УДК 512.53

ON THE SEMIGROUP OF ALL MONOID ENDOMORPHISMS OF THE SEMIGROUP $B_{\omega}^{\mathscr{F}}$ WITH THE TWO-ELEMENTS FAMILY \mathscr{F} OF INDUCTIVE NONEMPTY SUBSETS OF ω

Oleg GUTIK, Inna POZDNIAKOVA

Ivan Franko National University of Lviv, Universytetska Str., 1, 79000, Lviv, UKRAINE e-mails: oleg.gutik@lnu.edu.ua, pozdnyakova.inna@gmail.com

We study the structure of the semigroup $End(B_{\omega}^{\mathscr{F}})$ of all monoid endomorphisms of $B_{\omega}^{\mathscr{F}}$, where an ω -closed family \mathscr{F} consists of two nonempty inductive subsets of ω . We describe elements of $End(B_{\omega}^{\mathscr{F}})$, the multiplication and Green's relations on the semigroup $End(B_{\omega}^{\mathscr{F}})$.

Key words: Bicyclic monoid, inverse semigroup, bicyclic extension, endomorphism, ideal, Green's relations.

1. Introduction, motivation and main definitions

We shall follow the terminology of [1, 2, 11]. By ω we denote the set of all non-negative integers, by \mathbb{N} the set of all positive integers.

Let $\mathscr{P}(\omega)$ be the family of all subsets of ω . For any $F \in \mathscr{P}(\omega)$ and $n \in \mathbb{Z}$ we put $n+F=\{n+k\colon k\in F\}$ if $F\neq\varnothing$ and $n+\varnothing=\varnothing$. A subfamily $\mathscr{F}\subseteq\mathscr{P}(\omega)$ is called ω -closed if $F_1\cap(-n+F_2)\in\mathscr{F}$ for all $n\in\omega$ and $F_1,F_2\in\mathscr{F}$. For any $a\in\omega$ we denote $[a)=\{x\in\omega\colon x\geqslant a\}$.

A subset A of ω is said to be *inductive*, if $i \in A$ implies $i + 1 \in A$. Obviously, that \varnothing is an inductive subset of ω .

- Зауваження 1 (5). (1) By Lemma 6 from [4] nonempty subset $F \subseteq \omega$ is inductive in ω if and only if $(-1+F) \cap F = F$.
 - (2) Since the set ω with the usual order is well-ordered, for any nonempty inductive subset F in ω there exists nonnegative integer $n_F \in \omega$ such that $[n_F) = F$.
 - (3) Statement (2) implies that the intersection of an arbitrary finite family of nonempty inductive subsets in ω is a nonempty inductive subset of ω .

Let S be an arbitrary semigroup. By S^1 we denote S with the enjoined unit element 1. Any homomorphism $\alpha \colon S \to S$ is called an endomorphism of S [1]. If the semigroup has the identity element 1_S then the endomorphism α of S such that $(1_S)\alpha = 1_S$ is said to be a $monoid\ endomorphism$ of S. A bijective endomorphism of S is called an automorphism. Traditionary in the semigroup theory the image of an element S of a semigroup S under the endomorphism S is denoted by S is denoted

A semigroup S is called *inverse* if for any element $x \in S$ there exists a unique $x^{-1} \in S$ such that $xx^{-1}x = x$ and $x^{-1}xx^{-1} = x^{-1}$. The element x^{-1} is called the *inverse* of $x \in S$. If S is an inverse semigroup, then the function inv: $S \to S$ which assigns to every element x of S its inverse element x^{-1} is called the *inversion*.

If S is a semigroup, then we shall denote the subset of all idempotents in S by E(S). If S is an inverse semigroup, then E(S) is closed under multiplication and we shall refer to E(S) as a band (or the band of S). Then the semigroup operation on S determines the following partial order \preccurlyeq on E(S): $e \preccurlyeq f$ if and only if ef = fe = e. This order is called the natural partial order on E(S).

If S is an inverse semigroup then the semigroup operation on S determines the following partial order \leq on S: $s \leq t$ if and only if there exists $e \in E(S)$ such that s = te. This order is called the *natural partial order* on S [15].

If S is a semigroup, then we shall denote the Green relations on S by \mathcal{R} , \mathcal{L} , \mathcal{J} , \mathcal{D} and \mathcal{H} (see [1, Section 2.1]):

$$a\mathcal{R}b$$
 if and only if $aS^1 = bS^1$;
 $a\mathcal{L}b$ if and only if $S^1a = S^1b$;
 $a\mathcal{J}b$ if and only if $S^1aS^1 = S^1bS^1$;
 $\mathcal{D} = \mathcal{L} \circ \mathcal{R} = \mathcal{R} \circ \mathcal{L}$;
 $\mathcal{H} = \mathcal{L} \cap \mathcal{R}$.

The \mathcal{L} -class [\mathcal{R} -class, \mathcal{H} -class, \mathcal{D} -class, \mathcal{J} -class] of the semigroup S containing the element $a \in S$ will be denoted by \mathbf{L}_a [\mathbf{R}_a , \mathbf{H}_a , \mathbf{D}_a , \mathbf{J}_a].

The bicyclic monoid $\mathcal{C}(p,q)$ is the semigroup with the identity 1 generated by two elements p and q subjected only to the condition pq = 1. The semigroup operation on $\mathcal{C}(p,q)$ is determined as follows:

$$q^k p^l \cdot q^m p^n = q^{k+m-\min\{l,m\}} p^{l+n-\min\{l,m\}}.$$

It is well known that the bicyclic monoid $\mathscr{C}(p,q)$ is a bisimple (and hence simple) combinatorial E-unitary inverse semigroup and every non-trivial congruence on $\mathscr{C}(p,q)$ is a group congruence [1].

On the set $\mathbf{B}_{\omega} = \omega \times \omega$ we define the semigroup operation "." in the following way

$$(i_1, j_1) \cdot (i_2, j_2) = \begin{cases} (i_1 - j_1 + i_2, j_2), & \text{if } j_1 \leqslant i_2; \\ (i_1, j_1 - i_2 + j_2), & \text{if } j_1 \geqslant i_2. \end{cases}$$
 (1)

It is well known that the bicyclic monoid $\mathscr{C}(p,q)$ to the semigroup \mathbf{B}_{ω} is isomorphic by the mapping $\mathfrak{h}: \mathscr{C}(p,q) \to \mathbf{B}_{\omega}, \ q^k p^l \mapsto (k,l)$ (see: [1, Section 1.12] or [13, Exercise IV.1.11(ii)]).

Next we shall describe the construction which is introduced in [4].

Let \mathscr{F} be an ω -closed subfamily of $\mathscr{P}(\omega)$. On the set $\mathbf{B}_{\omega} \times \mathscr{F}$ we define the semigroup operation "·" in the following way

$$(i_1, j_1, F_1) \cdot (i_2, j_2, F_2) = \begin{cases} (i_1 - j_1 + i_2, j_2, (j_1 - i_2 + F_1) \cap F_2), & \text{if } j_1 \leqslant i_2; \\ (i_1, j_1 - i_2 + j_2, F_1 \cap (i_2 - j_1 + F_2)), & \text{if } j_1 \geqslant i_2. \end{cases}$$
(2)

In [4] is proved that $(\mathbf{B}_{\omega} \times \mathscr{F}, \cdot)$ is a semigroup. Moreover, if \mathscr{F} contains the empty set \varnothing then the set $\mathbf{I} = \{(i, j, \varnothing) : i, j \in \omega\}$ is an ideal of the semigroup $(\mathbf{B}_{\omega} \times \mathscr{F}, \cdot)$. For any ω -closed family $\mathscr{F} \subseteq \mathscr{P}(\omega)$ the following semigroup

$$\boldsymbol{B}_{\omega}^{\mathscr{F}} = \left\{ \begin{array}{ll} (\boldsymbol{B}_{\omega} \times \mathscr{F}, \cdot)/\boldsymbol{I}, & \text{if } \varnothing \in \mathscr{F}; \\ (\boldsymbol{B}_{\omega} \times \mathscr{F}, \cdot), & \text{if } \varnothing \notin \mathscr{F} \end{array} \right.$$

is defined in [4]. The semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ generalizes the bicyclic monoid and the countable semigroup of matrix units. It is proven in [4] that $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is a combinatorial inverse semigroup and Green's relations, the natural partial order on $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ and its set of idempotents are described. In [4] the criteria when the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is simple, 0-simple, bisimple, 0-bisimple, or it has the identity, are given. In particularly in [4] it is proved that the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is isomorphic to the semigrpoup of $\omega \times \omega$ -matrix units if and only if \mathscr{F} consists of a singleton set and the empty set, and $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is isomorphic to the bicyclic monoid if and only if \mathscr{F} consists of a non-empty inductive subset of ω .

Group congruences on the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ and its homomorphic retracts in the case when an ω -closed family \mathscr{F} consists of inductive non-empty subsets of ω are studied in [5]. It is proven that a congruence \mathfrak{C} on $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is a group congruence if and only if its restriction on a subsemigroup of $\boldsymbol{B}_{\omega}^{\mathscr{F}}$, which is isomorphic to the bicyclic semigroup, is not the identity relation. Also in [5], all non-trivial homomorphic retracts and isomorphisms of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ are described. In [6] it is proved that an injective endomorphism ε of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is the indentity transformation if and only if ε has three distinct fixed points, which is equivalent to existence non-idempotent element $(i,j,[p)) \in \boldsymbol{B}_{\omega}^{\mathscr{F}}$ such that $(i,j,[p))\varepsilon = (i,j,[p))$.

In [3, 12] the algebraic structure of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is established in the case when ω -closed family \mathscr{F} consists of atomic subsets of ω .

It is well-known that every automorphism of the bicyclic monoid B_{ω} is the identity self-map of B_{ω} [1], and hence the group $\operatorname{Aut}(B_{\omega})$ of automorphisms of B_{ω} is trivial. In [10] it is proved that the semigroups $\operatorname{End}(B_{\omega})$ of the endomorphisms of the bicyclic semigroup B_{ω} is isomorphic to the semidirect products $(\omega, +) \rtimes_{\varphi} (\omega, *)$, where + and * are the usual addition and the usual multiplication on the set of non-negative integers ω .

are the usual addition and the usual multiplication on the set of non-negative integers ω . In the paper [7] the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}_n}$ is studied, where the family \mathscr{F}_n is generated by initial interval [0,n] of ω . In the paper [14] the semigroup $\boldsymbol{End}(\mathscr{I}_{\omega}^n(\overrightarrow{\operatorname{conv}}))$ of all endomorphisms of the monoid $\mathscr{I}_{\omega}^n(\overrightarrow{\operatorname{conv}})$ is described up to its ideal $\boldsymbol{End}^1(\mathscr{I}_{\omega}^n(\overrightarrow{\operatorname{conv}}))$, where $\boldsymbol{End}^1(\mathscr{I}_{\omega}^n(\overrightarrow{\operatorname{conv}}))$ is the subsemigroup of $\boldsymbol{End}(\mathscr{I}_{\omega}^n(\overrightarrow{\operatorname{conv}}))$ which consists of $\mathfrak{a} \in \boldsymbol{End}(\mathscr{I}_{\omega}^n(\overrightarrow{\operatorname{conv}}))$ such that the image $(\alpha)\mathfrak{a}$ is isomorphic to a subsemigroup of the semigroup of $\omega \times \omega$ -matrix units for all $\alpha \in \mathscr{I}_{\omega}^n(\overrightarrow{\operatorname{conv}})$.

