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Нову тернарну фазу Zr1-xGaxRu2 (x = 0,18) синтезовано методом електродугової плавки з 

подальшим відпалом при 870 К упродовж 1400 год. За допомогою Х-променевого 

дифракційного дослідження повнопрофільним методом Рітвельда порошку та 

енергодисперсійної Х-променевої спектроскопії зразка Zr36Ru58Ga6 вивчено кристалічну 

структуру Zr1-xGaxRu2 (x = 0,18). Ґалід кристалізується у структурному типі фази Лавеса 

MgZn2, просторова група P63/mmc, періоди елементарної комірки а = 5,1399(1), с = 8,4888(2) 

Å. Атоми ґалію заміщують більші за розмірами атоми цирконію у положенні 4f, утворюючи з 

ними статистичну суміш складу М = 0,82 Zr + 0,18 Ga. Атоми рутенію займають у структурі 

положення 2a та 6h. Ймовірно, незначне легування ґалієм (6 ат. %) високотемпературної 

бінарної сполуки ZrRu2 зі структурою MgZn2 (інтервал існування 2098–1558 К) приводить до її 

стабілізації за нижчих температур з утворен-ням фази Zr1-xGaxRu2 (x = 0,18). Уточнено межі 

твердого розчину RuGa1-xZrx: СТ CsCl, ПГ Pm-3m, 0 ≤  x ≤ 0,50; a = 3,0101(1) – 3,2264(2) Ǻ. 
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1. Вступ 

Рутеній та його сполуки з цирконієм за низьких температур переходять у 

надпровідний стан: TС(Ru) = 0,49 K, TС(ZrRu) = 3,0 K, TС(ZrRu2) = 1,84 K [1–3]. Тернарні 

сплави і сполуки, які б містили Zr, Ru та інший надпровідник, наприклад, Ga, що 

характеризується температурами Кюрі TС(αGa) = 0,9 К; TС(βGa) = 6 К [4], також 

можуть бути перспективними для пошуку нових матеріалів з надпровідними 

властивостями. 

У літературі є відомості про існування тернарних сполук ZrRuxGa2–x  
(0,60 < x < 0,96) (структурний тип (СТ) MgZn2, просторова група (ПГ) P63/mmc,  
a = 5,2475(5)–5,2557(1), c=8,3923(7)–8,2854(1) Å [5]; Zr6RuxGa23-x, (6,41 < x < 9,89) (СТ 

Th6Mn23, ПГ Fm-3m, a = 12,4627(1)–12,5148(1) Å) [6, 7] та твердих розчинів на основі 

бінарних сполук RuGa та ZrRu зі структурою типу CsCl (ПГ Pm-3m) [8]. Крім того, ми 

виявили [8] в окремих фазах нехарактерне взаємозаміщення атомів цирконію 

(металічний атомний радіус rZr = 1,60 Å) та ґалію (rGa = 1,35 Å), які суттєво відрізняються 

своїми розмірами [9]. Зокрема, бінарна сполука RuGa розчиняє близько 20 ат. % Zr,  
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утворюючи твердий розчин RuGa1-xZrx (0 ≤ x ≤ 0,40): СТ CsCl, ПГ Pm-3m, a = 3,0101(1)–

3,16855(8) Å, а розчинність Ga в інтерметаліді ZrRu досягає 13 ат. %: Zr1-xGaxRu  
(0 ≤ x ≤ 0,26), СТ CsCl, ПГ Pm-3m,  a = 3,2530(1)–3,19559(9) Å.  

Згідно з діаграмою стану [10, 11] у системі Zr–Ru існують дві сполуки: ZrRu 

(СТ CsCl, ПГ Pm-3m) і ZrRu2 (СТ MgZn2, ПГ P63/mmc), які мають невеликі області 

гомогенності до 3 та 5 ат. % Zr/Ru, відповідно. Cполука ZrRu2 існує в обмеженому 

температурному інтервалі від 2098 до 1558 К. Під час дослідження потрійних сплавів 

системи Zr–Ru–Ga, гомогенізованих при 870 К, в області, що прилягає до сполуки 

ZrRu2, ми виявили нову сполуку Zr1-xGaxRu2 (x = 0,18), яка є у рівновазі з твердими 

розчинами Zr1-xGaxRu (0 ≤ x ≤ 0,26), RuGa1-xZrx (0 ≤ x ≤ 0,50) та Ru. У цій праці наведено 

результати вивчення її кристалічної структури.  

