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In distributed systems, e�cient and predictable network traversal is critical for co-
ordination, broadcasting, and maintaining data consistency between nodes. This paper
examines the behavior of Tarry's traversal algorithm in tree-like undirected networks un-
der varying workloads, with a speci�c focus on consistency. Using simulated environments
with 10, 100, and 1000 nodes, we initiated multiple transaction waves (T = 2, 5, 10) to
evaluate the algorithm's ability to support consistent data propagation. Our results show
that while Tarry's algorithm, due to its cycle-free and deterministic nature, ensures that
all nodes are visited without duplication or omission, it alone is insu�cient to guaran-
tee data consistency. Although it provides a reliable traversal foundation, maintaining
complete consistency in tree-like distributed systems requires additional synchronization
or coordination mechanisms to ensure consistency. These �ndings highlight the strengths
and limitations of the algorithm in supporting consistent state propagation in distributed
environments.
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1. Introduction

Fig. 1. Tree-like distributed system

Distributed systems comprise a col-
lection of processes (nodes) that do not
share a common memory and communi-
cate with each other by exchanging mes-
sages. Each node has its memory and
state and can, in addition, receive and
process messages, perform local calcula-
tions, change the state, or manipulate
memory, and, crucially, send messages to
other nodes [6]. Unlike centralized sys-
tems, which rely on a single central node
for all operations, a distributed system
utilizes multiple interconnected nodes that
collaborate to achieve a common goal.

A tree-like distributed system is a
network of independent computing nodes
(processes or agents) organized in a logi-
cal or physical tree structure. This means
that the communication topology among
the nodes forms an undirected tree, an
acyclic, connected graph where any two
nodes are connected by exactly one path
[9].
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1.1. Consistency

The use of distributed systems in the context of modern communication development,
the Internet, and the geographical distribution of end users is growing rapidly, and this
requires maintaining properties such as data consistency among nodes, the speed of mes-
sage exchange between nodes, node availability, data security, the stability of reference
systems, etc. The fundamental theorem of distributed systems, the CAP theorem, ex-
plains that it is possible to guarantee only two of the following three most important
properties: Consistency, Availability, and Partition Tolerance [1].

This article considers data consistency, as it is one of the primary properties of dis-
tributed information systems and signi�cantly impacts the system's reliability in pro-
viding data to the user. Data consistency, as we de�ne it, means that all system nodes
display the same data at speci�c points in time. Regardless of which node receives or
modi�es the node's data, all nodes must synchronize their data with the changes, have
access to, and return the most current version of the data.

Today, consistency has many di�erent models [2], and the models describe how nodes
manage data within a distributed system, for instance:

• Strong consistency ensures that all nodes see the same values at the same time.
When write operations are completed, subsequent reads from any node return the
updated value. This model prioritizes data accuracy over availability or perfor-
mance. Strong consistency is crucial for �nancial, medical, or e-commerce busi-
nesses where, for example, the state of the data a�ects client operations [11].

• Weak consistency means that the system can show di�erent data, depending on the
database the current service is using. In other words, the system can have multiple
replicas of a single database, and after updating one of the replicas, the remaining
replicas may display outdated data. This model is often used in multiplayer games
or in real-time analytics. In contrast to strong consistency, weak consistency does
not guarantee that all operations appear in a total order.

• Eventual consistency allows for temporary inconsistencies between nodes in a dis-
tributed system, with a guarantee that all nodes eventually converge to the same
state. This model is prevalent in social media or networks, where it is not essential
to know how many views or likes a post or news has at a given moment.

• Sequential consistency ensures that the results of concurrent operations appear
consistent across all nodes, making it suitable for applications where the order of
operations is critical but real-time constraints are not paramount. The execution
results are as if all operations were executed individually, maintaining the order
in which each client issues operations. The model is often used in the domain of
concurrent computing, for instance, in distributed shared memory or distributed
transactions.

