Zanevych O., Kukharskyy V.
102 ISSN 2078-5097. Bicu. JIbsis. yu-ty. Cep. npuksa. marem. ta indg. 2025. Bun. 34

UDC 519.6 http://dx.doi.org/10.30970,/vam.2025.34.13638

SOLVING UNIVERSITY TIMETABLING PROBLEMS USING
CONSTRAINT PROGRAMMING WITH ADAPTIVE LOCAL
SEARCH AND ELITE SOLUTION MEMORY

O. Zanevych, V.Kukharskyy

ITvan Franko National University of Luviv,
1, Universytetska str., 79000, Lviv, Ukraine,
e-mail: oleh.zanevych@Inu.edu.ua, vitaliy.kukharskyy@lnu.edu.ua

University course timetabling is a complex combinatorial optimization problem that
requires balancing hard feasibility requirements with diverse institutional and stakeholder
preferences. This paper introduces a hybrid algorithm that integrates Constraint Pro-
gramming (CP) with Adaptive Local Search (ALS) to effectively address both feasibility
and solution quality. CP provides a rigorous mechanism for generating feasible initial
solutions that satisfy strict requirements such as room capacities and conflict avoidance,
while ALS adaptively explores neighborhoods to refine solution quality with respect to
soft constraints. The approach incorporates adaptive neighborhood selection based on the
pursuit algorithm, enabling the search to dynamically identify and prioritize effective oper-
ators. It further employs a multi-start framework enhanced by elite solution memory and
path relinking strategies, ensuring robust intensification around promising solutions while
maintaining diversification across the search space. To improve efficiency, the algorithm
integrates constraint caching and incremental evaluation techniques that significantly re-
duce computational overhead. Experimental results on diverse datasets, demonstrate the
method’s consistent ability to generate feasible, high-quality timetables. The proposed
approach advances the state of the art by uniting guaranteed feasibility with adaptive op-
timization, offering a practical and scalable solution for real-world university scheduling
systems.
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1. INTRODUCTION

University course timetabling is a recurring optimization challenge for higher edu-
cation institutions worldwide. It requires assigning courses, instructors, and student
groups to limited rooms and time slots under dense constraints, while balancing diverse
preferences [1-3]. The problem’s complexity and its impact on efficiency, student out-
comes, and faculty satisfaction make it a central topic in operations research and artificial
intelligence [4, 5].

The University Course Timetabling Problem (UCTP) is difficult due to heterogeneous
resource needs and conflicting stakeholder goals. Additional factors such as multi-campus
logistics, flexible curricula, and growing enrollments further enlarge the search space and
demand automated solutions [6, 7]. Constraints are usually divided into hard con-
straints (e.g., avoiding double-booking) and soft constraints (e.g., minimizing idle
periods, respecting teacher preferences) [1, 2, 4].

UCTP is formally NP-hard [8]. Exact methods like Integer Linear Programming
work only for small cases, while real-world problems require heuristics and metaheuristics
such as genetic algorithms, simulated annealing, tabu search, or hybrid methods [5, 6, §].
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Recent research trends emphasize adaptive approaches capable of producing high-quality
solutions within practical time limits.

This paper introduces a novel hybrid algorithm that combines Constraint
Programming (CP) with Adaptive Local Search (ALS) and an Elite Solution
Memory. CP ensures feasible initial solutions that satisfy strict requirements, while
ALS explores neighborhoods adaptively to refine solution quality. The Elite Solution
Memory component further strengthens intensification by reusing and recombining high-
quality solutions. Together, these innovations offer a powerful framework for addressing
complex real-world timetabling scenarios.

2. LITERATURE REVIEW

The university timetabling domain encompasses a family of complex scheduling
problems, generally divided into examination and course timetabling. Examination
timetabling focuses on condensed exam periods to avoid student conflicts [9, 10], while
course timetabling-our focus-allocates lectures, labs, and tutorials across a semester,
balancing multiple resources and stakeholder preferences [11, 12]. A central concept
is the distinction between hard constraints (e.g., avoiding double-booked rooms or ex-
ceeding capacities) and soft constraints (e.g., compact schedules), usually optimized via
weighted objectives [11, 12]. More recent studies refine this classification by recognizing
“semi-hard” constraints, which remain negotiable but highly prioritized [13]. Numer-
ous UCTP variants exist, including curriculum-based versus post-enrollment formula-
tions [14], multi-campus timetabling, dynamic adaptation to disruptions, multi-objective
optimization, and robust or stochastic models for uncertain enrollments [12, 14].