In the paper [8] we study injective endomorphisms of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ with the two-elements family \mathscr{F} of inductive nonempty subsets of ω . We describe elements of the semigroup $\boldsymbol{End}_*^1(\boldsymbol{B}_{\omega}^{\mathscr{F}})$ of all injective monoid endomorphisms of the monoid $\boldsymbol{B}_{\omega}^{\mathscr{F}}$. Also

in [8] we prove that Green's relations \mathscr{R} , \mathscr{L} , \mathscr{H} , \mathscr{D} , and \mathscr{J} on $\operatorname{End}_*^1(B_\omega^{\mathscr{F}})$ coincide with the relation of equality.

In the paper [9] we study non-injective endomorphisms of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$. We describe the structure of elements of the semigroup $\boldsymbol{End}_0^*(\boldsymbol{B}_{\omega}^{\mathscr{F}})$ of monoid non-injective endomorphisms of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$. In particular we show that its subsemigroup $\boldsymbol{End}^*(\boldsymbol{B}_{\omega}^{\mathscr{F}})$ of monoid non-injective non-annihilating endomorphisms of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is isomorphic to the direct product the two-element left-zero semigroup and the multiplicative semigroup of positive integers and describe Green's relations on $\boldsymbol{End}^*(\boldsymbol{B}_{\omega}^{\mathscr{F}})$.

This paper is a continuation of [8] and [9]. We study the structure of the semigroup $End(B_{\omega}^{\mathscr{F}})$ of all monoid endomorphisms of $B_{\omega}^{\mathscr{F}}$. We describe elements of $End(B_{\omega}^{\mathscr{F}})$, the multiplication and Green's relations on the semigroup $End(B_{\omega}^{\mathscr{F}})$.

Later we assume that an ω -closed family \mathscr{F} consists of two nonempty inductive nonempty subsets of ω .

2. Preliminary results on endomorphisms of the monoid $oldsymbol{B}_{\omega}^{\mathscr{F}}$

Fix an arbitrary positive integer k and any $p \in \{0, ..., k-1\}$. For all $i, j \in \omega$ we define the transformation $\alpha_{k,p}$ of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ in the following way

$$\begin{split} &(i,j,[0))\alpha_{k,p}=(ki,kj,[0)),\\ &(i,j,[1))\alpha_{k,p}=(p+ki,p+kj,[1)). \end{split}$$

It is obvious that $\alpha_{k,p}$ is an injective transformation of the monoid $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ (see [8, Example 1 and Lemma 2]).

Fix an arbitrary positive integer $k \ge 2$ and any $p \in \{1, \dots, k-1\}$. For all $i, j \in \omega$ we define the transformation $\beta_{k,p}$ of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ in the following way

$$(i, j, [0))\beta_{k,p} = (ki, kj, [0)),$$

 $(i, j, [1))\beta_{k,p} = (p + ki, p + kj, [0)).$

It is obvious that $\beta_{k,p}$ is an injective transformation of the monoid $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ (see [8, Example 2 and Lemma 3]).

The following theorem from [8] describes the structure of the semigroup $\operatorname{\boldsymbol{End}}^1_*(\operatorname{\boldsymbol{B}}^{\mathscr{F}}_\omega)$ of all injective monoid endomorphisms of the semigroup $\operatorname{\boldsymbol{B}}^{\mathscr{F}}_\omega$ for the family $\mathscr{F}=\{[0),[1)\}.$

Theorem 1 ([8, Theorem 1]). Let $\mathscr{F} = \{[0), [1)\}$ and ε be an injective monoid endomorphism of $\mathbf{B}_{\omega}^{\mathscr{F}}$. Then either there exist a positive integer k and $p \in \{0, \ldots, k-1\}$ such that $\varepsilon = \alpha_{k,p}$ or there exist a positive integer $k \ge 2$ and $p \in \{1, \ldots, k-1\}$ such that $\varepsilon = \beta_{k,p}$. Moreover, the following statements hold:

- (1) $(i, j, [0))\alpha_{k,p} = (i, j, [0))\beta_{k,p}$ for all $i, j \in \omega$ and any positive integer $k \ge 2$ and $p \in \{1, \ldots, k-1\}$;
- (2) if k = 1 then $\varepsilon = \alpha_{1,0}$ is an automorphism of the monoid $\mathbf{B}_{\omega}^{\mathscr{F}}$ which is the identity selfmap of $\mathbf{B}_{\omega}^{\mathscr{F}}$;
- (3) $\alpha_{k_1,p_1}\alpha_{k_2,p_2} = \alpha_{k_1k_2,p_2+k_2p_1}$ for all positive integers k_1, k_2 , any $p_1 \in \{0, \dots, k_1-1\}$, and any $p_2 \in \{0, \dots, k_2-1\}$;

- (4) $\alpha_{k_1,p_1}\beta_{k_2,p_2}=\beta_{k_1k_2,p_2+k_2p_1}$ for all positive integers k_1 and $k_2\geqslant 2$, any $p_1\in$ $\{0,\ldots,k_1-1\}$, and any $p_2 \in \{1,\ldots,k_2-1\}$;
- (5) $\beta_{k_1,p_1}\beta_{k_2,p_2} = \beta_{k_1k_2,k_2p_1}$ for all positive integers $k_1, k_2 \geqslant 2$, any $p_1 \in \{1, \dots, k_1 1\}$, and any $p_2 \in \{1, \ldots, k_2 - 1\};$
- (6) $\beta_{k_1,p_1}\alpha_{k_2,p_2} = \beta_{k_1k_2,k_2p_1}$ for all positive integers $k_1 \geqslant 2$ and k_2 , any $p_1 \in \{1,\ldots,k_1-1\}$, and any $p_2 \in \{0,\ldots,k_2-1\}$;
- (7) if α_{k_2,p_2} , β_{k_1,p_1} , and β_{k_2,p_2} are well defined elements of $\mathbf{End}^1_*(\mathbf{B}^{\mathscr{F}}_{\omega})$ then $\beta_{k_1,p_1}\alpha_{k_2,p_2} = \beta_{k_1,p_1}\beta_{k_2,p_2};$
- (8) $\alpha_{1,0}$ is the unique idempotent of $End^1_*(B^{\mathscr{F}}_{\omega})$, and moreover $\alpha_{1,0}$ is the identity of $End^1_*(B_\omega^{\mathscr{F}})$;
- (9) $S_{\alpha} = \langle \alpha_{k,p} \mid k \in \mathbb{N}, p \in \{0, \dots, k-1\} \rangle$ is a cancellative submonoid of $\mathbf{End}_*^1(\mathbf{B}_{\omega}^{\mathscr{F}})$; (10) $S_{\beta} = \langle \beta_{k,p} \mid k = 2, 3, \dots, p \in \{1, \dots, k-1\} \rangle$ is an ideal in $\mathbf{End}_*^1(\mathbf{B}_{\omega}^{\mathscr{F}})$.

Let k be an arbitrary non-negative integer. We define maps $\gamma_k \colon \boldsymbol{B}_{\omega}^{\mathscr{F}} \to \boldsymbol{B}_{\omega}^{\mathscr{F}}$ and $\delta_k \colon \boldsymbol{B}_{\omega}^{\mathscr{F}} \to \boldsymbol{B}_{\omega}^{\mathscr{F}}$ by the formulae

$$(i, j, [0))\gamma_k = (i, j, [1))\gamma_k = (ki, kj, [0))$$

and

$$(i, j, [0))\delta_k = (ki, kj, [0))$$
 and $(i, j, [1))\delta_k = (k(i+1), k(j+1), [0))$

for all $i, j \in \omega$, respectively. Then for any $k \in \omega$ the maps γ_k and δ_k are non-injective monoid endomorphisms of the semigroup $B_{\omega}^{\mathscr{F}}$ [9, Examples 1 and 2, Proposition 1].

Remark 1. It obvious that if \mathfrak{e} is the annihilating endomorphism of the monoid $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ then $\mathfrak{e} = \gamma_0 = \delta_0$.

By $End_0^*(B_\omega^{\mathscr{F}})$ we denote the semigroup of all non-injective monoid endomorphisms of the monoid $\mathbf{B}_{\omega}^{\mathscr{F}}$ for the family $\mathscr{F} = \{[0), [1)\}.$

Theorems 2 and 3 describe the algebraic structure of the semigroup $End_0^*(B_\omega^{\mathscr{F}})$.

Theorem 2 ([9, Theorem 1]). Let $\mathscr{F} = \{[0), [1)\}$. Then for any non-injective monoid endomorphism ${\mathfrak e}$ of the monoid $B_{\omega}^{\mathscr F}$ only one of the following conditions holds:

- (1) \mathfrak{e} is the annihilating endomorphism, i.e., $\mathfrak{e} = \gamma_0 = \delta_0$;
- (2) $\mathfrak{e} = \gamma_k \text{ for some positive integer } k;$
- (3) $\mathfrak{e} = \delta_k$ for some positive integer k.

Theorem 3 ([9, Theorem 2]). Let $\mathscr{F} = \{[0), [1)\}$. Then for all positive integers k_1 and k_2 the following conditions hold:

- $(1) \ \gamma_{k_1} \gamma_{k_2} = \gamma_{k_1 k_2};$
- $(2) \ \gamma_{k_1} \delta_{k_2} = \gamma_{k_1 k_2};$
- (3) $\delta_{k_1} \gamma_{k_2} = \delta_{k_1 k_2};$ (4) $\delta_{k_1} \delta_{k_2} = \delta_{k_1 k_2}.$

By \mathfrak{e}_0 we denote the annihilating monoid endomorphism of the monoid $B_\omega^{\mathscr{F}}$ for the family $\mathscr{F} = \{[0), [1)\}$, i.e., $(i, j, [p))\mathfrak{e}_{\mathbf{0}} = (0, 0, [0))$ for all $i, j \in \omega$ and p = 0, 1. We put $End^*(B_{\omega}^{\mathscr{F}}) = End_0^*(B_{\omega}^{\mathscr{F}}) \setminus \{\mathfrak{e}_0\}.$ Theorem 3 implies that $End^*(B_{\omega}^{\mathscr{F}})$ is a subsemigroup of $End_0^*(B_\omega^{\mathscr{F}})$.

3. On the semigroup of all monoid endomorphisms of $B_\omega^{\mathscr{F}}$

Later by $End(B_{\omega}^{\mathscr{F}})$ we denote the semigroup of all monoid endomorphisms of the monoid $B_{\omega}^{\mathscr{F}}$.

Theorems 1, 3 and 4 describe the semigroup operation on the monoid $End(B_{\omega}^{\mathscr{F}})$.

Theorem 4. Let $\mathscr{F} = \{[0), [1)\}$. Then the following statements hold.