Despite the wide range of consistency types, for the purposes of this article, we
consider consistency to be either achieved or failed. Where achieved consistency means
that all nodes return the same data, and failed consistency implies that at least one node
returns incorrect values.

1.2. Algorithm

To achieve consistency in the system, we must exchange messages between its nodes,
and for this, one must utilize one of the distributed algorithms [8]. In distributed systems
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for broadcasting information, a special class of algorithms is used � wave algorithms.
Traversal algorithms form a subclass of wave algorithms. For each algorithm of this
subclass, the complete ordering of its events according to causal order is guaranteed [3,
12].

Fig. 2. Behavior of a single node
in Tarry's algorithm

A traversal algorithm is an algorithm
that adheres to three restrictions in the
process of data distribution:

• Only one process is the initiator of
the algorithm; that is, it is the only
process whose �rst event is not re-
ceiving a message.

• Having received the message, the
node sends the message or generates
an event �decide�.

• The algorithm terminates at the ini-
tiator, and at this moment, each
node has sent at least one message.

This research uses Tarry's traversal
wave algorithm [7] for the message ex-
change process. Tarry's algorithm is a
traversal wave algorithm for undirected
distributed networks. The algorithm is
based on two rules:

1. A message is never sent twice over a
single communication channel

2. A node sends a message to its parent
only when it has received messages
from all other neighboring nodes

The general description of how the al-
gorithm works is as follows:

• The initiator sends a token (mes-
sage) to its neighbor

• The receiving neighbor marks the
sender as its parent and sends the
token to all its neighbors except the
parent

• If there are no neighbors except the
parent, the token is returned to the
parent

• When responses are received from
all neighbors, the message is sent to
its parent

As a result of the algorithm, messages are sent twice over a single communication
channel (once in each direction) and terminate at the initiator. Fig. 2 shows the behavior
of an individual node during the execution of the algorithm.

Since Tarry's algorithm guarantees that each edge is traversed exactly twice, for a
tree with N nodes, there are N − 1 edges, resulting in 2 · (N − 1) messages per traversal.
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Or simplifying, the algorithm requires 2 ·E messages, where E is the number of edges in
the system [3].

Table 1

Comparison of Wave Traversal Algorithms in Distributed Systems

Algorithm Message

Complexity

Structure

Built

Termination Typical Use

Case

Tarry's
Algorithm

2E (each edge
twice)

Spanning tree Token returns
to initiator

Reliable
network
traversal,
exploration

Tree
Algorithm

O(n− 1) (for
n nodes)

Spanning tree
(explicitly
built)

When all
nodes join the

tree

Basis for
broadcasting,

routing,
leader
election

Depth-First
Search (DFS)

O(E) DFS tree Token returns
to root after
backtracking

Hierarchical
exploration,
spanning tree
construction

Echo
Algorithm

2(n− 1) Spanning tree
+ echo wave

When
initiator

receives �nal
echo

Distributed
termination
detection,
information
aggregation

Above, we present the four algorithms outlined in Tabl. 1, which illustrate various
approaches to wave-based traversal in distributed systems. Tarry's algorithm provides a
deterministic and cycle-free method for exploring all edges, making it reliable for network
exploration, though at the cost of higher message complexity. The Tree algorithm explic-
itly constructs a spanning tree, which then serves as a foundation for common distributed
tasks such as broadcasting, routing, or leader election. In contrast, DFS traversal ex-
plores the network in depth-�rst order, producing a hierarchical DFS tree that is well
suited for structural analysis but less e�cient for broadcasting. Finally, the Echo algo-
rithm extends the tree construction with a reverse wave that aggregates information back
to the initiator, making it particularly e�ective for termination detection and global in-
formation collection. Together, these algorithms represent complementary strategies for
traversal, each balancing determinism, communication cost, and functionality in di�erent
ways [3].