 

2. Матеріали та методика експерименту 

Зразки для дослідження готували шляхом сплавлення шихти із компактних 

металів високої чистоти – цирконію (99,99 мас. % Zr), рутенію (99,95 мас. % Ru) та 

ґалію (99,99 мас. % Ga) в електродуговій печі на мідному, охолоджуваному водою 

поді з вольфрамовим електродом в атмосфері очищеного аргону. Для гомогенізації 

сплавів їх відпалювали у запаяних під вакуумом кварцових ампулах за температури 

870 К протягом 1400 год з подальшим гартуванням ампул у холодній воді.   

Фазовий аналіз сплавів проводили за масивом даних дифракції  
Х-випромінювання, одержаних за допомогою порошкових дифрактометрів  
ДРОН-2.0М (Fe Kα-випромінювання) та STOE STADI P (Cu Kα1-випромінювання). 

Кристалічну структуру фаз уточнювали методом порошку з використанням пакетів 

програм WinCSD [12] та FullProf [13]. 

Для підтвердження атомного співвідношення елементів у кожній фазі 

використовували метод енергодисперсійної Х-променевої спектроскопії (ЕДХС) у 

поєднанні з растровим електронним мікроскопом Tescan Vega 3 LMU, обладнаним 

детектором Oxford Instruments Aztec ONE X-Max
N
20. Точність вимірювань ЕДХС 

аналізу становить 1 ат. % визначуваного елемента. 

 

3. Результати досліджень та їх обговорення 

ЕДХС аналіз та аналіз Х-променевих дифракційних даних зразка складу 

Zr36Ru58Ga6 засвідчив наявність трьох фаз (рис. 1, 2). Деталі уточнення 

дифрактограми зразка Zr36Ru58Ga6 (рис. 2) наведено в табл. 1. Координати атомів та 

їхні ізотропні теплові параметри зміщення подано у табл. 2, міжатомні віддалі та 

координаційні числа атомів – у табл. 3. Варто зазначити, що фазовий склад сполук 

RuGa1-xZrx (x = 0,50), Zr1-xGaxRu2 (x = 0,18), Zr1-xGaxRu (x = 0,06)  визначено методом 

ЕДХС (рис. 1) і підтверджено розрахунком їхніх кристалічних структур методом 

порошку. 
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Рис. 1. Мікроструктура сплаву Zr36Ru58Ga8  

та результати ЕДХС аналізу його фазових складових 

Fig. 1. Microstructure of alloy Zr36Ru58Ga8  

and the results of EDXS analysis of the detected phases 

 

 
Рис. 2. Експериментальна (кружечки), теоретична (суцільна лінія) та різницева (внизу) 

дифрактограми трифазного зразка складу Zr36Ru58Ga6. Уточнені положення піків hkl фаз 

наведено вертикальними лініями: 1 – RuGa1-xZrx (x = 0,50);  

2 – Zr1-xGaxRu2 (x = 0,18); 3 – Zr1-xGaxRu (x =0,06) 

Fig. 2. Experimental (dots), calculated (solid line) and differential (bottom line) XRD profiles 

for alloy Zr36Ru58Ga6. Refined positions of reflexions hkl of phases are indicated by vertical lines:  

1 – RuGa1-xZrx (x = 0,50); 2 – Zr1-xGaxRu2 (x = 0,18); 3 – Zr1-xGaxRu (x =0,06) 
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Таблиця 1 