(1) If k and n are arbitrary positive integers and $p \in \{0, ..., k-1\}$ then

$$\alpha_{k,p}\gamma_n = \begin{cases} \gamma_{kn}, & \text{if } kn = 1 \text{ or } p = 0; \\ \beta_{kn,pn}, & \text{if } kn \neq 1 \text{ and } p = 1, \dots, k - 1. \end{cases}$$

(2) If k and n are arbitrary positive integers and $p \in \{0, ..., k-1\}$ then

$$\alpha_{k,p}\delta_n = \begin{cases} \delta_{kn}, & \text{if } kn = 1 \text{ or } p = k-1; \\ \beta_{kn,(p+1)n}, & \text{if } kn \neq 1 \text{ and } p = 0, \dots, k-2. \end{cases}$$

- (3) If k is an arbitrary positive integer ≥ 2 , n is an arbitrary positive integer, and $p \in \{1, ..., k-1\}$ then $\beta_{k,p}\gamma_n = \beta_{kn,pn}$
- (4) If k is an arbitrary positive integer $\geqslant 2$, n is an arbitrary positive integer, and $p \in \{1, \ldots, k-1\}$ then

$$\beta_{k,p}\delta_n = \begin{cases} \delta_{kn}, & \text{if } p = k-1; \\ \beta_{kn,(p+1)n}, & \text{if } p = 1,\dots,k-2. \end{cases}$$

- (5) If k and n are arbitrary positive integers and $p \in \{0, ..., k-1\}$ then $\gamma_n \alpha_{k,p} = \gamma_{nk}$.
- (6) If k is an arbitrary positive integer ≥ 2 , n is an arbitrary positive integer, and $p \in \{1, \ldots, k-1\}$ then $\gamma_n \beta_{k,p} = \gamma_{nk}$.
- (7) If k and n are arbitrary positive integers and $p \in \{0, ..., k-1\}$ then $\delta_n \alpha_{k,p} = \delta_{nk}$.
- (8) If k is an arbitrary positive integer $\geqslant 2$, n is an arbitrary positive integer, and $p \in \{1, ..., k-1\}$ then $\delta_n \beta_{k,p} = \delta_{nk}$.

Proof. (1) For any $i, j \in \omega$ we have that

$$(i, j, [0))\alpha_{k,p}\gamma_n = (ki, kj, [0))\gamma_n = (kni, knj, [0))$$

and

$$(i, j, [1))\alpha_{k,p}\gamma_n = (p + ki, p + kj, [1))\gamma_n =$$

= $(n(p + ki), n(p + kj), [0)) =$
= $(pn + kni, pn + knj, [0)).$

The above equalities imply that

$$\alpha_{k,p}\gamma_n = \begin{cases} \gamma_{kn}, & \text{if } kn = 1 \text{ or } p = 0; \\ \beta_{kn,pn}, & \text{if } kn \neq 1 \text{ and } p = 1, \dots, k - 1. \end{cases}$$

(2) For any $i, j \in \omega$ we have that

$$(i, j, [0))\alpha_{k,p}\delta_n = (ki, kj, [0))\delta_n = (kni, knj, [0))$$

and

$$(i, j, [1))\alpha_{k,p}\delta_n = (p+ki, p+kj, [1))\delta_n =$$

$$= (n(p+ki+1), n(p+kj+1), [0)) =$$

$$= ((p+1)n+kni), (p+1)n+knj), [0)).$$

The above equalities imply that

$$\alpha_{k,p}\delta_n = \begin{cases} \delta_{kn}, & \text{if } kn = 1 \text{ or } p = k-1; \\ \beta_{kn,(p+1)n}, & \text{if } kn \neq 1 \text{ and } p = 0, \dots, k-2. \end{cases}$$

(3) For any $i, j \in \omega$ we have that

$$(i, j, [0))\beta_{k,p}\gamma_n = (ki, kj, [0))\gamma_n = (kni, knj, [0))$$

and

$$(i, j, [1))\beta_{k,p}\gamma_n = (p + ki, p + kj, [0))\gamma_n =$$

= $(n(p + ki), n(p + kj), [0)) =$
= $(pn + kni, pn + knj, [0)).$

Hence we get that $\beta_{k,p}\gamma_n = \beta_{kn,pn}$.

(4) For any $i, j \in \omega$ we have that

$$(i, j, [0))\beta_{k,n}\delta_n = (ki, kj, [0))\delta_n = (kni, knj, [0))$$

and

$$(i, j, [1))\beta_{k,p}\gamma_n = (p + ki, p + kj, [0))\delta_n =$$

= $(n(p + ki + 1), n(p + kj + 1), [0)) =$
= $((p + 1)n + kni, (p + 1)n + knj, [0)).$

The above equalities imply that

$$\beta_{k,p}\delta_n = \left\{ \begin{array}{ll} \delta_{kn}, & \text{if } kn=1 \text{ or } p=k-1; \\ \beta_{kn,(p+1)n}, & \text{if } kn \neq 1 \text{ and } p=0,\ldots,k-2. \end{array} \right.$$

(5) For any $i, j \in \omega$ we have that

$$(i, j, [0))\gamma_n \alpha_{k,p} = (ni, nj, [0))\alpha_{k,p} = (nki, nkj, [0))$$

and

$$(i, j, [1))\gamma_n\alpha_{k,p} = (ni, nj, [0))\alpha_{k,p} = (nki, nkj, [0)).$$

This implies that $\gamma_n \alpha_{k,p} = \gamma_{nk}$.

(6) For any $i, j \in \omega$ we have that

$$(i, j, [0))\gamma_n\beta_{k,p} = (ni, nj, [0))\beta_{k,p} = (nki, nkj, [0))$$

and

$$(i, j, [1))\gamma_n\beta_{k,p} = (ni, nj, [0))\beta_{k,p} = (nki, nkj, [0)).$$

This implies that $\gamma_n \beta_{k,p} = \gamma_{nk}$.

(7) For any $i, j \in \omega$ we have that

$$(i, j, [0))\delta_n \alpha_{k,p} = (ni, nj, [0))\alpha_{k,p} = (nki, nkj, [0))$$

and

$$(i, j, [1))\delta_n\alpha_{k,p} = (n(i+1), n(j+1), [0))\alpha_{k,p} = (nk(i+1), nk(j+1), [0)).$$

The above equalities imply that $\delta_n \alpha_{k,p} = \delta_{nk}$.

The proof of statement (8) is similar to (7).

We denote

$$\langle \alpha \rangle = \{ \alpha_{k,p} \colon k \in \mathbb{N}, p \in \{0, \dots, k-1\} \};$$

$$\langle \beta \rangle = \{ \beta_{k,p} \colon k \in \mathbb{N} \setminus \{1\}, p \in \{1, \dots, k-1\} \};$$

$$\langle \gamma \rangle = \{ \gamma_k \colon k \in \mathbb{N} \};$$

$$\langle \delta \rangle = \{ \delta_k \colon k \in \mathbb{N} \};$$

$$\langle \alpha, \beta \rangle = \{ xy \colon x, y \in \langle \alpha \rangle \cup \langle \beta \rangle \};$$

$$\langle \gamma, \delta \rangle = \{ xy \colon x, y \in \langle \gamma \rangle \cup \langle \delta \rangle \};$$

Proposition 1. Let $\mathscr{F} = \{[0), [1)\}$. Then the following statements hold.

- (1) $\langle \alpha \rangle$, $\langle \beta \rangle$, $\langle \gamma \rangle$, and $\langle \delta \rangle$ are subsemigroups of $End(B_{\omega}^{\mathscr{F}})$, and moreover $\langle \alpha \rangle$ is a cancellative submonoid of $End(B_{\omega}^{\mathscr{F}})$, and the subsemigroups $\langle \gamma \rangle$ and $\langle \delta \rangle$ are isomorphic to the multiplicative semigroup of positive integers \mathbb{N}_u .
- (2) $\mathbf{C}\langle\alpha\rangle = \mathbf{End}(\mathbf{B}_{\omega}^{\mathscr{F}}) \setminus \langle\alpha\rangle$ is an ideal of $\mathbf{End}(\mathbf{B}_{\omega}^{\mathscr{F}})$. (3) $\langle\alpha,\beta\rangle = \mathbf{End}_{*}^{*}(\mathbf{B}_{\omega}^{\mathscr{F}})$ is a subsemigroup of $\mathbf{End}(\mathbf{B}_{\omega}^{\mathscr{F}})$, and $\langle\beta\rangle$ is an ideal of $End^1_*(B^{\mathscr{F}}_{\omega}).$
- (4) The annihilating monoid endomorphism \mathfrak{e}_0 of the monoid $B_{\omega}^{\mathscr{F}}$ is the zero of $End(B_{\omega}^{\mathscr{F}})$.
- (5) $\langle \gamma, \delta \rangle = \langle \gamma \rangle \cup \langle \delta \rangle = \operatorname{End}^*(B_{\omega}^{\mathscr{F}})$ is a subsemigroup of $\operatorname{End}(B_{\omega}^{\mathscr{F}})$.
- (6) $\langle \gamma, \delta \rangle \cup \{\mathfrak{e}_{\mathbf{0}}\}, \ \langle \gamma \rangle \cup \{\mathfrak{e}_{\mathbf{0}}\}, \ and \ \langle \delta \rangle \cup \{\mathfrak{e}_{\mathbf{0}}\} \ are \ right \ ideals \ of \ \mathbf{End}(\mathbf{B}_{\omega}^{\mathscr{F}}), \ but \ they$ are not two-sided ideals of $End(B_{\omega}^{\mathscr{F}})$.

Proof. Statement (1) follows from Theorems 1 and 3.

Statement (2) follows from Theorem 1 and 4.

Statement (3) follows from Theorem 1.

Statement (4) is obvious.

Statements (5) and (6) follow from Theorems 3 and 4.

Proposition 2 and Theorem 5 describe Green's relations on the monoid $End(B_{\circ}^{\mathscr{F}})$.

Proposition 2. Let $\mathscr{F} = \{[0), [1)\}$. Then the following statements hold.

- (1) $\chi \mathscr{J} \alpha_{k_1,p_1}$ in $End(B_{\omega}^{\mathscr{F}})$, $k_1 \in \mathbb{N}$, $p_1 \in \{0,\ldots,k_1-1\}$, if and only if $\chi = \alpha_{k_1,p_1}$.
- (2) The relation $\beta_{k_1,p_1} \mathcal{L} \gamma_{n_1}$ in $End(B_{\omega}^{\mathscr{F}})$ does not hold for any positive integers n_1 and $k_1 \ge 2$, and any $p_1 \in \{1, \ldots, k_1 - 1\}$.
- (3) The relation $\beta_{k_1,p_1} \mathscr{L} \delta_{n_1}$ in $\operatorname{End}(B_{\omega}^{\mathscr{F}})$ does not hold for any positive integers n_1 and $k_1 \ge 2$, and any $p_1 \in \{1, \ldots, k_1 - 1\}$.
- (4) $\beta_{k_1,p_1} \mathcal{L} \beta_{k_2,p_2}$ in $End(B_{\omega}^{\mathscr{F}}), k_1, k_2 \in \mathbb{N} \setminus \{1\}, p_1 \in \{1,\ldots,k_1-1\}, p_2 \in \mathbb{N}$ $\{1,\ldots,k_2-1\}$, if and only if $k_1=k_2$ and $p_1=p_2$, i.e., $\beta_{k_1,p_1}=\beta_{k_2,p_2}$.

- (5) $\gamma_{n_1} \mathscr{L} \gamma_{n_2}$ in $\operatorname{End}(B_{\omega}^{\mathscr{F}})$, $n_1, n_2 \in \mathbb{N}$, if and only if $n_1 = n_2$, i.e., $\gamma_{n_1} = \gamma_{n_2}$. (6) $\gamma_{n_1} \mathscr{L} \delta_{n_2}$ in $\operatorname{End}(B_{\omega}^{\mathscr{F}})$, $n_1, n_2 \in \mathbb{N}$, if and only if $n_1 = n_2$. (7) $\delta_{n_1} \mathscr{L} \delta_{n_2}$ in $\operatorname{End}(B_{\omega}^{\mathscr{F}})$, $n_1, n_2 \in \mathbb{N}$, if and only if $n_1 = n_2$, i.e., $\delta_{n_1} = \delta_{n_2}$.