1.3. Goal

Tarry's algorithm ensures that each node receives a message upon completion of its
execution. Therefore, we assume that after sending a message (data update transac-
tion) to one of the system nodes, the system using Tarry's algorithm becomes eventually
consistent, provided there are no network failures. This means that at the end of the
algorithm's execution, every node returns the same value for the read operation request.
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However, suppose that we increase the number of sent messages and the number of the al-
gorithm's initiators accordingly. In that case, we cannot be sure that the system remains
consistent after the latest message, as each algorithm execution is parallel, not sequen-
tial. Guided by this uncertain assumption, this research aims to answer the following
questions:

1. Can Tarry's algorithm guarantee data consistency in tree-like distributed systems?

2. What factors in�uence the e�ectiveness of Tarry's algorithm in achieving data
consistency?

2. Models

Our research distributed system is an undirected tree, which we understand as an
undirected, connected, acyclic graph that satis�es the following characteristics [9]:

• Undirected : The edges do not have a direction; they connect two nodes symmetri-
cally. If there is an edge between node A and node B, you can traverse from A to
B and from B to A without restriction.

• Connected : Every pair of nodes is connected by exactly one simple path. There
are no disconnected parts.

• Acyclic: The graph contains no cycles � there is no way to start at a node and
return to it by traversing a sequence of edges without repeating any edge.

• N nodes, N-1 edges: An undirected tree with N nodes always has exactly N − 1
edges.

Tarry's algorithm is particularly well suited for tree topologies because of its guaran-
teed traversal properties:

• Edge-optimal: Visits each edge exactly twice � ideal for sparse structures such as
trees.

• Cycle-free operation: Naturally aligned with tree acyclicity.
• Deterministic behavior: Each traversal follows the only path between nodes.
• Local decision making: Nodes only need to know their immediate neighbors � no
global knowledge is required.

For research purposes, we built several tree-like networks and sent them a certain
number of messages (transactions). The following con�gurations are set:

1. N = 10, T = 2, with total messages: 36

2. N = 10, T = 5, with total messages: 90

3. N = 10, T = 10, with total messages: 180

4. N = 100, T = 2, with total messages: 396

5. N = 100, T = 5, with total messages: 990

6. N = 100, T = 10, with total messages: 1980

7. N = 1000, T = 2, with total messages: 3996

8. N = 1000, T = 5, with total messages: 9990

9. N = 1000, T = 10, with total messages: 19980

where N is the number of nodes in a system and T is the number of transactions sent
to the system. The total messages are calculated using the formula T × 2× (N − 1).

Each con�guration represents distributed systems, capturing both small- and large-
scale network behaviors, shown in Tabl. 2:
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Table 2

Types of testing distributed systems

System size Network size type Real-time examples

10 Small Sensor clusters,
Classroom simulations

100 Medium IoT systems, Small Data
Centers

1000 Large-scale Distributed databases,
Peer-to-Peer and

Blockchain networks

Likewise, the variation in the number of transactions simulates the frequency or in-
tensity of network usage. Each �transaction� represents a traversal wave initiated by
a node, and the number of transactions (T = 2, 5, 10) can be divided into three us-
age groups accordingly: light or infrequent use (periodic checks), moderate use (routine
system processes), high or concurrent usage (peak loads, testing robustness).

Fig. 3. Network visualization for Con�guration 1

3. Methods

This research implements Tarry's algorithm in the dynamic functional language Elixir.
In Elixir, all code runs inside processes. Processes are isolated from each other, run
concurrently, and communicate by message passing. Processes are not only the basis for
concurrency in Elixir, but they also provide the means to build distributed and fault-
tolerant programs [4]. Therefore, this language, with its multiprocessing advantages,
suits our tasks, namely, building and testing a distributed system. So, using this language
allows us to interpret the algorithm as a message exchange protocol.

According to Tarry's algorithm [12], we implement the following logic to exchange
messages between nodes:

• An initiator sends a message to its neighbors and waits for their responses. The
initiator is the only node that does not have a parent.