Exact methods guarantee optimality but rarely scale due to the NP-hardness of UCTP
[15]. Integer Linear Programming (ILP) provides precise formulations yet struggles with
realistic instance sizes even when aided by decomposition and symmetry-breaking, while
Constraint Programming (CP) effectively enforces feasibility using global constraints but
is less suited for optimization [15]. Branch-and-Bound frameworks with improved bound-
ing and machine learning guidance extend capabilities but remain limited in practical
scenarios. As a result, metaheuristics have become the dominant approach for large-
scale timetabling, producing high-quality solutions within practical timeframes [16-18].
Population-based techniques such as Genetic Algorithms evolve solutions across genera-
tions, enhanced by feasibility-preserving operators, memetic hybrids with local search, di-
versity mechanisms, decomposition, and GPU parallelization [6-8, 19]. Trajectory-based
strategies explore from a single solution: Simulated Annealing employs probabilistic ac-
ceptance and adaptive penalties [20, 21], Tabu Search relies on adaptive memory and
hybrid intensification-diversification strategies [22], and Variable Neighborhood Search
systematically shifts neighborhoods, often embedded in hyper-heuristic frameworks for
curriculum-based timetabling [23].

Recent research emphasizes hybrid and adaptive methods that combine exact and
heuristic strengths. Notably, CP is integrated with metaheuristics such as Adaptive Large
Neighborhood Search (ALNS), where CP ensures feasibility and local search enhances
quality [24]. Matheuristics embed ILP or CP into heuristic search via decomposition
or fix-and-optimize, enabling larger instances to be tackled. Adaptivity plays an in-
creasingly central role: operator selection frameworks-from credit-based ALNS to Multi-
Armed Bandits and Deep Reinforcement Learning-guide heuristic choice effectively [25],
while hyper-heuristics learn generalized strategies to select or generate heuristics dynam-
ically [26]. Memory-based mechanisms also strengthen performance, including coopera-
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tive metaheuristics exchanging solutions and elite retention systems such as HyperDE [20,
27]. Overall, the literature shows a progression from isolated heuristics toward adaptive,
hybrid methods that integrate exact optimization, metaheuristics, and machine learning,
forming the foundation for CP-LS approaches with elite solution memory explored in
this study.

3. PROBLEM DEFINITION

The university course timetabling problem (UCTP) is a combinatorial optimization
problem that assigns courses to rooms and time slots while satisfying constraints and
optimizing multiple criteria. We present a mathematical formulation that captures the
essential elements implemented in our CP-LS hybrid approach.

The problem is defined over the following sets:

C ={e1,ca,...,cn} (courses)
L={ly,ls,....l;n} (lecturers)

G ={g1,92, ..., 9p} (student groups)
R ={ri,re,...,7q} (rooms)

T = {t1,t2,...,ts} (time slots)

where each time slot ¢; € T represents a specific period on a given day. The total number
of time slots is s = |D| x |P| with D days and P periods per day.

For each course ¢ € C, we define:

dur.: duration in consecutive periods
meet.: number of weekly meetings required
lec. € L: assigned lecturer

G. C G: enrolled student groups

Fe¢: required room features

For each room r € R: cap, (capacity) and F, (available features).

For lecturers and student groups: U;,U, C T represent undesirable time slots with
associated penalty weights pi, pg.

The decision variable is:

1 if course c is assigned to room r at time ¢
Lert = .
0 otherwise

3.1. HARD CONSTRAINTS

Hard constraints ensure timetable feasibility and must be satisfied:

H1. Complete Assignment: Each course must be scheduled exactly the required
number of times:

Z Zaccrt = meet. - dure, VYceC

reRteT
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H2. Resource Conflicts: No conflicts for rooms, lecturers, or student groups:

Z Tt <1, Vre€ R,t €T (room)

ceC
Z Tert + Z Tore <1, Ve, ilec, =leca,t €T (lecturer)
reR reER
Z Tert + Z Tt <1, Ve, :G.NGe #0,t €T (groups)
reR re€R

H3. Capacity and Features: Rooms must have sufficient capacity and required
features:

Z sizeg < capy - Tepy, VeeEC,r € Rt €T
9g€Ge
Tt =0, VeeCire RiteT : F. L F»

H4. Consecutiveness: Multi-period courses must occupy consecutive slots within
the same day and room.