- (8) The relation $\beta_{k_1,p_1} \mathscr{R} \gamma_{n_1}$ in $\operatorname{End}(B_{\omega}^{\mathscr{F}})$ does not hold for any positive integers n_1 and $k_1 \ge 2$, and any $p_1 \in \{1, \ldots, k_1 - 1\}$.
- (9) The relation $\beta_{k_1,p_1} \mathscr{R} \delta_{n_1}$ in $\operatorname{End}(\boldsymbol{B}_{\omega}^{\mathscr{F}})$ does not hold for any positive integers n_1 and $k_1 \ge 2$, and any $p_1 \in \{1, \dots, k_1 - 1\}$.
- (10) $\beta_{k_1,p_1} \mathcal{R} \beta_{k_2,p_2}$ in $End(B_{\omega}^{\mathscr{F}})$, $k_1, k_2 \in \mathbb{N} \setminus \{1\}$, $p_1 \in \{1,\ldots,k_1-1\}$, $p_2 \in \{1,\ldots,k_2-1\}$, if and only if $k_1 = k_2$ and $p_1 = p_2$, i.e., $\beta_{k_1,p_1} = \beta_{k_2,p_2}$.
- (11) $\gamma_{n_1} \mathcal{R} \gamma_{n_2}$ in $End(B_{\omega}^{\mathscr{F}})$, $n_1, n_2 \in \mathbb{N}$, if and only if $n_1 = n_2$, i.e., $\gamma_{n_1} = \gamma_{n_2}$.
- (12) The relation $\gamma_n \mathscr{R} \delta_m$ in $\operatorname{End}(B_\omega^{\mathscr{F}})$ does not hold for any positive integers n and
- (13) $\delta_{n_1} \mathscr{R} \delta_{n_2}$ in $\operatorname{End}(B_{\omega}^{\mathscr{F}})$, $n_1, n_2 \in \mathbb{N}$, if and only if $n_1 = n_2$, i.e., $\delta_{n_1} = \delta_{n_2}$.
- (14) The relation $\beta_{k_1,p_1} \mathscr{J} \gamma_{n_1}$ in $\operatorname{End}(B_{\omega}^{\mathscr{J}})$ does not hold for any positive integers n_1 and $k_1 \geq 2$, and any $p_1 \in \{1, \ldots, k_1 1\}$.
- (15) The relation $\beta_{k_1,p_1} \mathscr{J} \delta_{n_1}$ in $\mathbf{End}(\mathbf{B}_{\omega}^{\mathscr{F}})$ does not hold for any positive integers n_1 and $k_1 \geq 2$, and any $p_1 \in \{1, \ldots, k_1 1\}$.

Proof. (1) (\Rightarrow) By Proposition 1(2) the set $\mathbf{C}\langle\alpha\rangle$ is an ideal of the monoid $\mathbf{End}(\mathbf{B}_{\omega}^{\mathscr{F}})$, and hence $\chi \mathscr{J} \alpha_{k,p}$ in $End(B_{\omega}^{\mathscr{F}})$ if and only if $\chi \in \langle \alpha \rangle$.

Suppose that $\alpha_{k_1,p_1} \mathscr{J} \alpha_{k_2,p_2}$ in $End(B_{\omega}^{\mathscr{F}})$ for some positive integers k_1 and k_2 , and $p_1 \in \{0, \dots, k_1 - 1\}, \ p_2 \in \{0, \dots, k_2 - 1\}.$ The above arguments imply that there exist $k_1', k_1'' \in \mathbb{N}, \ p_1' \in \{0, \dots, k_1' - 1\}$ and $p_1'' \in \{0, \dots, k_1'' - 1\}$ such that

$$\alpha_{k_1,p_1} = \alpha_{k'_1,p'_1} \alpha_{k_2,p_2} \alpha_{k''_1,p''_1}.$$

By Theorem 1 we have that

$$\alpha_{k_1,p_1} = \alpha_{k_1',p_1'}\alpha_{k_2,p_2}\alpha_{k_1'',p_1''} = \alpha_{k_1',p_1'}\alpha_{k_2k_1'',p_1''+k_1''p_2} = \alpha_{k_1'k_2k_1'',p_1''+k_1''p_2+k_2k_1''p_1'}.$$

This implies that $k_1 = k_1' k_2 k_1''$ and $p_1 = p_1'' + k_1'' p_2 + k_2 k_1'' p_1'$. Similar calculations imply that if

$$\alpha_{k_2,p_2} = \alpha_{k_2',p_2'} \alpha_{k_1,p_1} \alpha_{k_2'',p_2''}$$

for some $k_2', k_2'' \in \mathbb{N}$, $p_2' \in \{0, \dots, k_2' - 1\}$ and $p_2'' \in \{0, \dots, k_2'' - 1\}$, then $k_2 = k_2' k_1 k_2''$ and $p_2 = p_2'' + k_2'' p_1 + k_1 k_2'' p_2'$. Hence we have that $k_1 | k_2$ and $k_2 | k_1$. Thus we get that $k_1 = k_2$ and hence $k_1' = k_2' = k_1'' = k_2'' = 1$. The last equalities imply that $p_1' = p_2' = p_1'' = p_2'' = 0$. Since $\alpha_{1,0}$ is the unit element of the monoid $End(B_{\omega}^{\mathscr{F}})$, $\alpha_{k_1,p_1}=\alpha_{k_2,p_2}$.

The implications (\Leftarrow) is trivial.

(2) Suppose the contrary: the relation $\beta_{k_1,p_1} \mathcal{L} \gamma_{n_1}$ holds for some positive integers n_1 and $k_1 \geqslant 2$, and $p_1 \in \{1, \ldots, k_1 - 1\}$. Then there exist $\varepsilon_1, \varepsilon_2 \in \operatorname{End}(B_{\omega}^{\mathscr{F}})$ such that $\beta_{k_1,p_1} = \varepsilon_1 \gamma_{n_1}$ and $\gamma_{n_1} = \varepsilon_2 \beta_{k_1,p_1}$.

Theorem 4 implies that the equality $\beta_{k_1,p_1} = \varepsilon_1 \gamma_{n_1}$ holds only in one of the following two cases:

- (1_1) $\varepsilon_1 = \alpha_{k,p}$ for some positive integer k and $p \in \{0, \ldots, k-1\}$;
- (2_1) $\varepsilon_1 = \beta_{k,p}$ for some positive integer $k \ge 2$ and $p \in \{1, \ldots, k-1\}$.

Theorems 1 and 4 imply that the equality $\gamma_{n_1} = \varepsilon_2 \beta_{k_1,p_1}$ holds in the case when $\varepsilon_2 = \gamma_m$ for some positive integer m. By Theorem 4(6) we have that

$$\gamma_{n_1} = \gamma_m \beta_{k_1, p_1} = \gamma_{mk_1}.$$

Then in case (1_1) by Theorem 4(1) we get that

$$\beta_{k_1,p_1} = \alpha_{k,p} \gamma_{n_1} = \alpha_{k,p} \gamma_{mk_1} = \beta_{kmk_1,pmk_1},$$

because $k_1 \ge 2$. The definition of the endomorphism β_{k_1,p_1} implies that $k_1 = kmk_1$ and $p_1 = pmk_1$. By the first equality we get that km = 1 and hence k = m = 1. Then the definition of the endomorphism $\alpha_{k,p}$ implies that p = 0 and hence $p_1 = pmk_1 = 0$. But the equality $p_1 = 0$ contradicts the definition of the endomorphism β_{k_1,p_1} , because $p_1 \in \{1, \ldots, k_1 - 1\}$. The obtained contradiction implies that case (1_1) does not hold.

In case (2_1) by Theorem 4(3) we get that

$$\beta_{k_1,p_1} = \beta_{k,p} \gamma_{n_1} = \beta_{k,p} \gamma_{mk_1} = \beta_{kmk_1,pmk_1}.$$

The definition of the endomorphism β_{k_1,p_1} implies that $k_1 = kmk_1$ and $p_1 = pmk_1$. Next, by the similar way as in the previous case we show that case (2_1) does not hold. This completes the proof of the statement.

(3) Suppose to the contrary that the relation $\beta_{k_1,p_1} \mathscr{L} \delta_{n_1}$ holds for some positive integers n_1 and $k_1 \geqslant 2$, and $p_1 \in \{1,\ldots,k_1-1\}$. Then there exist $\varepsilon_1, \varepsilon_2 \in \operatorname{End}(B_{\omega}^{\mathscr{F}})$ such that $\beta_{k_1,p_1} = \varepsilon_1 \delta_{n_1}$ and $\delta_{n_1} = \varepsilon_2 \beta_{k_1,p_1}$.

Theorem 4 implies that the equality $\beta_{k_1,p_1} = \varepsilon_1 \delta_{n_1}$ holds only in one of the following two cases:

- (1₂) $\varepsilon_1 = \alpha_{k,p}$ for some positive integer k and $p \in \{0, \dots, k-1\}$;
- (2_2) $\varepsilon_1 = \beta_{k,p}$ for some positive integer $k \ge 2$ and $p \in \{1, \ldots, k-1\}$.

Theorem 4 implies that the equality $\delta_{n_1} = \varepsilon_2 \beta_{k_1,p_1}$ holds in the case when $\varepsilon_2 = \delta_m$ for some positive integer m. By Theorem 4(8) we have that

$$\delta_{n_1} = \delta_m \beta_{k_1, p_1} = \delta_{mk_1}.$$

Then in case (1_2) by Theorem 4(2) we have that

$$\beta_{k_1,p_1} = \alpha_{k,p}\delta_{n_1} = \alpha_{k,p}\delta_{mk_1} = \beta_{kmk_1,(p+1)mk_1},$$

because $k_1 \geqslant 2$. The definition of the endomorphism β_{k_1,p_1} implies that $k_1 = kmk_1$ and $p_1 = (p+1)mk_1$. By the first equality we get that km = 1 and hence k = m = 1. Then the definition of the endomorphism $\alpha_{k,p}$ implies that p = 0 which implies that $p_1 = mk_1 = k_1$. But by the definition of the endomorphism β_{k_1,p_1} we have that $k_1 > p_1$, a contradiction. The obtained contradiction implies that case (1_2) does not hold.

In case (2_2) by Theorem 4(4) we get that

$$\beta_{k_1,p_1} = \beta_{k,p}\delta_{n_1} = \beta_{k,p}\delta_{mk_1} = \beta_{kmk_1,(p+1)mk_1}.$$

The definition of the endomorphism β_{k_1,p_1} implies that $k_1 = kmk_1$ and $p_1 = (p+1)mk_1$. Next, by the similar way as in the previous case we show that case (2_2) does not hold. This completes the proof of the statement. (4) (\Rightarrow) Suppose that $\beta_{k_1,p_1} \mathscr{L} \beta_{k_2,p_2}$ in $\operatorname{End}(B_{\omega}^{\mathscr{F}})$ for some positive integers $k_1 \geq 2$, $k_2 \geq 2$, $p_1 \in \{1, \ldots, k_1 - 1\}$, and $p_2 \in \{1, \ldots, k_2 - 1\}$. Then there exist $\varepsilon_1, \varepsilon_2 \in \operatorname{End}(B_{\omega}^{\mathscr{F}})$ such that

$$\beta_{k_1,p_1} = \varepsilon_1 \beta_{k_2,p_2}$$
 and $\beta_{k_2,p_2} = \varepsilon_2 \beta_{k_1,p_1}$. (3)

By statements (6) and (8) of Theorem 4 we have that equalities (3) hold when $\varepsilon_1, \varepsilon_2 \in \langle \alpha \rangle \cup \langle \beta \rangle$. Then the proof of the requested statement is similar to Proposition 3.3(4) of [8].

The implications (\Leftarrow) is trivial.