Деталі уточнення дифрактограм зразка складу Zr36Ru58Ga6 

Table 1 

Characteristics of refinement of XRD profile of the sample Zr36Ru58Ga6 

Склад фаз Zr0,82Ga0,18Ru2 RuGa0,5Zr0,5 Zr0,94Ga0,06Ru 

Вміст фази у зразку, % 60 30 10 

Символ Пірсона; Z hP12; 4 cP2; 1 cP2; 1 

Просторова група P63/mmc (№ 194) Pm-3m (№ 221) Pm-3m (№ 221) 

Структурний тип MgZn2 СsCl СsCl 

Параметри елементарної комірки:    

a, Å 5,1399(1) 3,2264(2) 3,2493(6) 

c, Å 8,4888(2)   

V, Å3 194,220(2) 33,5857(2) 34,3059(2) 

Обчислена густина, г/см3 8,968 9,394 8,752 

Випромінювання; довжина хвилі, 

Å 

CuKα1; 1,54056 

2max; sinθ/λmax 110,58; 0,5336 

Крок детектора 2 (град);  

час зйомки (с) 

0,015;  

350 

Кількість уточнюваних 

параметрів 

8 2 2 

Фактори розбіжності (%): RB(I); RP  7,24; 9,71 4,92; 9,71 5,20; 9,71 

 

 

Таблиця 2  

Координати та ізотропні параметри зміщення атомів у структурі Zr1-xGaxRu2 (x = 0,18) 

Table 2 

Coordinates and isotropic shifts of atoms in the structure of Zr1-xGaxRu2 (x = 0.18) 

Атом ПСТ x y z Bізо 

M* 4f 1/3 2/3 0,5636(4) 1,05(1) 

Ru1 2a 0 0 0 1,00(1) 

Ru2 6h 0,1697(5) 0,3397(5) 1/4 1,40(1) 

* Статистична суміш 0,82Zr + 0,18Ga. 

 

 

У структурі Zr1-xGaxRu2 (x = 0,18) атоми ґалію заміщують більші за розмірами 

атоми цирконію, утворюючи з ними статистичну суміш складу М = 0,82Zr + 0,18Ga. 

Подібне взаємозаміщення атомів Zr/Ga відбувається і в структурі протяжного 

твердого розчину RuGa1-xZrx (0 ≤ x ≤ 0,50) на основі сполуки RuGa зі структурою 

типу CsCl [8]. Уточнення протяжності твердого розчину у цій праці виявило, що 

вміст цирконію у ньому становить 25 ат. %, а граничний склад RuGa0,5Zr0,5 має період 

комірки a = 3,2264(2) Ả (табл. 1). Для порівняння, для складу RuGa0,6Zr0,4, за 

результатами дослідження [8], параметр елементарної комірки a = 3,1685 Ả. 

Натомість у структурі тернарної сполуки ZrRuxGa2-x (0,60 < x < 0,96) зі структурою  
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фази Лавеса типу MgZn2 та значно вищим вмістом галію статистична суміш близьких 

за розміром атомів Ru/Ga утворюється у положеннях 2a та 6h [5]. Ця сполука, на 

відміну від дослідженої Zr1-xGaxRu2 (x = 0,18), має обмежену область гомогенності від 

34,6 до 46,6 ат. % Ga.  
Таблиця 3 

Міжатомні віддалі ( та координаційні числа (КЧ) атомів  

у структурі Zr1-xGaxRu2 (x = 0,18) 

Table 3 

Interatomic distances ( and coordination numbers (CN) of atoms 

in the structure of Zr1-xGaxRu2 (x = 0.18)  

Атоми , нм КЧ Атоми , нм КЧ 

M – 3Ru2 3,0125 (6)  Ru1  – 2Ru1 2,533(3)  

 – 3Ru1 3,023(3)    – 2Ru2 2,600(1)  

 – 6Ru2 3,024(3)  16  – 2Ru1 2,605(3) 12 

 – 3М 3,147 (2)    – 2М 3,023(3)  

 – М 3,191(5)   – 4М 3,024(3)  

Ru2 – 6Ru1 2,600(1)       

 – 6М 3,0125(6)   12     

 

Елементарну комірку галіду Zr1-xGaxRu2 (x = 0,18) та координаційні поліедри 

(КМ) атомів зображено на рис. 3. Координаційний поліедр (КП) атомів  
M – шістнадцятивершинник складу M@M4Ru12. Координаційне число обох положень 

атомів рутенію дорівнює 12, а КП – ікосаедри Ru1@M6Ru6 та Ru2@M6Ru6 

однакового складу, проте різної симетрії – тригональної та ромбічної, відповідно. 