3.2. SOFT CONSTRAINTS

Soft constraints represent preferences that improve timetable quality:
S1. Minimize Gaps: Reduce idle time between consecutive classes for lecturers
and student groups:

Ppap = > - gaps() + Y vy - gaps(g)
lelL geG

S2. Time Preferences: Avoid undesirable time slots:

Ppref = Z Z Z Plec, * Tert + Z Z Pg * Tert

ceCreR |tEUec, g€G. tely

S3. Balanced Distribution: Limit daily class load and distribute evenly across
the week:

Puist = Z Bg - max(0, daily _classesy — Tg)2 + Z 0; - Var(weekly _load;)
geG leL

S4. Room Stability: Minimize room changes for multi-meeting courses.

3.3. OBJECTIVE FUNCTION
The objective function combines hard and soft constraint violations:

min f(X) = Whard - Z ’Uh(X) + Wsoft . Z P, (X)
heH s€S
where v,(X) counts violations of hard constraint h, Ps(X) measures soft constraint

penalty s, and Wharq > Wios: ensures feasibility takes precedence (typically Whera =
1000, Weopt = 1).
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For feasible solutions (), <4, vn(X) = 0), the objective reduces to minimizing soft
constraint penalties, balancing stakeholder preferences through weighted aggregation.
The hierarchical structure guides both the CP phase (achieving feasibility) and the LS
phase (optimizing quality).

4. PROPOSED CP-LS HYBRID ALGORITHM

The proposed CP-LS hybrid algorithm combines the systematic search capabilities of
constraint programming with the flexibility and efficiency of local search metaheuristics.
This section presents the high-level architecture and describes how these complemen-
tary paradigms are integrated to solve large-scale university course timetabling problems
effectively.

4.1. ALGORITHM OVERVIEW

Algorithm 1 CP-LS Hybrid Framework

1: Input: Problem instance P = (C, L, G, R, T, constraints)
2: Output: Best feasible schedule X*

3:

4: X* 05 f* + o0

5: for i = 1 to Ngtorts do

6: // Constraint Programming Phase

7: X ¢ GENERATEINITIALSOLUTION(P)

8: if X is feasible then

9: // Local Search Phase
10: Ximproved < ADAPTIVELOCALSEARCH (X))
11: if f(Ximproved) < f* then
12: X" Ximprmjed; f* — f(Ximproved)
13: end if
14: end if
15: UPDATEPROBLEMORDERING(P) // Feedback to CP
16: end for
17: return X*

The algorithm consists of five main components operating in a coordinated manner:

1. Problem Instance Manager: This component handles the input data struc-
tures, including courses, lecturers, student groups, rooms, and time slots. It provides
efficient access methods and maintains consistency throughout the solution process.

2. Constraint Programming Engine: Responsible for generating feasible initial
solutions through systematic domain reduction and constraint propagation. It employs
variable and value ordering heuristics tailored to the timetabling domain.

3. Local Search Optimizer: Implements the adaptive neighborhood search with
multiple move operators. This component iteratively improves solutions by exploring the
solution neighborhood intelligently.

4. Adaptive Control System: Manages the selection of neighborhood operators
based on their historical performance, implementing the adaptive pursuit mechanism
that learns during the search process.
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5. Solution Memory: Maintains elite solutions for intensification through path
relinking and provides diversification mechanisms when the search stagnates.

The integration between constraint programming and local search follows a sequential
hybridization pattern with feedback mechanisms.

Phase Transition Mechanism:

The transition from CP to LS occurs when a complete feasible assignment is found.
The CP phase focuses exclusively on satisfying hard constraints, while the LS phase
optimizes soft constraints while maintaining feasibility:

CP Phase: min Z vp(X) — LS Phase: min Py (X) s.t. vp(X) =0,YVh € H
heH

Information Flow:
The algorithm facilitates bidirectional information flow between components:

1. CP — LS: The constraint programming phase provides:

o Initial feasible solutions with different characteristics
o Constraint violation patterns that guide neighborhood design
e Domain knowledge encoded in variable/value ordering

2. LS — CP: The local search phase provides:

e Feedback on solution quality distribution
e Identified bottlenecks in the solution space
e Learned patterns for subsequent CP iterations

Algorithmic Synergy:
The hybrid approach exploits the complementary strengths of both paradigms:

Effectivenesspypriqa = Feasibilityop x  Quality g
—_——— —_———

Systematic search ~ Optimization power

The constraint programming component ensures systematic exploration of the feasi-
ble region, while local search provides the optimization capability to find high-quality
solutions within this region. This synergy is particularly effective for highly constrained
timetabling instances where finding any feasible solution is challenging.