• In their turn, each neighbor marks a sender as a parent and sends the message to
its neighbors, except for the parent.
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• If there are no neighbors, a node sends a response to its parent;
• If a node receives responses from all neighbors except the parent, it sends a response
to its parent;

• The execution of the algorithms ends when the initiator receives all responses.

For clarity, we can divide the program into three separate parts:
1. Network. In this part, we initialize a distributed network. For current research, we

set the number of nodes to 10, 100, or 1000 for testing various network sizes. To
build a tree-like schema for each execution, we use a map data structure from the
Elixir language, allowing for a maximum depth of three levels:

schema1 = %{parent1 => %{}}
schema1 = Enum. reduce (Enum. with_index ( run1 ) , schema1 ,
fn {value , index } , schema1 =>
update_in ( schema1 , [ parent1 ] , fn p roce s s =>

schema1 = i f index == 0 or ( rem( index , 2) != 0
and rem( index , 3) != 0) do

schema1 = Map. put ( process , value , %{})
e l s e

schema1 = i f rem( index , 3) == 0 do
schema1 = put_in ( process , [Enum. random(Map. keys ( p roce s s ) ) ,
va lue ] , %{})

e l s e
l e v e l 1 = Enum. random(Map. keys ( p roce s s ) )
schema1 = i f p roce s s [ l e v e l 1 ] != %{} do

l e v e l 2 = Enum. random(Map. keys ( p roce s s [ l e v e l 1 ] ) )
schema1 = put_in ( process , [ l e v e l 1 , l e v e l 2 , va lue ] , %{})

e l s e
schema1 = put_in ( process , [ l e v e l 1 , va lue ] , %{})

end
end

end
end )

end )

As a result, we obtain a tree-like distributed system schema with an initiator serving
as the root and connections between all nodes. For instance, here we can see an
example of such a schema for a system with 10 nodes:

%{
#PID<0.2180.0> => %{

#PID<0.2174.0> => %{
#PID<0.2177.0> => %{#PID<0.2172.0> => %{} , #PID<0.2176.0> => %{}}

} ,
#PID<0.2178.0> => %{} ,
#PID<0.2181.0> => %{#PID<0.2175.0> => %{} , #PID<0.2179.0> => %{}}

}
}

Fig. 4 shows the schema visualization.

2. Algorithm. Here, we start the algorithm by randomly choosing an initiator node.
Based on the con�gurations, we initiate 2, 5, or 10 transactions per execution.
Therefore, for each execution, we choose randomly 2, 5, or 10 initiating nodes.
Each node implements the signi�cant method of the algorithm: the PUT method.
The method, on receiving a message, sends, depending on its connections, messages
to its neighbors to continue the traversal wave, or to a parent, signaling that there
are no available nodes.

We can see the PUT method implementation in the following code snippet:
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Fig. 4. Schema of distributed tree-like system

{ :put , value , schema , pr in t e r , parent , token} =>
map = Map.put (map, "data" , va lue )
map = Map.put (map, " p r i n t e r " , p r i n t e r )
map = Map.put (map, token , %{"parent" => parent , " servers " => ni l ,
" value " => value} )

{ s e r v e r s} = i f map_size ( schema ) > 0 do keys = Map. keys ( schema )
s e r v e r s = Enum.map( keys , fn key => { : "#{ i n sp e c t  key}" , ni l }

end)
Enum. each ( keys , fn (n) => Process . send (n , { :put , value ,

Map. get ( schema , n ) , p r in t e r , s e l f ( ) , token} , [ : noconnect ] ) end)
{ s e r v e r s}

e l s e
s e r v e r s = [ ]
Process . send ( parent , { : done , s e l f ( ) , token} , [ : noconnect ] )
{ s e r v e r s}

end
map = put_in (map [ token ] [ " s e r v e r s " ] , s e r v e r s )
loop (map)