Міжатомні віддалі Ru–Ru зі значеннями від 2,533 до 2,605 Å (табл. 3) є проміжними 

між сумою ковалентних (2х1,25 = 2,50 Å) та металічних (2х1,325 = 2,65 Å) радіусів 

атомів рутенію. На відміну від Ru–Ru міжатомні віддалі M–Ru у структурі є 

більшими за суму металічних радіусів цирконію та рутенію (1,60+1,325 = 2,925 Å). 

 
Рис. 3. Кристалічна структура сполуки Zr1-xGaxRu2 (x = 0,18) та координаційні поліедри атомів 

Fig. 3. Crystal structure of Zr1-xGaxRu2 (x = 0,18) and coordination polyhedra of atoms 

 

M 
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Отримані результати свідчать про те, що, ймовірно, незначне легування ґалієм 

(6 ат. %) високотемпературної бінарної сполуки ZrRu2 зі структурою типу MgZn2, яка 

існує в обмеженому температурному інтервалі від 2098 до 1558 К [10, 11], стабілізує 

її до нижчих температур з утворенням фази  Zr1-xGaxRu2 (x = 0,18). Можливо також, 

що фаза Zr1-xGaxRu2 (x = 0,18) є стабілізованою галієм частиною твердого розчину 

галію у бінарній сполуці ZrRu2. Це припущення потребує додаткового вивчення 

зразків у області температур від 870 К до температур інтервалу існування ZrRu2.  

Структури фаз Лавеса, гексагональна MgZn2 (C14), кубічна MgCu2 (C15) і 

гексагональна MgNi2 з подвоєним періодом ґратки с порівняно з С14 (C36) часто 

трапляються серед бінарних і тернарних інтерметалічних сполук RM2, R(M,M’)2 і 

(R,M’)M2 (R = рідкісноземельний елемент, Zr, Hf; M, M’ = d-, p-елемент) [14]. 

Фактори, що визначають структурну стабільність цієї групи сполук, уже давно 

викликають інтерес учених. Зокрема, значну увагу приділено впливу легування 

третім компонентом на стабілізацію бінарних фаз Лавеса [15–17]. У літературі 

йшлося про такі морфотропні ряди бінарних та тернарних фаз Лавеса: C15 → C14 

(приклади: HfV2 → Hf(V,Nb)2 [16], ScM2 → ScM1,5-xSi0,5+x (M = Co, Ni) [18]), C15 → 

C36 (ZrCo2 → Zr0,4Mn0,6Co2 [16]), C14 → C15 (MgZn2 → Mg(Zn,Co)2 [16]), C14 → C36 

→ C15 (MgZn2 → Mg(Zn,Ag)2 → Mg(Zn,Ag)2 [16]), C14 → C15 → C14 (ScFe2 → 

Sc(Fe,Si)2 → ScFe1,5-xSi0,5+x [18]). За систематичного дослідження системи  
Y–Zr–Ni [19, 20] виявлено ще один морфотропний ряд фаз Лавеса між бінарним 

інтерметалідом Y0,95Ni2 [21] (структурий тип TmNi2 – дефектна надструктура до типу 

MgCu2 з подвоєним параметром ґратки a та впорядкованими вакансіями в R-підґратці 

[22]), що позначається як C15´, і тернарною сполукою YxZr1-xNi2 (0,12 ≤ x ≤ 0,20; 

СТ MgCu2) [19]. Подібні морфотропні ряди C15' → C15 трапляються і в потрійних 

системах Y–Ni–Cu та Y–Ni–Fe [23, 24].  