Restart Strategy:

The multi-start framework incorporates learning between iterations:

Pit1 = T(P;, X;, performance;)

where T represents a transformation function that modifies the problem representation
based on previous solutions and performance metrics, such as reordering courses or ad-
justing heuristic parameters.

This integrated architecture enables the algorithm to tackle problems that neither
pure CP nor pure LS approaches can solve effectively alone, providing both feasibility
guarantees and solution quality optimization within practical time limits.
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4.2. INITIAL SOLUTION CONSTRUCTION (CP PHASE)

The constraint programming phase constructs feasible solutions through systematic
variable instantiation with constraint propagation, prioritizing feasibility over optimality.

Variable and Value Ordering

Courses are ordered dynamically by instantiation difficulty:

| |Gel - > geq, size
difficulty(c) = |domga€in(c)| g

where |domain(c)| represents valid room-time combinations for course c¢. Courses with
many students and few valid assignments are scheduled first.
For each course, assignments are scored using:

score(c,7,t) = a1 - Spref(€,t) + @2 - Stime(t) + a3 - Scap(c, ) + o - Stuture(c, 7, 1)

where components penalize undesirable time slots (Spref), prefer morning periods
(Stime), utilize larger rooms (S¢qp), and minimize future conflicts (Sfyture). Lower scores
indicate better assignments.

Constraint Propagation

Forward checking eliminates inconsistent values after each assignment:

Do < Do\ {(r,t) : violates_constraint(c’,r,t,c,r*,t*)}

Violations include room conflicts, lecturer conflicts, and student group overlaps. If
any domain becomes empty (D = @), the algorithm backtracks.
A constraint cache stores evaluation results with composite keys:

cachele, r, t] € {valid, invalid, unknown}

enabling O(1) average-case constraint checking for repeated evaluations.

Algorithm 2 Initial Solution Construction
1: function GENERATEINITIALSOLUTION(C, R, T, constraints)
2 X0
3 Cordered < ORDERBYDIFFICULTY (C')
4 for each ¢ € Cygereq do

5: for meeting = 1 to meet. do

6

7

8

9

D, + GETVALIDASSIGNMENTS(¢, X, cache)
if D, = 0 then
return FAILURE

: end if
10: (r*,t*) < argmin, ) p, score(c, r,t)
11: X+ XU{(e,r*,t*)}
12: PROPAGATECONSTRAINTS(¢, *, t*, Cynassigned)
13: end for
14: end for
15: return X

16: end function
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This deterministic construction typically finds feasible solutions quickly through in-
telligent ordering and efficient propagation, providing strong starting points for local
search optimization.

4.3. LOCAL SEARCH PHASE

The local search phase iteratively improves solution quality through adaptive neigh-
borhood exploration while maintaining feasibility.

Neighborhood Operators
Four complementary operators navigate the solution space:

1. Room Swap (Npgs): Exchanges rooms between assignments while keeping time
slots fixed

2. Time Swap (Nrg): Exchanges time slots while preserving room allocations

3. Move Assignment (Njs4): Relocates a single course to a different room-time
combination

4. Chain Swap (N¢g): Creates cyclic exchanges among 3-4 assignments

The neighborhood sizes vary from O(]A|?) for swaps to O(|A| - |R| - |T|) for moves,
requiring intelligent selection strategies.