(5) (\Rightarrow) Suppose that $\gamma_{n_1} \mathscr{L} \gamma_{n_2}$ in $End(B_{\omega}^{\mathscr{F}})$ for some positive integers n_1 and n_2 . Then there exist $\varepsilon_1, \varepsilon_2 \in End(B_{\omega}^{\mathscr{F}})$ such that

$$\gamma_{n_1} = \varepsilon_1 \gamma_{n_2}$$
 and $\gamma_{n_2} = \varepsilon_2 \gamma_{n_1}$.

By Theorem 3(3) we have that $\varepsilon_1 \neq \delta_{n'}$ and $\varepsilon_2 \neq \delta_{n''}$ for any positive integers n' and n''. Also, by Theorem 4(3), $\varepsilon_1 \neq \beta_{k',p'}$ and $\varepsilon_2 \neq \beta_{k'',p''}$ for any positive integers $k' \geq 2$ and $k'' \geq 2$, $p' \in \{1, \ldots, k' - 1\}$, and $p'' \in \{1, \ldots, k'' - 1\}$.

Suppose that $\varepsilon_1 = \alpha_{k,p}$ for some positive integer k and $p \in \{0, \ldots, k\}$. Then by Theorem 4(1) the equality $\gamma_{n_1} = \alpha_{k,p} \gamma_{n_2}$ holds in the case when $kn_2 = 1$ or p = 0.

If $kn_2 = 1$ then $k = n_2 = 1$ which implies that p = 0, and hence

$$\gamma_{n_1} = \alpha_{1,0} \gamma_{n_2} = \gamma_{n_2}.$$

If p = 0 then

$$\gamma_{n_1} = \alpha_{k,0} \gamma_{n_2} = \gamma_{kn_2}.$$

In this case we have that either $\varepsilon_2 = \alpha_{k',p'}$ or $\varepsilon_2 = \gamma_{n'}$. If $\varepsilon_2 = \alpha_{k',p'}$ then by Theorem 4(1),

$$\gamma_{n_2} = \alpha_{k',p'} \gamma_{n_1} = \gamma_{k'n_1}$$

and $k'n_1 = 1$ or p' = 0. If $k'n_1 = 1$ then $k' = n_1 = 1$ and p' = 0. Then

$$\gamma_{n_2} = \alpha_{1,0} \gamma_{n_1} = \gamma_{n_1}.$$

If p' = 0 then we have that

$$\gamma_{n_2} = \alpha_{k',0} \gamma_{n_1} = \gamma_{k'n_1}.$$

Thus, in the case when $\varepsilon_1 = \alpha_{k,p}$ and $\varepsilon_2 = \alpha_{k',p'}$ by the definition of the element γ_n of $End(B_\omega^{\mathscr{F}})$ we get that

$$n_2 = k' n_1 = k' k n_2$$

which implies that k' = k = 1, and hence $n_1 = n_2$.

In the case when $\varepsilon_1 = \alpha_{k,p}$ and $\varepsilon_2 = \gamma_{n'}$ we have that

$$\gamma_{n_1} = \alpha_{k,0} \gamma_{n_2} = \alpha_{k,0} \gamma_{n'} \gamma_{n_1} = \alpha_{k,0} \gamma_{n'n_1} = \gamma_{kn'n_1},$$

which implies that kn' = 1, because k, n' and n_1 are positive integers, and hence k = n' = 1. Then

$$\gamma_{n_2} = \gamma_{n'} \gamma_{n_1} = \gamma_{n_1}.$$

In the case when $\varepsilon_1 = \gamma_{n'}$ and $\varepsilon_2 = \alpha_{k,p}$ by the similar way as in the above case we obtain that $\gamma_{n_1} = \gamma_{n_2}$.

In the case when $\varepsilon_1 = \gamma_{n'_1}$ and $\varepsilon_2 = \gamma_{n'_2}$ by Theorem 3(1) we get that

$$\gamma_{n_1} = \gamma_{n'_1} \gamma_{n_2} = \gamma_{n'_1 n_2}$$
 and $\gamma_{n_2} = \gamma_{n'_2} \gamma_{n_1} = \gamma_{n'_2 n_1}$.

Then by the definition of the element γ_n of $End(B_{\omega}^{\mathscr{F}})$ we get that

$$n_1 = n_1' n_2 = n_1' n_2' n_1.$$

Since n_1 , n_2 , n'_1 , and n'_2 are positive integers, $n'_1n'_2 = 1$, and hence $n'_1 = n'_2 = 1$. This implies that $n_1 = n_2$.

The implications (\Leftarrow) is trivial.

(6) (\Rightarrow) Suppose that $\gamma_{n_1} \mathscr{L} \delta_{n_2}$ in $\mathbf{End}(\mathbf{B}_{\omega}^{\mathscr{F}})$ for some positive integers n_1 and n_2 . Then there exist $\varepsilon_1, \varepsilon_2 \in \mathbf{End}(\mathbf{B}_{\omega}^{\mathscr{F}})$ such that

$$\gamma_{n_1} = \varepsilon_1 \delta_{n_2}$$
 and $\delta_{n_2} = \varepsilon_2 \gamma_{n_1}$.

The equality $\gamma_{n_1} = \varepsilon_1 \delta_{n_2}$ and Theorems 3 and 4 imply that $\varepsilon_1 = \gamma_m$ for some positive integer m. By Theorem 3(2) we have that

$$\gamma_{n_1} = \gamma_m \delta_{n_2} = \gamma_{mn_2},$$

and hence by the definition of the element γ_n of $End(B_{\omega}^{\mathscr{F}})$ we get that $n_1 = mn_2$. Also, the equality $\delta_{n_2} = \varepsilon_2 \gamma_{n_1}$ and Theorems 3 and 4 imply that $\varepsilon_2 = \delta_{m'}$ for some positive integer m'. By Theorem 3(3) we have that

$$\delta_{n_2} = \delta_{m'} \gamma_{n_1} = \delta_{m'n_1},$$

and hence by the definition of the element δ_n of $End(B^{\mathscr{F}}_{\omega})$ we get that $n_2 = m'n_1$. Then

$$n_1 = mn_2 = mm'n_1$$

for some positive integers m and m'. This implies that mm' = 1, and hence m = m' = 1. Thus, we obtain that $n_1 = n_2$.

The implications (\Leftarrow) is trivial.

(7) (\Rightarrow) Suppose that $\delta_{n_1} \mathscr{L} \delta_{n_2}$ in $\mathbf{End}(\mathbf{B}_{\omega}^{\mathscr{F}})$ for some positive integers n_1 and n_2 . Then there exist $\varepsilon_1, \varepsilon_2 \in \mathbf{End}(\mathbf{B}_{\omega}^{\mathscr{F}})$ such that

$$\delta_{n_1} = \varepsilon_1 \delta_{n_2}$$
 and $\delta_{n_2} = \varepsilon_2 \delta_{n_1}$.

Then by Theorems 3 and 4 for the element ε_1 one of the following cases holds

- (1₃) $\varepsilon_1 = \alpha_{k,p}$ for some positive integer k and $p \in \{0, \dots, k-1\}$;
- (2₃) $\varepsilon_1 = \beta_{k,p}$ for some positive integer $k \ge 2$ and $p \in \{1, \dots, k-1\}$;
- (3₃) $\varepsilon_1 = \delta_k$ for some positive integer k,

and for the element ε_2 one of the following cases holds

- (1_4) $\varepsilon_2 = \alpha_{k',p'}$ for some positive integer k' and $p' \in \{0,\ldots,k'-1\}$;
- (2_4) $\varepsilon_2 = \beta_{k',p'}$ for some positive integer $k' \geqslant 2$ and $p' \in \{1,\ldots,k'-1\}$;
- (34) $\varepsilon_2 = \delta_{k'}$ for some positive integer k'.

Suppose case (1_3) holds. By Theorems 4(2) we have that

$$\delta_{n_1} = \alpha_{k,p} \delta_{n_2} = \delta_{kn_2}$$

in the case when $kn_2 = 1$ or p = k - 1. If $kn_2 = 1$ then by the definition of the element δ_n of $End(B_{\omega}^{\mathscr{F}})$ we have that $n_1 = n_2 = k = 1$ and p = 0, and hence the requested statement holds.

Suppose that p = k - 1 for some positive integer $k \ge 2$. If case (1_4) holds, i.e.,

$$\delta_{n_2} = \alpha_{k',p'} \delta_{n_1} = \delta_{k'n_1},$$

then $k'n_1 \neq 1$, otherwise in this case we have $n_1 = n_2 = 1$, which implies that k = 1. Hence we suppose that p' = k' - 1 for some positive integer $k' \geq 2$. Then we get that $\delta_{n_2} = \delta_{k'n_1}$ and $\delta_{n_1} = \delta_{kn_2}$, and by the definition of the element δ_n of $\mathbf{End}(\mathbf{B}_{\omega}^{\mathscr{F}})$ we obtain that $n_2 = k'n_1 = k'kn_2$, and hence k'k = 1 which contradicts our assumptions that $k \geq 2$ and $k' \geq 2$.

Next, suppose that $k \ge 2$ and case (2_4) holds, i.e.,

$$\delta_{n_2} = \beta_{k',p'} \delta_{n_1} = \delta_{k'n_1}$$
 and $\delta_{n_1} = \delta_{kn_2}$.

Then similar as in previous case we get that $n_2 = k' n_1 = k' k n_2$. This and the definition of the element δ_n of $End(B_{\omega}^{\mathscr{F}})$ contradict the condition $k' \geqslant 2$.

Suppose that $k \ge 2$ and case (3_4) holds. By Theorem 3(4) we have that

$$\delta_{n_2} = \delta_{k'}\delta_{n_1} = \delta_{k'n_1}$$
 and $\delta_{n_1} = \delta_{kn_2}$,

and hence by the definition of the element δ_n of $End(B_{\omega}^{\mathscr{F}})$ we get that $n_2 = k'n_1 = k'kn_2$. This implies that k' = k = 1, and hence $n_1 = n_2$.

Suppose that case (2_3) holds. If in addition case (1_4) holds then the proof of the equality $n_1 = n_2$ is similar to the case when conditions (1_3) and (2_4) hold together.

Suppose that cases (2₃) and (2₄) hold together, i.e., $\varepsilon_1 = \beta_{k,p}$ and $\varepsilon_2 = \beta_{k',p'}$ for some positive integers $k' \ge 2$ and $k \ge 2$, $p \in \{1, \ldots, k-1\}$ and $p' \in \{1, \ldots, k'-1\}$. Theorem 4(4) implies that

$$\delta_{n_1} = \beta_{k,p} \delta_{n_2} = \delta_{kn_2}$$
 and $\delta_{n_2} = \beta_{k',p'} \delta_{n_1} = \delta_{k'n_1}$,

and here $k \ge 2$ and $k' \ge 2$. Then the definition of the element δ_n of $\operatorname{End}(B_{\omega}^{\mathscr{F}})$ implies that

$$n_1 = kn_2 = kk'n_1,$$

and hence kk' = 1, which contradicts any of conditions $k \ge 2$ and $k' \ge 2$. The obtained contradiction implies that (2_3) and (2_4) do not hold together.

Suppose that cases (2_3) and (3_4) hold together, i.e., $\varepsilon_1 = \beta_{k,p}$ and $\varepsilon_2 = \delta_{k'}$ for some positive integers k' and $k \ge 2$, and $p \in \{1, \ldots, k-1\}$. Then Theorem 4(4) and Theorem 3(4) imply that

$$\delta_{n_1} = \beta_{k,p} \delta_{n_2} = \delta_{kn_2}$$
 and $\delta_{n_2} = \delta_{k'} \delta_{n_1} = \delta_{k'n_1}$,

and here $k \geq 2$. The definition of the element δ_n of $End(B_{\omega}^{\mathscr{F}})$ implies that

$$n_1 = kn_2 = kk'n_1,$$

and hence kk' = 1, which contradicts any of conditions $k \ge 2$. The obtained contradiction implies that (2_3) and (3_4) do not hold together.