Як було зазначено, у системі Zr–Ru–Ga, крім дослідженої фази Zr1-xGaxRu2 

(x = 0,18), утворюється ще одна тернарна сполука зі структурою  типу MgZn2 – 

ZrRuxGa2-x (0,60 < x < 0,96) [5]. Однак ці дві фази не є в рівновазі одна з одною і не 

утворюють у потрійній системі морфотропного ряду. У системі Ho–Ru–Ga також 

існують дві сполуки з фазами Лавеса типу С14: HoRuxGa2-x (0,50 < x < 0,84) та 

HoRuGa [25]. Сплави в околі цих фаз характеризуються майже постійним, 

незалежним від температури електроопором і можуть використовуватись як 

резистивні матеріали [26]. Враховуючи подібність між системами РЗМ–Ru–Ga та  
Zr–Ru–Ga, можна припустити, що фази Лавеса в системі Zr–Ru–Ga також матимуть 

цікаві електричні та надпровідні властивості. 

 

4. Висновки 

Нову тернарну фазу Zr1-xGaxRu2 (x = 0,18) синтезовано методом електродугової 

плавки вихідних компонентів з подальшим відпалом зразка при 870 К упродовж 

1400 год. За допомогою Х-променевого дифракційного дослідження 

(повнопрофільний метод Рітвельда) порошку та ЕДХ спектроскопії зразка 

Zr36Ru58Ga6 вивчено кристалічну структуру Zr1-xGaxRu2 (x = 0,18): структурний тип 

MgZn2, просторова група P63/mmc, а = 5,1399(1), с = 8,4888(2) Å. Атоми ґалію та 

цирконію утворюють статистичну суміш складу М = 0,82Zr + 0,18Ga у положенні 4f, 

а атоми рутенію займають положення 2а та 6h. Ймовірно, незначне легування ґалієм 

(6 ат. %) високотемпературної бінарної сполуки ZrRu2 (температурний інтервал 
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існування 2098–1558 К, структурний тип MgZn2) приводить до її стабілізації за 

нижчих температур. Уточнено межі твердого розчину RuGa1-xZrx: СТ CsCl,  
ПГ Pm-3m, 0 ≤  x ≤ 0,50; a = 3,0101(1)–3,2264(2) Ǻ.  
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THE CRYSTAL STRUCTURE OF STABILIZED BY GALLIUM  

LAVES PHASE Zr1-xGaxRu2 (x = 0.18) 
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The new ternary phase Zr1-xGaxRu2 (x = 0.18) was synthesized by arc melting the components 

followed by annealing at 870 K for 1400 h. Its crystal structure was studied by the X-ray diffraction 

(full-profile Rietveld mode) and energy-dispersive X-ray spectroscopy of the Zr36Ru58Ga6 sample: 

structure type MgZn2, space group P63/mmc, a = 5.1399(1), c = 8.4888(2) Å. Gallium atoms replace 

larger zirconium atoms in the 4f position, forming a statistical mixture of composition  
M = 0.82Zr + 0.18 Ga. Ruthenium atoms occupy positions 2a and 6h in the structure. Ru–Ru 

distances with the values from 2.533 to 2.605 Å are intermediate between the sum of covalent  
(2x1.25 = 2.50 Å) and metallic (2x1.325 = 2.65 Å) radii of ruthenium atoms. M–Ru distances in the 

structure are larger than the sum of the metallic radii of zirconium and ruthenium  
(1.60 + 1.325 = 2.925 Å). Probably, a slight gallium doping (6 at. %) of the HT binary compound 

ZrRu2 with the MgZn2-type structure (existence temperature interval 2098–1558 K) leads to its 

stabilization at lower temperatures with the formation of the Zr1-xGaxRu2 (x = 0.18) phase. The limits 

of the neighbor RuGa1-xZrx solid solution were refined: CsCl-type structure, space group Pm-3m,  
0 ≤ x ≤ 0.50; a = 3.0101(1) – 3.2264(2) Å. 

 

Keywords: intermetallic compounds, crystal structure, ternary system, phase equilibria.   
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