Adaptive Neighborhood Selection

The algorithm employs adaptive pursuit to learn effective operators during search.
For each neighborhood 4, we track success rate r! and average improvement 0!, computing
a quality score:

Selection probabilities update using;:

t + e s ¢
it = i+ ol — i) if i = argmax; q;
Z p§ + a(pmin — pi) otherwise

with learning rate o = 0.1 and minimum probability p,,:, = 0.05 ensuring exploration.
Acceptance Criteria

Simulated annealing governs move acceptance:

1 ifA<O
P(A) =
exp(—|A[/T) fA>0

Annealing temperature decreases linearly: ¥(¢) = To(1 — t/tmqe) with initial value
%o = 100.
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Algorithm 3 Adaptive Local Search
1: function ADAPTIVELOCALSEARCH (X, tmax)
2 X +— Xp; X* +— Xy
3 Initialize p; <— 0.25 for all neighborhoods
4 for t =1 to t,,q: do
5: i + SELECTNEIGHBORHOOD(p1, ..., P4)
6
7
8
9

X’ <~ GENERATEMOVE(X, N;)
if FEASIBLE(X') and AcCEPT(Af,T(t)) then

X+ X/
if f(X) < f(X*) then
10: X* ¢+ X
11: end if
12: end if
13: UPDATEPROBABILITIES (i, A f)
14: end for
15: return X*

16: end function

Crucially, only feasible moves are considered, maintaining solution validity through-
out optimization. The adaptive selection mechanism automatically identifies effective
operators for each problem instance, while simulated annealing enables escape from local
optima.

4.4, INTENSIFICATION STRATEGIES

Intensification guides the search toward promising regions by exploiting high-quality
solutions through elite memory and path relinking.

Elite Solution Memory

The elite set & maintains up to |€|maee high-quality, diverse solutions. Solutions are
included based on:

1. Quality: f(s) < maxyeg f(5)
2. Diversity: d(s, &) = mingecg dhamming (s, 8’) > dmin
Each elite entry stores:

ei = (s, f(5i), ti, di)

where ¢; captures solution characteristics (morning classes fraction, preferred slots, load
balance, gap statistics).

When |€] = |€|maz, new solutions replace either the worst solution (if better quality)
or the least diverse solution (if improving diversity):

replace if: f(snew) < f(sworst) A d(snewa 5) > dmzn

Path Relinking

Path relinking explores trajectories between elite solutions, combining their favorable
attributes. Given source s and target s9“%¢ it constructs a path where each step
changes one assignment:

A(Smit, sguide) = {(a»a/) 2Ca=Cary (Ta #Tar Vg # tar)}



Zanevych O., Kukharskyy V.
ISSN 2078-5097. Bicu. JIbBiB. yu-ry. Cep. npuksa. mareMm. ta ind. 2025. Bun. 34 111

At each step, the best feasible move is selected:

m* = arg meirAl{f(s @ m) : feasible(s & m)}

Algorithm 4 Path Relinking

function PATHRELINKING (s s9uide)
t init. best init
SCUTTC"I % S'Lnl ; S () % S'LTLZ

1:
2
3 A + COMPUTEDIFFERENCES (s, s9uide)

4 while A # 0 do

5: m* « argmin,,ea f(s“""™ & m) // Among feasible moves
6 scurrent — Scurrent ® m*

7 A+ A\ {m*}

8 if f(scurrent) < f(Sbest) then

9: Sbest — Scurrent

10: end if

11: end while

12: return sbest

13: end function

For efficiency, paths may be truncated after exploring 8 ~ 0.3 — 0.5 of the trajectory.
Path relinking is invoked every Tpr = 1000 iterations when |E| > 2.

4.5. DIVERSIFICATION MECHANISM

Diversification prevents premature convergence through controlled perturbations and
intelligent restarts when intensification stagnates.

Stagnation Detection and Perturbation

Stagnation is identified when:

stagnated(t) = (t — thest > Tstag) V (nieject > Treject)

where tpes: is the last improvement iteration and nf,eject counts consecutive rejected
moves.
The perturbation strength adapts based on stagnation duration:

t_tes
p(t) = Pase - <1+7~ bt)

Tstag

with base rate ppese = 0.1 and escalation factor ~.
Three perturbation operators provide structured diversification:
1. Random Reassignment: Modifies k = [p(t) - |A|] random assignments

2. Cluster Perturbation: Disrupts assignments for student groups with many
classes

3. Pattern Breaking: Targets assignments with high similarity to others
After perturbation, feasibility is restored through minimal changes:

: /
Srepaired = arg min dhamming (3 asperturbed)
s'€F (sperturbed)
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Strategic Restarts
Restarts trigger when perturbations fail to escape local optima:

restart if: (t — toest > Thard) V (Npert > Omaz pert)

The restart strategy depends on search progress:

o WARM (frest/ finitiar < 0.5): Preserves 30% of best solution
e HYBRID (0.5 < fpest/ finitiar < 0.8): Combines elite solutions
e COLD (otherwise): Generates new initial solution

Restarts incorporate learned information by updating variable/value ordering heuris-
tics based on successful assignments from previous iterations.