Now, we suppose that case (3_3) holds. If case (1_4) holds as well, then the proof is similar to the case when (1_3) and (3_4) hold. Also, if cases (3_3) and (2_4) hold together, then the proof is similar to the case when (2_3) and (3_4) hold.

Suppose that cases (3₃) and (3₄) hold together, i.e., $\varepsilon_1 = \delta_k$ and $\varepsilon_2 = \delta_{k'}$ for some positive integers k and k'. Theorem 3(4) imply that

$$\delta_{n_1} = \delta_k \delta_{n_2} = \delta_{kn_2}$$
 and $\delta_{n_2} = \delta_{k'} \delta_{n_1} = \delta_{k'n_1}$.

The definition of the element δ_n of $\operatorname{\boldsymbol{End}}({\boldsymbol{B}}_{\omega}^{\mathscr{F}})$ implies that

$$n_1 = kn_2 = kk'n_1,$$

and hence k = k' = 1, which implies that $n_1 = n_2$.

The proof in other cases are similar to the above considered cases.

The implications (\Leftarrow) is trivial.

- (8) By Theorems 3 and 4 there exists no $\varepsilon_1 \in End(B_{\omega}^{\mathscr{F}})$ such that $\beta_{k_1,p_1} = \gamma_{n_1}\varepsilon_1$, and hence the requested statement holds.
- (9) By Theorems 3 and 4 there exists no $\varepsilon_1 \in End(B_{\omega}^{\mathscr{F}})$ such that $\beta_{k_1,p_1} = \delta_{n_1}\varepsilon_1$, and hence the requested statement holds.
- (10) (\Rightarrow) Suppose that $\beta_{k_1,p_1} \mathscr{R} \beta_{k_2,p_2}$ in $\operatorname{End}(B_{\omega}^{\mathscr{F}})$ for some positive integers $k_1 \geq 2$, $k_2 \geq 2$, $p_1 \in \{1, \ldots, k_1 1\}$, and $p_2 \in \{1, \ldots, k_2 1\}$. Then there exist $\varepsilon_1, \varepsilon_2 \in \operatorname{End}(B_{\omega}^{\mathscr{F}})$ such that

$$\beta_{k_1,p_1} = \beta_{k_2,p_2} \varepsilon_1$$
 and $\beta_{k_2,p_2} = \beta_{k_1,p_1} \varepsilon_2$.

By Theorems 1(6) and 4(3)–(4) for the element ε_1 one of the following cases holds

- (1₅) $\varepsilon_1 = \alpha_{k,p}$ for some positive integer k and $p \in \{0, \ldots, k-1\}$;
- (2₅) $\varepsilon_1 = \gamma_n$ for some positive integer n;
- (3₅) $\varepsilon_1 = \delta_n$ for some positive integer n,

and for the element ε_2 one of the following cases holds

- (1₆) $\varepsilon_2 = \alpha_{k',p'}$ for some positive integer k' and $p' \in \{0,\ldots,k'-1\}$;
- (2₆) $\varepsilon_2 = \gamma_{n'}$ for some positive integer n';
- (3₆) $\varepsilon_2 = \delta_{n'}$ for some positive integer n'.

Suppose that cases (1_5) and (1_6) hold together. By Theorem 1(6) we have that

$$\beta_{k_1,p_1} = \beta_{k_2,p_2} \alpha_{k,p} = \beta_{k_2k,kp_2}$$
 and $\beta_{k_2,p_2} = \beta_{k_1,p_1} \alpha_{k',p'} = \beta_{k_1k',k'p_1}$. (4)

By the definition of the element $\beta_{s,t}$ of $End(B_{\omega}^{\mathscr{F}})$ we obtain that

$$k_1 = k_2 k = k_1 k' k$$
 and $p_1 = k p_2 = k k' p_1$.

Hence we have that k = k' = 1, because k and k' are positive integers. This implies that $k_1 = k_2$ and $p_1 = p_2$.

If cases (1_5) and (2_6) hold together then by Theorem 4(3) we get that

$$\beta_{k_2,p_2} = \beta_{k_1,p_1} \gamma_{n'} = \beta_{k_1 n',p_1 n'}.$$

The above equalities, the first equality of (4), and the definition of the element $\beta_{s,t}$ of $End(B_{\omega}^{\mathscr{F}})$ imply that

$$k_2 = k_1 n' = k_2 k n',$$

and hence k = n' = 1, because k and n' are positive integers. This implies that $p_2 = p_1$. If cases (1_5) and (3_6) hold together then by Theorem 4(4) we get that

$$\beta_{k_2,p_2} = \beta_{k_1,p_1} \delta_{n'} = \beta_{k_1 n',(p_1+1)n'}.$$

in the case when $p_1 \in \{1, \ldots, k_1 - 2\}$. Then the above equalities, the first equality of (4), and the definition of the element $\beta_{s,t}$ of $\mathbf{End}(\mathbf{B}_{\omega}^{\mathscr{F}})$ imply that

$$k_2 = k_1 n' = k_2 k n',$$

and hence k = n' = 1, because k and n' are positive integers. Hence we get that

$$p_1 = kp_2 = k(p_1 + 1)n' = p_1 + 1,$$

a contradiction. The obtained contradiction implies that cases (1_5) and (3_6) do not hold together.

Suppose that cases (2_5) and (2_6) hold together. By Theorem 4(3) we have that

$$\beta_{k_1,p_1} = \beta_{k_2,p_2} \gamma_n = \beta_{k_2n,p_2n}$$
 and $\beta_{k_2,p_2} = \beta_{k_1,p_1} \gamma_{n'} = \beta_{k_1n',p_1n'}$.

The definition of the element $\beta_{s,t}$ of $End(B_{\omega}^{\mathscr{F}})$ imply that

$$k_1 = k_2 n = k_1 n' n,$$

and hence n = n' = 1, because n and n' are positive integers. This implies that $k_1 = k_2$ and $p_1 = p_2$.

Suppose that cases (2_5) and (3_6) hold together. By statements (3) and (4) of Theorem 4 we have that

$$\beta_{k_1,p_1} = \beta_{k_2,p_2} \gamma_n = \beta_{k_2n,p_2n}$$
 and $\beta_{k_2,p_2} = \beta_{k_1,p_1} \delta_{n'} = \beta_{k_1n',(p_1+1)n'}$

and hence by the definition of the element $\beta_{s,t}$ of $\pmb{End}(\pmb{B}_{\omega}^{\mathscr{F}})$ we get that

$$k_1 = k_2 n = k_1 n' n$$
 and $p_1 = p_2 n = (p_1 + 1)n' n$.

Since n and n' are positive integers, n = n' = 1, and hence $p_1 = p_1 + 1$, a contradiction. The obtained contradiction implies that cases (2_5) and (3_6) do not hold together.

Suppose that cases (3_5) and (3_6) hold together. By Theorem 4(4) we have that

$$\beta_{k_1,p_1} = \beta_{k_2,p_2} \delta_n = \beta_{k_2n,(p_2+1)n}$$
 and $\beta_{k_2,p_2} = \beta_{k_1,p_1} \delta_{n'} = \beta_{k_1n',(p_1+1)n'}$,

and hence by the definition of the element $\beta_{s,t}$ of $End(B_{\omega}^{\mathscr{F}})$ we get that

$$k_1 = k_2 n = k_1 n' n$$
 and $p_1 = (p_2 + 1)n = ((p_1 + 1)n' + 1)n$.

Since n and n' are positive integers, n = n' = 1, and hence $p_1 = p_1 + 2$, a contradiction. The obtained contradiction implies that cases (3_5) and (3_6) do not hold together.

The proofs in other cases are similar to the above considered cases.

The implication (\Leftarrow) is trivial.

(11) (\Rightarrow) Suppose that $\gamma_{n_1} \mathscr{R} \gamma_{n_2}$ in $End(B_{\omega}^{\mathscr{F}})$ for some positive integers n_1 and n_2 . Then there exist $\varepsilon_1, \varepsilon_2 \in \operatorname{\boldsymbol{\it End}}({\boldsymbol{B}}_{\omega}^{\mathscr{F}})$ such that

$$\gamma_{n_1} = \gamma_{n_2} \varepsilon_1$$
 and $\gamma_{n_2} = \gamma_{n_1} \varepsilon_2$.

By Theorems 3 and 4 for the element ε_1 one of the following cases holds

- (17) $\varepsilon_1 = \alpha_{k,p}$ for some positive integer k and $p \in \{0, \ldots, k-1\}$;
- (27) $\varepsilon_1 = \beta_{k,p}$ for some positive integer $k \ge 2$ and $p \in \{1, \dots, k-1\}$;
- (37) $\varepsilon_1 = \gamma_n$ for some positive integer n;
- (47) $\varepsilon_1 = \delta_n$ for some positive integer n,

and for the element ε_2 one of the following cases holds

- (1₈) $\varepsilon_2 = \alpha_{k',p'}$ for some positive integer k' and $p' \in \{0,\ldots,k'-1\}$; (2₈) $\varepsilon_2 = \beta_{k',p'}$ for some positive integer $k' \geqslant 2$ and $p' \in \{1,\ldots,k'-1\}$;
- (3₈) $\varepsilon_2 = \gamma_{n'}$ for some positive integer n';
- (4₈) $\varepsilon_2 = \delta_{n'}$ for some positive integer n'.

If $i, j \in \{1, 2\}$ then by the corresponding statements of Theorem 4 we have that

$$\gamma_{n_1} = \gamma_{n_2} \varepsilon_1 = \gamma_{n_2 k}$$
 and $\gamma_{n_2} = \beta_{n_1} \varepsilon_2 = \gamma_{n_1 k'}$.

The definition of the element γ_m of $End(B_{\omega}^{\mathscr{F}})$ implies that $n_1 = n_2 k = n_1 k k'$, and hence k = k' = 1, because k and k' are positive integers. This implies that $n_1 = n_2$.

If $i \in \{1, 2\}$ and $j \in \{3, 4\}$ then by the corresponding statements of Theorems 3 and 4 we have that

$$\gamma_{n_1} = \gamma_{n_2} \varepsilon_1 = \gamma_{n_2 k}$$
 and $\gamma_{n_2} = \beta_{n_1} \varepsilon_2 = \gamma_{n_1 n'}$.

Then the definition of the element γ_m of $End(B_{\omega}^{\mathscr{F}})$ implies that $n_1 = n_2 k = n_1 k n'$, and hence k = n' = 1, because k and n' are positive integers. This implies that $n_1 = n_2$.

In the case of $i \in \{3,4\}$ and $j \in \{1,2\}$ the proof is similar to the above case.

If $i, j \in \{3, 4\}$ then by the corresponding statements of Theorem 3 we have that

$$\gamma_{n_1} = \gamma_{n_2} \varepsilon_1 = \gamma_{n_2 n}$$
 and $\gamma_{n_2} = \beta_{n_1} \varepsilon_2 = \gamma_{n_1 n'}$.

Then the definition of the element γ_m of $End(B_{\omega}^{\mathscr{F}})$ implies that $n_1 = n_2 n = n_1 n n'$, and hence n = n' = 1, because n and n' are positive integers. This implies that $n_1 = n_2$. Implications (\Leftarrow) is trivial.

