CoO_3$	0.38005(4)	0.084
6	$Sr_{0.52(2)}Tb_{0.48(2)}CoO_3$	0.38030(5)	0.064

Table 3 Refined composition and cell parameters at the R-rich boundary of cubic perovskite-type solid solutions (CaTiO₃ structure type, Pearson symbol cP5, space group Pm-3m).

No	Composition	a, nm	$R_{ m B}$
1	$Sr_{0.61(2)}Dy_{0.39(2)}CoO_3$	0.38156(3)	0.061
2	$Sr_{0.69(2)}Ho_{0.31(2)}CoO_3$	0.38203(4)	0.062
3	$Sr_{0.74(2)}Er_{0.26(2)}CoO_3$	0.38308(3)	0.066
4	$Sr_{0.81(2)}Tm_{0.19(2)}CoO_3$	0.38381(2)	0.065
5	$Sr_{0.86(2)}Yb_{0.14(2)}CoO_3$	0.38420(2)	0.052
6	$Sr_{0.88(2)}Lu_{0.12(2)}CoO_3$	0.38476(3)	0.057

Table 4 Phase analysis of polycrystalline samples of the SrO–Pr₂O₃–CoO system.

No	Nominal composition (SrO:1/2Pr ₂ O ₃ :CoO), mol. %	Phase composition	Structure type	Pearson symbol	Space group	Content, mass %
1	10.20.60	$Pr_{1-x}Sr_xCoO_3$	GdFeO ₃	oP20	Pnma	84.1
1	10:30:60	CoO	NaCl	cF8	Fm-3m	15.9
2	20.20.60	Sr _{1-x} Pr _x CoO ₃	CaTiO ₃	cP5	Pm-3m	85.2
2	20:20:60	CoO	NaCl	cF8	Fm-3m	14.8
2	20.10.60	Sr _{1-x} Pr _x CoO ₃	CaTiO ₃	cP5	Pm-3m	81.7
3	30:10:60	CoO	NaCl	cF8	Fm-3m	18.3
4	5:45:50	Pr _{1-x} Sr _x CoO ₃	GdFeO ₃	oP20	Pnma	100
5	10:40:50	Pr _{1-x} Sr _x CoO ₃	GdFeO ₃	oP20	Pnma	100
6	15:35:50	Pr _{1-x} Sr _x CoO ₃	GdFeO ₃	oP20	Pnma	100
7	20:30:50	Pr _{1-x} Sr _x CoO ₃	GdFeO ₃	oP20	Pnma	100
8	25:25:50	Sr _{1-x} Pr _x CoO ₃	CaTiO ₃	cP5	Pm-3m	100
9	30:20:50	Sr _{1-x} Pr _x CoO ₃	CaTiO ₃	cP5	Pm-3m	100
10	35:15:50	$Sr_{1-x}Pr_xCoO_3$	CaTiO ₃	cP5	Pm-3m	100
11	40:10:50	$Sr_{1-x}Pr_xCoO_3$	CaTiO ₃	cP5	Pm-3m	100
		Sr ₆ Co ₅ O ₁₅	Ba ₆ Ni ₅ O ₁₅	hR78	R32	~58
12	45:5:50	$Sr_{1-x}Pr_xCoO_3$	CaTiO ₃	cP5	Pm-3m	~42
	20:40:40	Pr _{1-x} Sr _x CoO ₃	GdFeO ₃	oP20	Pnma	67.1
13		$Sr_{2-x}Pr_xCoO_4$	K ₂ NiF ₄	<i>tI</i> 14	I4/mmm	32.9
	35:25:40	$Sr_{2-x}Pr_xCoO_4$	K ₂ NiF ₄	<i>tI</i> 14	I4/mmm	64.5
14		$Sr_{1-x}Pr_xCoO_3$	CaTiO ₃	cP5	Pm-3m	35.5
	50:10:40	Sr ₃ Co ₂ O ₆	Sr ₃ Co ₂ O ₆	oI68	Immm	~75
15		$Sr_{2-x}Pr_xCoO_4$	K ₂ NiF ₄	<i>tI</i> 14	I4/mmm	~25
16	20:46.7:33.3	Sr _{2-x} Pr _x CoO ₄	K ₂ NiF ₄	<i>tI</i> 14	I4/mmm	100
17	30:36.7:33.3	Sr _{2-x} Pr _x CoO ₄	K ₂ NiF ₄	<i>tI</i> 14	I4/mmm	100
18	40:26.7:33.3	Sr _{2-x} Pr _x CoO ₄	K ₂ NiF ₄	<i>tI</i> 14	I4/mmm	100
		PrCoO ₃	GdFeO ₃	oP20	Pnma	38.5
19	10:60:30	$Sr_{2-x}Pr_xCoO_4$	K ₂ NiF ₄	<i>tI</i> 14	I4/mmm	31.6
		Pr_7O_{12}	Pr_7O_{12}	hR57	R-3	29.9
• •		Sr _{2-x} Pr _x CoO ₄	K ₂ NiF ₄	<i>tI</i> 14	I4/mmm	~85
20	50:20:30	$Sr(OH)_2(H_2O)$	$Sr(OH)_2(H_2O)$	oP8	$Pmc2_1$	~15
		Sr _{2-x} Pr _x CoO ₄	K ₂ NiF ₄	<i>tI</i> 14	I4/mmm	40.9
	60:10:30	$Sr(OH)_2(H_2O)$	$Sr(OH)_2(H_2O)$	oP8	$Pmc2_1$	16.0
21		SrO	NaCl	cF8	Fm-3m	5.0
		Sr ₃ Co ₂ O ₆	Sr ₃ Co ₂ O ₆	oI68	Immm	38.1
	20:60:20	Sr _{2-x} Pr _x CoO ₄	K ₂ NiF ₄	<i>tI</i> 14	I4/mmm	63.0
22		Pr_7O_{12}	Pr_7O_{12}	hR57	R-3	37.0
	40:40:20	Sr _{2-x} Pr _x CoO ₄	K ₂ NiF ₄	<i>tI</i> 14	I4/mmm	63.0
23		Sr_2PrO_4	Sr ₂ PbO ₄	oP14	Pbam	29.2
		Pr_7O_{12}	Pr_7O_{12}	hR57	R-3	7.8
		$Sr_{2-x}Pr_xCoO_4$	K ₂ NiF ₄	<i>tI</i> 14	I4/mmm	60.1
24	60:20:20	$Sr(OH)_2(H_2O)$	Sr(OH) ₂ (H ₂ O)	oP8	$Pmc2_1$	37.4
		Sr_2PrO_4	Sr ₂ PbO ₄	oP14	Pbam	2.5