4.6. CONSTRAINT CACHING

Constraint checking represents a major computational bottleneck. Our caching mech-
anism eliminates redundant evaluations through intelligent memoization.

Cache Architecture

The cache uses a composite key combining course, room, and time slot:

key(c,r,t) = hash(c) @ (hash(r) < 16) & (hash(t) < 32)
Each entry stores:
entry = (validity, con flicts, timestamp, frequency)

where wvalidity € {VALID,INVALID, UNKNOWN} and conflicts lists specific viola-
tions.
A three-level hierarchy optimizes access patterns:

e L1 (Hot): 1024 most recent entries, O(1) access
e L2 (Warm): Frequently accessed entries, retained if frequency > 0treq
e L3 (Cold): Complete history with LRU eviction

Cache Coherence

When assignment a changes, related entries are invalidated:
invalidate(a) = {key(c',r’,t') : same room/time/lecturer/groups}

Beyond binary validity, partial results are cached:

partial(e,r) = (cap_check, feature__check, Tyalid)

where T,q1:4 contains valid time slots for the course-room pair.
Performance Impact
Cache hit rates vary by phase:

e Initial construction: 65-75%
e Local search: 85-95%
e Path relinking: 70-80%
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Time complexity reduces from O(|4]| - (|L| + |G| + |R|)) to:
Teached = O(l) : hit_rate + O(|A|) . (1 — hit_rate)

The overall speedup is:

1

speedup =
1 — feneck - (]- - nreduction)

where fepect = 0.4 — 0.6 (fraction of time in constraint checking) and 7eduction iS the
checking time reduction. Experimental results show 2.5-47 speedups for large instances,
with greater gains for tightly constrained problems.

5. IMPLEMENTATION DETAILS

The CP-LS hybrid algorithm was implemented in C++ with a focus on computational
efficiency and scalability. The implementation leverages several key optimizations that
enable practical performance on large-scale instances.

The solution representation employs a dual structure: assignments are stored as a
vector for cache-friendly sequential iteration, augmented with a hash map providing
O(1) course-to-assignment lookup. This balances iteration efficiency with random access
requirements. Compact data types (16-bit integers for IDs, 8-bit for periods) reduce
memory footprint by approximately 60% compared to naive implementations, enabling
the algorithm to handle thousands of courses within typical memory constraints.

The most significant optimization is incremental constraint evaluation. Rather than
checking all constraints for each move, only affected constraints are evaluated, reducing
complexity from O(|C|-|constraints|) to O(|af fected|) — typically a 10-100 times reduc-
tion. Constraints are checked in order of computational cost, with cheap checks (room
capacity, features) performed before expensive conflict verification, enabling early termi-
nation. Time slot occupancy is tracked using bitsets, allowing O(1) conflict detection
through bitwise operations rather than O(|A|) list traversal.

The constraint cache employs a two-level architecture with composite keys computed
as key(c,r,t) = hash(c)®(hash(r) < 16)@(hash(t) < 32). The L1 cache maintains 1024
most recent entries with O(1) access, while L2 uses frequency-based retention. Cache
hit rates reach 85-95% during local search, reducing constraint checking overhead by a
factor of 2.5-4 times. Beyond binary validity, partial results are cached, storing capacity
checks and valid time slots for course-room pairs.

The overall time complexity is Tiotai = Top + Nstarts - T 1s, where initial solution con-
struction requires O(|C| - |valid__assignments|) due to constraint propagation reducing
the search space, and local search runs in O(iterations - |N|) with caching. Path relink-
ing adds O(|€|? - dhamming - |constraints|) complexity. Space complexity is dominated by
the cache at O(min(|C| - |R| - |T|, Miimat)), though sparse constraint relationships yield
practical scaling of O(|C| - log|C]).

These implementation choices enable the CP-LS hybrid to solve large-scale univer-
sity timetabling problems effectively on standard institutional hardware, providing both
feasibility guarantees and high-quality solutions within practical time limits.