- (12) By Theorems 3 and 4 there exists no $\varepsilon_1 \in End(B_\omega^{\mathscr{F}})$ such that $\gamma_n = \delta_m \varepsilon_1$, $m, n \in \mathbb{N}$, and hence the requested statement holds.
- (13) (\Rightarrow) Suppose that $\delta_{n_1} \mathscr{R} \delta_{n_2}$ in $End(B_{\omega}^{\mathscr{F}})$ for some positive integers n_1 and n_2 . Then there exist $\varepsilon_1, \varepsilon_2 \in End(B_{\omega}^{\mathscr{F}})$ such that

$$\delta_{n_1} = \delta_{n_2} \varepsilon_1$$
 and $\delta_{n_2} = \delta_{n_1} \varepsilon_2$.

By Theorems 3 and 4 for the element ε_1 one of the following cases holds

- (1₉) $\varepsilon_1 = \alpha_{k,p}$ for some positive integer k and $p \in \{0, \ldots, k-1\}$;
- (29) $\varepsilon_1 = \beta_{k,p}$ for some positive integer $k \ge 2$ and $p \in \{1, \dots, k-1\}$;
- (3₉) $\varepsilon_1 = \gamma_n$ for some positive integer n;
- (49) $\varepsilon_1 = \delta_n$ for some positive integer n,

and for the element ε_2 one of the following cases holds

- $\begin{array}{ll} (1_{10}) \ \varepsilon_2 = \alpha_{k',p'} \ \text{for some positive integer} \ k' \ \text{and} \ p' \in \{0,\ldots,k'-1\}; \\ (2_{10}) \ \varepsilon_2 = \beta_{k',p'} \ \text{for some positive integer} \ k' \geqslant 2 \ \text{and} \ p' \in \{1,\ldots,k'-1\}; \end{array}$
- (3_{10}) $\varepsilon_2 = \gamma_{n'}$ for some positive integer n';
- (4_{10}) $\varepsilon_2 = \delta_{n'}$ for some positive integer n'.

Next, the proof of the statement $n_1 = n_2$ word by word repeats the proof of statement (11).

(14) Suppose to the contrary that there exist positive integers n_1 and $k_1 \ge 2$, and $p_1 \in \{1,\ldots,k_1-1\}$ such that the relation $\beta_{k_1,p_1} \mathscr{J} \gamma_{n_1}$ holds in $\operatorname{End}(B_{\omega}^{\mathscr{F}})$. Then by the definition of the relation \mathscr{J} there exist $\varepsilon_{11}, \varepsilon_{12}, \varepsilon_{21}, \varepsilon_{22} \in End(B_{\omega}^{\mathscr{F}})^1$ such that $\beta_{k_1,p_1} = \varepsilon_{11}\gamma_{n_1}\varepsilon_{12}$ and $\gamma_{n_1} = \varepsilon_{21}\beta_{k_1,p_1}\varepsilon_{22}$.

By Theorem 1(4) we have that $\langle \alpha \rangle \cdot \langle \beta \rangle \cup \langle \beta \rangle \cdot \langle \alpha \rangle \subseteq \langle \beta \rangle$, and hence by Theorems 4 and 1 we obtain that $\varepsilon_{21} \in \langle \gamma \rangle$. Also, Theorem 3 implies that $\varepsilon_{11} \notin \langle \gamma \rangle \cup \langle \delta \rangle$. Then we have that

$$\beta_{k_1,p_1} = \varepsilon_{11}\gamma_{n_1}\varepsilon_{12} = \varepsilon_{11}\gamma_{k_4}\beta_{k_1,p_1}\varepsilon_{22}\varepsilon_{12}.$$

Later we consider the following cases.

(1₁₄) If $\varepsilon_{11} = \alpha_{k_2,p_2}$, $\varepsilon_{12} = \alpha_{k_3,p_3}$, and $\varepsilon_{22} = \alpha_{k_5,p_5}$, then by Theorems 1 and 4 we have that

$$\begin{split} \beta_{k_1,p_1} &= \alpha_{k_2,p_2} \gamma_{k_4} \beta_{k_1,p_1} \alpha_{k_5,p_5} \alpha_{k_3,p_3} = \\ &= \alpha_{k_2,p_2} \gamma_{k_4k_1} \alpha_{k_5,p_5} \alpha_{k_3,p_3} = \\ &= \alpha_{k_2,p_2} \gamma_{k_4k_1k_5} \alpha_{k_3,p_3} = \\ &= \alpha_{k_2,p_2} \gamma_{k_4k_1k_5k_3} = \\ &= \left\{ \begin{array}{ll} \gamma_{k_2k_4k_1k_5k_3}, & \text{if } k_3k_4k_1k_5k_3 = 1 \text{ or } p = 0; \\ \beta_{k_2k_4k_1k_5k_3,p_2k_4k_1k_5k_3}, & \text{if } k_3k_4k_1k_5k_3 \neq 1 \text{ and } p = 1, \dots, k_3 - 1. \end{array} \right. \end{split}$$

The first case is impossible. In the second case we have that $k_2k_4k_1k_5k_3 = k_1$ which implies that $k_2 = 1$. Hence we have that $p_2 = 0$, a contradiction. The obtained contradiction implies that case (1_{14}) does not hold.

(2₁₄) If $\varepsilon_{11} = \alpha_{k_2,p_2}$, $\varepsilon_{12} = \alpha_{k_3,p_3}$, and $\varepsilon_{22} \in \{\beta_{k_5,p_5}, \gamma_{k_5}, \delta_{k_5}\}$, then by Theorems 1 and 4 and by the similar calculations as in case (1₁₄) we get that

$$\begin{split} \beta_{k_1,p_1} &= \alpha_{k_2,p_2} \gamma_{k_4} \beta_{k_1,p_1} \varepsilon_{22} \alpha_{k_3,p_3} = \\ &= \left\{ \begin{array}{ll} \gamma_{k_2 k_4 k_1 k_5 k_3}, & \text{if } k_3 k_4 k_1 k_5 k_3 = 1 \text{ or } p = 0; \\ \beta_{k_2 k_4 k_1 k_5 k_3, p_2 k_4 k_1 k_5 k_3}, & \text{if } k_3 k_4 k_1 k_5 k_3 \neq 1 \text{ and } p = 1, \dots, k_3 - 1. \end{array} \right. \end{split}$$

As in the previous case we obtain that case (2_{14}) does not hold.

 (3_{14}) If $\varepsilon_{11}=\alpha_{k_2,p_2}$, $\varepsilon_{12}\in\{\beta_{k_3,p_3},\gamma_{k_3},\delta_{k_3}\}$, and $\varepsilon_{22}\in\{\alpha_{k_5,p_5},\beta_{k_5,p_5},\gamma_{k_5},\delta_{k_5}\}$, then by Theorems 1 and 4 and by the similar calculations as in case (1_{14}) we get that

$$\begin{split} \beta_{k_1,p_1} &= \alpha_{k_2,p_2} \gamma_{k_4} \beta_{k_1,p_1} \varepsilon_{22} \varepsilon_{12} = \\ &= \left\{ \begin{array}{ll} \gamma_{k_2 k_4 k_1 k_5 k_3}, & \text{if } k_3 k_4 k_1 k_5 k_3 = 1 \text{ or } p = 0; \\ \beta_{k_2 k_4 k_1 k_5 k_3, p_2 k_4 k_1 k_5 k_3}, & \text{if } k_3 k_4 k_1 k_5 k_3 \neq 1 \text{ and } p = 1, \dots, k_3 - 1. \end{array} \right. \end{split}$$

As in case (1_{14}) we obtain that case (3_{14}) does not hold.

(4₁₄) If $\varepsilon_{11} = \beta_{k_2,p_2}$, $\varepsilon_{12} = \alpha_{k_3,p_3}$, and $\varepsilon_{22} = \alpha_{k_5,p_5}$, then by Theorems 1, 3, and 4 we have that

$$\begin{split} \beta_{k_1,p_1} &= \beta_{k_2,p_2} \gamma_{k_4} \beta_{k_1,p_1} \alpha_{k_5,p_5} \alpha_{k_3,p_3} = \\ &= \beta_{k_2,p_2} \gamma_{k_4k_1} \alpha_{k_5,p_5} \alpha_{k_3,p_3} = \\ &= \beta_{k_2,p_2} \gamma_{k_4k_1k_5} \alpha_{k_3,p_3} = \\ &= \beta_{k_2,p_2} \gamma_{k_4k_1k_5k_3} = \\ &= \beta_{k_2,p_2} \gamma_{k_4k_1k_5k_3}, \end{split}$$

which implies that $k_2k_4k_1k_5k_3 = k_1$. Hence $k_2 = 1$ which contradicts the definition of the element β_{k_2,p_2} . The obtained contradiction implies that case (4_{14}) does not hold.

(5₁₄) If $\varepsilon_{11} = \beta_{k_2,p_2}$, $\varepsilon_{12} = \alpha_{k_3,p_3}$, and $\varepsilon_{22} \in \{\beta_{k_5,p_5}, \gamma_{k_5}, \delta_{k_5}\}$, then by Theorems 1, 3, and 4 and by the similar calculations as in case (4₁₄) we get that

$$\begin{split} \beta_{k_1,p_1} &= \beta_{k_2,p_2} \gamma_{k_4} \beta_{k_1,p_1} \varepsilon_{22} \alpha_{k_3,p_3} = \\ &= \beta_{k_2k_4k_1k_5k_3,p_2k_4k_1k_5k_3}. \end{split}$$

As in the previous case we obtain that case (5_{14}) does not hold.

(6₁₄) If $\varepsilon_{11} = \beta_{k_2,p_2}$, $\varepsilon_{12} \in {\{\beta_{k_3,p_3}, \gamma_{k_3}, \delta_{k_3}\}}$, and $\varepsilon_{22} \in {\{\alpha_{k_5,p_5}, \beta_{k_5,p_5}, \gamma_{k_5}, \delta_{k_5}\}}$, then by Theorems 1, 3, and 4 and by the similar calculations as in case (4₁₄) we get that

$$\beta_{k_1,p_1} = \beta_{k_2,p_2} \gamma_{k_4} \beta_{k_1,p_1} \varepsilon_{22} \varepsilon_{12} = \beta_{k_2,k_4,k_1,k_5,k_3,p_2,k_4,k_1,k_5,k_3}.$$

As in case (4_{14}) we obtain that case (6_{14}) does not hold.

(15) Suppose to the contrary that there exist positive integers n_1 and $k_1 \geq 2$, and $p_1 \in \{1, \ldots, k_1 - 1\}$ such that the relation $\beta_{k_1, p_1} \mathscr{J} \delta_{n_1}$ holds in $\operatorname{End}(B_{\omega}^{\mathscr{F}})$. By Theorem 3(8) of [9], $\delta_{n_1} \mathscr{D} \gamma_{n_1}$ in $\operatorname{End}^*(B_{\omega}^{\mathscr{F}})$. This implies that $\delta_{n_1} \mathscr{D} \gamma_{n_1}$ in $\operatorname{End}(B_{\omega}^{\mathscr{F}})$. Since $\mathscr{D} \subseteq \mathscr{J}$ and $\mathscr{D} \circ \mathscr{J} \subseteq \mathscr{J}$, we obtain that $\beta_{k_1, p_1} \mathscr{J} \gamma_{n_1}$ in $\operatorname{End}(B_{\omega}^{\mathscr{F}})$, which contradicts statement (14).

We summarise the descriptions of equivalent classes of Green's relations of the semi-group $End(B_{\omega}^{\mathscr{F}})$ in the following theorem.

Theorem 5. Let $\mathscr{F} = \{[0), [1)\}$. Then the following statements hold.