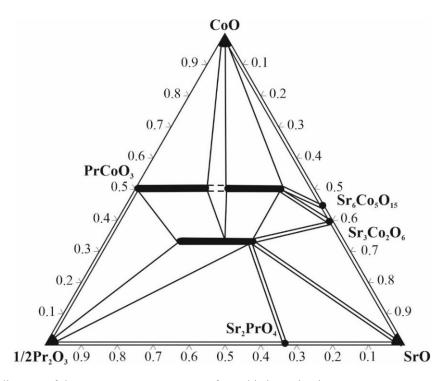


Fig. 4 Phase diagram of the SrO-Pr₂O₃-CoO system from this investigation.

Table 5 Refined cell parameters within the solid solution (Sr,Pr)CoO₃ with cubic perovskite structure (CaTiO₃ structure type, Pearson symbol *cP*5, space group *Pm*-3*m*).

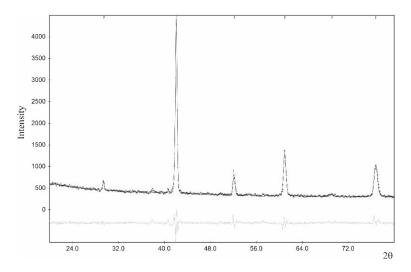

No	Nominal composition (SrO:1/2Pr ₂ O ₃ :CoO), mol. %	a, nm	V, nm ³	$R_{ m B}$
1	25:25:50	0.38249(6)	0.05596	0.097
2	30:20:50	0.38226(3)	0.05586	0.081
3	35:15:50	0.38272(3)	0.05606	0.095
4	40:10:50	0.38376(3)	0.05652	0.083

Table 6 Refined cell parameters within the solid solution (Sr,Pr)CoO₃ with orthorhombic perovskite structure (GdFeO₃ structure type, Pearson symbol *oP*20, space group *Pnma*).

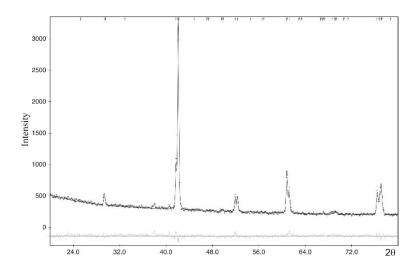

No	Nominal composition (SrO:1/2Pr ₂ O ₃ :CoO), mol. %	a, nm	b, nm	c, nm	V, nm ³	$R_{ m B}$
1	5:45:50	0.54012(7)	0.76035(14)	0.53627(7)	0.22024	0.097
2	10:40:50	0.53690(7)	0.76042(12)	0.54183(7)	0.22121	0.135
3	15:35:50	0.53739(7)	0.76046(12)	0.54290(7)	0.22186	0.231
4	20:30:50	0.53826(5)	0.76055(9)	0.54391(6)	0.22266	0.089

Table 7 Refined cell parameters within the solid solution $(Sr,Pr)_2CoO_4$ $(K_2NiF_4$ structure type, Pearson symbol tI14, space group I4/mmm).