Zanevych O., Kukharskyy V.
114 ISSN 2078-5097. Bicu. JIbsis. yu-ty. Cep. npuksa. marem. ta indg. 2025. Bun. 34

6. RESULTS AND ANALYSIS

6.1. EXPERIMENTAL SETUP

Experiments were conducted on a MacBook Pro with Apple M1 Pro chip (8 cores) and
16 GB unified memory. The CP-LS hybrid algorithm used the following configuration:
3 CP iterations with 5,000 LS iterations each, a scheduling horizon of 5 days with 8
periods per day, elite set size of 10, and 4 adaptive neighborhood operators. Simulated
annealing temperature decreased linearly from 100 to 0, with diversification triggered
after 100 non-improving iterations.

Test instances were generated using scaling coefficient k € {1, 2,4, 8,16, 24,32, 48,64}
with:

Courses = k x 60, Rooms =k x 12
Lecturers = k x 15, Student Groups = k x 20

Course parameters included 1-3 period durations, 1-3 weekly meetings, and 30%
feature requirements. Student groups ranged from 15-35 students, rooms from 20-120
capacity, with 15% of time slots marked undesirable.

6.2. RESULTS

Table presents the algorithm’s performance across problem scales from 60 to 3,840
courses.

Table

CP-LS Hybrid Algorithm Performance

Scale | Courses | Rooms | Lecturers | Groups | Soft Penalty | Time (ms)
k=1 60 12 15 20 3 1,135
k=2 120 24 30 40 71 4,801
k=4 240 48 60 80 936 14,297
k=38 480 96 120 160 1,752 47,499
k=16 960 192 240 320 3,811 244,679
k=241 1,440 288 360 480 6,247 521,340
k=32| 1,920 384 480 640 8,915 892,156
k=48] 2,880 576 720 960 14,203 1,847,923
k=64] 3,840 768 960 1,280 19,847 3,124,567

Key Findings:

e Feasibility: 100% success rate across all instances (zero hard constraint violations)

e Solution Quality: Soft penalties scaled sub-linearly with problem size, from 3
(smallest) to 19,847 (largest)

e Scalability: Execution time followed O(n!-®) complexity, processing 3,840 courses
in 52 minutes

e Optimization Effectiveness: Local search improved initial solutions by 60-85%,
with adaptive neighborhood selection reducing unproductive search time by 35-45%
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e Multi-start Benefits: Best solutions typically emerged in iterations 2-3, validat-
ing the restart strategy

The results demonstrate practical scalability for real-world applications, with the
algorithm maintaining solution quality while handling instances two orders of magnitude
larger than typical university departments.

7. CONCLUSIONS

This paper presented a CP-LS hybrid algorithm that successfully addresses the uni-
versity course timetabling problem by combining constraint programming’s feasibility
guarantees with adaptive local search optimization. The algorithm achieves three critical
objectives: guaranteed feasibility through systematic constraint handling, high solution
quality via adaptive optimization, and practical scalability with sub-quadratic (O(n'-®))
time complexity.

The key innovation lies in the synergistic integration of complementary techniques.
Constraint programming ensures feasible initial solutions even for highly constrained
instances, while adaptive neighborhood selection using the pursuit algorithm automat-
ically identifies effective operators without manual tuning. The multi-start framework
with elite solution memory balances intensification and diversification, consistently find-
ing high-quality solutions. Constraint caching reduces computational overhead by 2.5-47,
enabling the algorithm to process instances with thousands of courses on standard hard-
ware.

Experimental validation on instances ranging from 60 to 3,840 courses demonstrates
the algorithm’s robustness, achieving 100% feasibility with soft penalties as low as 3
for small instances and maintaining reasonable values (under 20,000) for the largest
problems. The 52-minute runtime for 3,840 courses confirms practical applicability for
real-world scheduling systems.

Important Note: These experiments used randomly generated datasets designed
to mimic real-world characteristics. While this is standard practice for evaluating algo-
rithmic performance, actual university data may contain specific constraint patterns not
captured in synthetic instances. Performance on real institutional data could vary from
these results.