- (1) $L_{\alpha_{k,p}} = R_{\alpha_{k,p}} = H_{\alpha_{k,p}} = D_{\alpha_{k,p}} = J_{\alpha_{k,p}} = \{\alpha_{k,p}\} \text{ in } End(B_{\omega}^{\mathscr{F}}) \text{ for any positive integer } k \text{ and } p \in \{0,\ldots,k-1\}.$
- (2) $L_{\beta_{k,p}} = \{\beta_{k,p}\}$ and $L_{\gamma_m} = L_{\delta_m} = \{\gamma_m, \delta_m\}$ in $End(B_{\omega}^{\mathscr{F}})$ for any positive integers $k \geq 2$, m, and $p \in \{1, \ldots, k-1\}$.
- (3) $\mathbf{R}_{\beta_{k,p}} = \{\beta_{k,p}\}, \ \mathbf{R}_{\gamma_n} = \{\gamma_n\}, \ and \ \mathbf{R}_{\delta_n} = \{\delta_n\} \ in \ \mathbf{End}(\mathbf{B}_{\omega}^{\mathscr{F}}) \ for \ any \ positive integers \ n, \ k \geqslant 2, \ and \ p \in \{1, \ldots, k-1\}.$
- (4) The relation \mathscr{H} on $\operatorname{End}(B_{\omega}^{\mathscr{F}})$ coincides with the equality relation.
- (5) $D_{\beta_{k,p}} = \{\beta_{k,p}\}$ and $D_{\gamma_m} = D_{\delta_m} = \{\gamma_m, \delta_m\}$ in $End(B_{\omega}^{\mathscr{F}})$ for any positive integers $k \geq 2$, m, and $p \in \{1, \ldots, k-1\}$.
- (6) $J_{\beta_{k,p}} = \{\beta_{k,p}\}$ and $J_{\gamma_m} = J_{\delta_m} = \{\gamma_m, \delta_m\}$ in $End(B_{\omega}^{\mathscr{F}})$ for any positive integers $k \geq 2$, m, and $p \in \{1, \ldots, k-1\}$, and hence $\mathscr{D} = \mathscr{J}$ in $End(B_{\omega}^{\mathscr{F}})$.

Proof. Statement (1) follows from Proposition 2(1) and the inclusion relations between Green's relations.

- (2) The equality $\mathbf{L}_{\beta_{k,p}} = \{\beta_{k,p}\}$ follows from statements (2)–(4) of Proposition 2 and statement (1). Also, statements (2), (3) and (5)–(7) of Proposition 2 and statement (1) imply that $\mathbf{L}_{\gamma_m} = \mathbf{L}_{\delta_m} = \{\gamma_m, \delta_m\}$ in $\mathbf{End}(\mathbf{B}_{\omega}^{\mathscr{F}})$ for any positive integers $k \geq 2$, m, and $p \in \{1, \ldots, k-1\}$.
- (3) The equality $\mathbf{R}_{\beta_{k,p}} = \{\beta_{k,p}\}$ follows from statements (8)–(10) of Proposition 2 and statement (1). Also, statements (11) and (12) of Proposition 2 and statement (1) imply the equality $\mathbf{R}_{\gamma_n} = \{\gamma_n\}$. The equality $\mathbf{R}_{\delta_n} = \{\delta_n\}$ follows from statements (12) and (13) of Proposition 2 and statement (1).
 - (4) follows from statements (2) and (3) and the definition of \mathcal{H} .
 - (5) follows from statements (2) and (3) and the definition of \mathcal{D} .
- (6) The equality $J_{\beta_{k,p}} = \{\beta_{k,p}\}$ follows from statements (14) and (15) of Proposition 2 and statement (1).

Next we shall prove that $J_{\gamma_m} = J_{\delta_m} = \{\gamma_m, \delta_m\}$ in $End(B_{\omega}^{\mathscr{F}})$ for any positive integer m, which with the above statements imply that $\mathscr{D} = \mathscr{J}$ in $End(B_{\omega}^{\mathscr{F}})$. We observe

that by statement (5) it is complete to show that $\gamma_n \mathscr{J} \gamma_m$ in $\operatorname{End}(B_{\omega}^{\mathscr{F}})$, $n, m \in \mathbb{N}$, if and only if n = m.

Suppose to the contrary that $\gamma_n \mathscr{J} \gamma_m$ in $\operatorname{End}(B_\omega^{\mathscr{F}})$ for distinct $n,m \in \mathbb{N}$. Without loss of generality we may assume that n < m. Then by the definition of the relation \mathscr{J} there exist $\varepsilon_{11}, \varepsilon_{12}, \varepsilon_{21}, \varepsilon_{22} \in \operatorname{End}(B_\omega^{\mathscr{F}})^1$ such that $\gamma_n = \varepsilon_{11}\gamma_m\varepsilon_{12}$ and $\gamma_m = \varepsilon_{21}\gamma_n\varepsilon_{22}$. By Theorem 3, $\varepsilon_{11}, \varepsilon_{21} \notin \langle \delta \rangle$. By Theorem 4 we get that $\varepsilon_{11} \notin \langle \alpha \rangle \cup \langle \beta \rangle$, and hence $\varepsilon_{11} = \gamma_k$ for some positive integer k. Then by Theorems 3 and 4 the equality $\gamma_n = \varepsilon_{11}\gamma_m\varepsilon_{12} = \gamma_k\gamma_m\varepsilon_{12}$ implies that $n \geqslant m$, which contradicts our assumption.

Remark 2. Theorem 2 of [8], Theorem 3 of [9] and Theorem 5 imply that for an ω -closed family $\mathscr F$ which consists of two nonempty inductive nonempty subsets of ω the following statements holds:

- (1) Green's relations of elements α_{k_1,p_1} and β_{k_2,p_2} in the semigroup $\operatorname{\boldsymbol{End}}^1_*(B^{\mathscr{F}}_\omega)$ of all injective monoid endomorphisms of the semigroup $\operatorname{\boldsymbol{B}}^{\mathscr{F}}_\omega$ coincide with the corresponding their Green's relations in the semigroup $\operatorname{\boldsymbol{End}}(B^{\mathscr{F}}_\omega)$ of all monoid endomorphisms of $\operatorname{\boldsymbol{B}}^{\mathscr{F}}_\omega$.
- (2) Green's relations of elements γ_{n_1} and δ_{n_2} in the semigroup $End_0^*(B_{\omega}^{\mathscr{F}})$ of all non-injective monoid endomorphisms of the semigroup $B_{\omega}^{\mathscr{F}}$ coincide with the corresponding their Green's relations in the semigroup $End(B_{\omega}^{\mathscr{F}})$ of all monoid endomorphisms of $B_{\omega}^{\mathscr{F}}$.

REFERENCES

- A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. I., Amer. Math. Soc. Surveys 7, Providence, R.I., 1961.
- A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. II., Amer. Math. Soc. Surveys 7, Providence, R.I., 1967.
- O. Gutik and O. Lysetska, On the semigroup B_ω which is generated by the family F of atomic subsets of ω, Visn. L'viv. Univ., Ser. Mekh.-Mat. 92 (2021), 34–50.
 DOI: 10.30970/vmm.2021.92.034-050
- 4. O. Gutik and M. Mykhalenych, On some generalization of the bicyclic monoid, Visnyk L'viv. Univ. Ser. Mech.-Mat. 90 (2020), 5–19 (in Ukrainian). DOI: 10.30970/vmm.2020.90.005-019
- O. Gutik and M. Mykhalenych, On group congruences on the semigroup B_ω and its homomorphic retracts in the case when the family F consists of inductive non-empty subsets of ω, Visnyk L'viv. Univ. Ser. Mech.-Mat. 91 (2021), 5–27 (in Ukrainian).
 DOI: 10.30970/vmm.2021.91.005-027
- 6. O. Gutik and M. Mykhalenych, On automorphisms of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ in the case when the family \mathscr{F} consists of nonempty inductive subsets of ω , Visnyk L'viv. Univ. Ser. Mech.-Mat. 93 (2022), 54-65 (in Ukrainian). DOI: 10.30970/vmm.2022.93.054-065
- O. Gutik and O. Popadiuk, On the semigroup B_ω^{Fn} which is generated by the family F_n of finite bounded intervals of ω, Carpathian Math. Publ. 15 (2023), no. 2, 331–355.
 DOI: 10.15330/cmp.15.2.331-355
- O. Gutik and I. Pozdniakova, On the semigroup of injective monoid endomorphisms of the monoid B^F_ω with the two-elements family F of inductive nonempty subsets of ω, Visnyk L'viv. Univ. Ser. Mech.-Mat. 94 (2022), 32-55. DOI: 10.30970/vmm.2022.94.032-055

- 9. O. Gutik and I. Pozdniakova, On the semigroup of non-injective monoid endomorphisms of the semigroup $\boldsymbol{B}_{\omega}^{\mathcal{F}}$ with the two-element family \mathscr{F} of inductive nonempty subsets of ω , Visnyk L'viv. Univ. Ser. Mech.-Mat. 95 (2023), 14–27. DOI: 10.30970/vmm.2023.95.014-027
- O. Gutik, O. Prokhorenkova, and D. Sekh, On endomorphisms of the bicyclic semigroup and the extended bicyclic semigroup, Visn. L'viv. Univ., Ser. Mekh.-Mat. 92 (2021), 5-16 (in Ukrainian). DOI: 10.30970/vmm.2021.92.005-016
- M. Lawson, Inverse semigroups. The theory of partial symmetries, World Scientific, Singapore, 1998. DOI: 10.1142/3645
- 12. O. Lysetska, On feebly compact topologies on the semigroup $\mathbf{B}_{\omega}^{\mathscr{F}_1}$, Visnyk L'viv. Univ. Ser. Mech.-Mat. **90** (2020), 48–56. DOI: 10.30970/vmm.2020.90.048-056
- 13. M. Petrich, Inverse semigroups, John Wiley & Sons, New York, 1984.
- 14. O. Popadiuk, On endomorphisms of the inverse semigroup of convex order isomorphisms of a bounded rank which are generated by Rees congruences, Visnyk L'viv. Univ. Ser. Mech.-Mat. 93 (2022), 34-41. DOI: 10.30970/vmm.2022.93.034-041
- V. V. Wagner, Generalized groups, Dokl. Akad. Nauk SSSR 84 (1952), 1119–1122 (in Russian).

Стаття: надійшла до редколегії 15.05.2023 доопрацьована 22.12.2023 прийнята до друку 10.01.2024

ПРО НАПІВГРУПУ УСІХ МОНОЇДАЛЬНИХ ЕНДОМОРФІЗМІВ НАПІВГРУПИ $B^{\mathscr T}_\omega$ З ДВОЕЛЕМЕНТНОЮ СІМ'ЄЮ $\mathscr F$ ІНДУКТИВНИХ НЕПОРОЖНІХ ПІДМНОЖИН У ω

Олег ГУТІК, Інна ПОЗДНЯКОВА

Львівський національний університет імені Івана Франка, вул. Університетська 1, 79000, м. Львів e-mails: oleg.gutik@lnu.edu.ua, pozdnyakova.inna@gmail.com

Вивчено структуру напівгрупи $End(B_{\omega}^{\mathscr{F}})$ усіх моноїдальних ендоморфізмів напівгрупи $B_{\omega}^{\mathscr{F}}$, де ω -замкнена сім'я \mathscr{F} складається з двох непорожніх індуктивних підмножин у ω . Описано елементи напівгрупи $End(B_{\omega}^{\mathscr{F}})$, напівгрупову операцію та відношення Ґріна на напівгрупі $End(B_{\omega}^{\mathscr{F}})$.

Ключові слова: біциклічний моноїд, інверсна напівгрупа, біциклічне розширення, ендоморфізм, ідеал, відношення Ґріна.