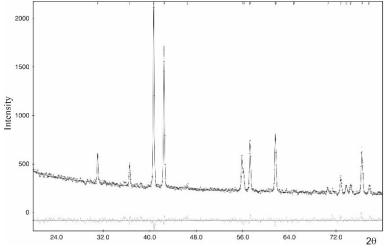

No	Nominal composition (SrO:1/2Pr ₂ O ₃ :CoO), mol. %	a, nm	c, nm	V, nm ³	$R_{ m B}$
1	20:46.7:33.3	0.38039(3)	1.2332(1)	0.17844	0.099
2	30:36.7:33.3	0.37850(4)	1.2359(1)	0.17706	0.120
3	40:26.7:33.3	0.37833(5)	1.2434(1)	0.17797	0.157

Fig. 5 Diffraction pattern of a single-phase sample of $Sr_{0.5}Pr_{0.5}CoO_3$ cubic perovskite (sample composition 25 mol.% SrO : 25 mol.% $1/2Pr_2O_3$: 50 mol.% CoO).

Fig. 6 Diffraction pattern of a single-phase sample of $Sr_{0.4}Pr_{0.6}CoO_3$ orthorhombic perovskite (sample composition 20 mol.% SrO : 30 mol.% $1/2Pr_2O_3$: 50 mol.% CoO).

Fig. 7 Diffraction pattern of a single-phase sample of $Sr_{2-x}Pr_xCoO_4$ (sample composition 30 mol. % SrO : 36.7 mol. % 1/2Pr₂O₃ : 33.3 mol. % CoO).

Summary

The experiment was started from the synthesis and investigation of polycrystalline samples with nominal composition $Sr_{0.5}R_{0.5}CoO_3$, where R is a rare-earth metal. Under the conditions of our experiment the existence of four-component perovskites $Sr_{0.5}R_{0.5}CoO_3$ with cubic perovskite-type structure (CaTiO₃ type, Pearson symbol cP_5 , space group Pm-3m) was established for the light rare-earth metals (R = Pr, Nd, Sm, Eu, Gd, and Tb). The samples with heavy rare-earth metals (R = Dy, Ho, Er, Tm, Yb, and Lu) contained in equilibrium the corresponding R_2O_3 oxide, CoO, and a quaternary phase with cubic perovskite structure, presumably the boundary of a solid solution based on $SrCoO_3$.

The interaction of the components in the SrO-Pr₂O₃-CoO system was studied based on X-ray diffraction of 24 ceramic polycrystalline samples, synthesized by a two-stage solid-state reaction method, starting from SrCO₃, Pr₂O₃, and CoCO₃. Final heating was performed at 1200°C for 8 h. The existence of three extended homogeneity regions was revealed: Pr_{1-x}Sr_xCoO₃ with orthorhombic perovskite type (GdFeO₃), Sr_{1-x}Pr_xCoO₃ with cubic perovskite type (CaTiO₃), and Sr_{2-x}Pr_xCoO₄ with tetragonal type K₂NiF₄. The formation of Sr₂PrO₄ (own structure type, Pearson symbol oP14, space group Pbam), PrCoO3 (GdFeO₃ structure type, Pearson symbol oP20, space group Pnma), Sr₆Co₅O₁₅ (Ba₆Ni₅O₁₅ structure type, Pearson symbol hR78, space group R32), and Sr₃Co₂O₆ (own structure type, Pearson symbol oI68, space group *Immm*) phases was confirmed in the boundary systems. An approximately isothermal section of the phase diagram of the SrO-Pr₂O₃-CoO system under the conditions of our investigation was constructed in the full concentration range. It contains 9 one-phase, 17 two-phase and 9 three-phase regions.

References

- P. Wagner, *Phys. Status Solidi A*. 214 (2017) 1700394. https://doi.org/10.1002/pssa.201700394
- [2] R.J.D. Tilley, *Perovskites Structure–Property Relationships*, John Wiley & Sons, Ltd., UK, 2016.
- [3] S. Thomas, A. Thankappan, *Perovskite photovoltaics. Basic to Advanced Concepts and Implementation*, Academic Press, Elsevier, UK, 2018.
- [4] P. Villars, K. Cenzual (Eds.), *Pearson's Crystal Data Crystal Structure Database for Inorganic Compounds*, ASM International, Materials Park, OH, USA.
- R. Sondena, S. Stolen, P. Ravindran, T. Grande,
 N.L. Allan, *Phys. Rev. B*. 75 (2007) 184105-10.
 https://doi.org/10.1103/PhysRevB.75.184105
- [6] M. Yashima, R. Ali, Solid State Ionics 180 (2009) 120-126. https://doi.org/10.1016/j.ssi.2008.11.019
- N.L. Ross, J. Zhao, R.J. Angel, Solid State Chem. 177 (2004) 3768-3775. https://doi.org/10.1016/j.jssc.2004.07.002
- [8] S.K. Yeh, S.Y. Wu, C.S. Lee, Y. Wang, Acta Crystallogr. B 49 (1993) 806-811. https://doi.org/10.1107/S0108768193003246
- [9] *Phase Equilibria Diagrams Database*, ACS and NIST, Westerville, OH, USA.
- [10] D.B. Wiles, A. Sakthivel, R.A. Young, *Program DBWS3.2 for Rietveld Analysis of X-Ray and Neutron Powder Diffraction Patterns*, School of Physics, Georgia Institute of Technology, Atlanta, 1998.