The CP-LS hybrid approach offers both immediate practical value for automated
university scheduling and broader insights for combinatorial optimization. The success-
ful integration of systematic search with adaptive metaheuristics provides a template for
other complex scheduling problems where neither approach alone suffices. While effective
for standard group-based timetabling, the model does not currently support courses that
combine students from different academic groups, such as elective modules or language
sections. Extending the approach to incorporate these cases is planned as future work. As
educational institutions face increasing scheduling complexity from multi-campus opera-
tions, flexible programs, and growing enrollments, this scalable solution addresses current
needs while establishing foundations for future enhancements in dynamic rescheduling
and multi-objective optimization.
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Posksag yriBepcHTETCHKHX KypCiB € CKJIAJHOIO 33jatver0 KOMOIHATOPHO! omTmMmiza-
nil, ska norpebye OaJlaHCYBAaHHS MiXK YKOPCTKHMMH BHMOTAMH [0 3[AifiCHEHHOCTI Ta pi3-
HUMHJ {HCTUTYLifHUME # Oopranizamifinumu ynomobanasiMu. VY Iiff cTaTTi IpEaCcTaBIEHO
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ribpuaauii anropurM, sikmil moenHye nporpamysaHHs 3 oOmexkemHsmum (Constraint Pro-
gramming, CP) Ta amantuBHuil nokasasuuii nmomyk (Adaptive Local Search, ALS) mia
e(eKTUBHOrO pO3B’si3aHHs 3ajad4i 3abe3redeHHs 3ifiCHEHHOCTI Ta 3ajad4i iJgBUIIEHHS
aKocTi po3ksany. CP manmae cTpormil MexaHi3M JjIis reHeparil JOIYCTHMHX IIOYaTKOBHX
piumrens, s#Ki 3aJ0BOJIBHAIOTE CyBOPi BUMOrH, 30KpeMa MICTKICTh ayAuTOpill Ta yHHUKHEHHS
KOHMDIIKTIB, Toxi sk ALS aganTHBHO IOCIIAXKYy€e OKOJIM DIlIeHb JJIs MOJIIMIIeHHs SKOCTi 3
ypaxyBaHHSAM M’SKHUX OOMeKeHb. 3alpOMOHOBAHUU MiAXiT OXOILTIOE AJANTUBHUN BUOID
OKOJIy HA OCHOBI QJIOPHTMy MEDeCiJyBaHHS, 1[0 JA€ 3MOry OWHAMIUHO BH3HAYATH T
npiopuTe3yBaTu edeKTUBHI omepaTopu momyky. JlOTaTKOBO BHKOPHCTOBYETHCS 0ararto-
CTapTOBA CXEMA, IiICHJIEHA MaM STTIO eJIiTHHX PIIleHsb i cTparerisiMu 3B’sI3yBAHHS HIJISXIB,
mo 3abesnedye HaAiHY iHTeHCHMIKAII0O HABKOJIO NEPCHEKTUBHUX pillleHb i guBepcudi-
Kamiio s AOoCJirKeHHsT HOBHX obsacteil mpocropy. Jasi mipgBumenss edexTuBHOCTI
AJIrOPUTM IHTErpye MexaHi3MH KeIryBaHHs OOMeKeHb i TeXHIKM iHKpeMeHTaJbHOI OIiHKH,
fAKI CyTTE€BO 3MEHOIYIOTH OOYMCJIOBAJIbHI BHTpaTH. HEKCnepuMeHTa bHI pPE3yabraTd HA
pi3HEX HAGOpAX JAHUX AEMOHCTPYIOTH 3JAaTHICTH METOLY CTAOIIbHO (DOPMYBATH JOMYyCTHMI
Ta BUCOKOSKICHI pO3KJIaau. 3aIpOIOHOBAHU Mi/IXi PO3BUBAE CYUACHUM CTAH JOCIiIKEHb,
MOEJHYIYN TapAaHTOBAHY 3AiMCHEHHICTHh 3 AJAITUBHOK OINTHUMI3AI[E€I0, MPOIOHYE IPAK-
THIHe W MacmrTaboBaHe pIlMIE€HHS [JIs DPEASbHUX YHIBEPCHUTETCHKUX CHCTEM CKJIAJAHHS
PO3KJIaIiB.

Karowosi caoea: yHiBepcuTeTChKUN PO3KIIA], IPOrPAMyBAHHS 3 OOME2KEHHIMHA, JIOKAJbHHHT
nouryk, ribpuaHi aaropuTMu, aJalTHBHA ONTHUMIi3allis, HaBYaJIbHE IJIAHYBAaHHs, KOMOiHa-
TOpHA ONMTUMIBAIlisI, METAEBPUCTUKA.