The second important method is the DONE method, which is responsible for pro-
cessing messages sent to a parent. Upon receiving a message from a child node, the
parent node marks this child node as processed and checks every node to determine
if all child nodes have already sent a message. If not, the parent node waits for
the next messages; if yes, it sends a message to its parent. If there is no parent,
it means that this node is the initiator, so it �nishes the execution of the current
transaction by sending the FINISH message to the printer, which prints the results.
Here, we show the DONE method implementation in the following code snippet:

{ : done , sender , token} =>
s e r v e r s = Keyword .put (map [ token ] [ " s e r v e r s " ] ,

: "#{ i n sp e c t  sender}" , 1)
map = put_in (map [ token ] [ " s e r v e r s " ] , s e r v e r s )
p r i n t e r = Map. get (map, " p r i n t e r " )
parent = Map. get (map [ token ] , " parent " )
i f Enum. a l l ?(Keyword . va lue s (map [ token ] [ " s e r v e r s " ] ) ) do

i f parent do
send ( parent , { : done , s e l f ( ) , token} )

e l s e
GenServer . c a l l ( p r in t e r , { : f i n i s h , map} , 10_000)

end
end
loop (map)
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In detail, from the node perspective, we can describe its execution behavior using
the PUT and DONE methods in two main steps. First, a node receives a �PUT�
call, with such parameters as: token, to distinguish transactions from each other;
parent, to save it as a parent node; printer, to save it as a printing node; schema, it
is part of the network schema, but limited to node neighbors only; value, a current
transaction data value. Upon receiving the �PUT� call, a node stores a parent for
the algorithm's purpose and the transaction data value in its local storage. After
that, if the schema parameter is empty, there are no neighbors for this node, so the
node sends the �DONE� call to its parent. Otherwise, it sends the �PUT� call to all
its neighbors, except for the parent, with the same parameters, but sets the parent
value to itself, and the schema parameter value to a receiving node's neighbors.
Second, if a node receives a �DONE� call, it means that the sending node has no
neighbors or has received �DONE� calls from all its neighbors. With that call, a
node receives the following parameters: sender, an identi�er of the sending node;
token, an identi�er of a transaction. When the �DONE� call is received, a node
marks the sender as received and checks the status of all other neighbors. If all
neighbors are marked as received, and the node has a parent, it sends a �DONE�
call to its parent. If not all neighbors are marked, the node waits for the responses.
If a node receives the �DONE� call and has no parent, meaning it is an initiator, it
sends a �nal message to the printing node, which displays the current state of the
node's local storage.

3. Result. This is a simple data output. For each program execution, it prints the
latest state of the local nodes' data. The program contains a separate module,
which, upon receiving the FINISH message, gathers information about the node's
local state and prints it out. The module Elixir implementation is presented in the
following code snippet:
defmodule Pr in t e r do

use GenServer

@impl true
de f i n i t ( elem ) do

{ :ok , %{}}
end

@impl true
de f handle_ca l l ({ : f i n i s h , a l l_data} , from , s t a t e ) do

sender = elem ( from , 0)
IO . puts ( "RECEIVE FINISH from #{ in spe c t  sender}" )
new_state = Map.put ( s tate , sender , %{})
Enum. each ( al l_data [ " p ro c e s s e s " ] , fn (n) =>

Process . send (n , { : get , sender} , [ : noconnect ] ) end)
{ : rep ly , nil , new_state}

end

@impl true
de f handle_ca l l ({ : data , {parent , va lue}} , from , s t a t e ) do

sender = elem ( from , 0)
map = put_in ( s t a t e [ parent ] [ sender ] , va lue )
i f Enum. count (Map. keys (Map. get (map, parent ) ) ) == 1000 do

egn = Enum. group_by (Map. va lues (Map. get (map, parent ) ) , & &1)
f o r a <= Map. keys ( egn ) , do : IO . i n sp e c t (

"Value #{ in spe c t  a} => #{ in spe c t  l ength (Map. get ( egn ,  a ) )}" )
end
{ : rep ly , nil , map}

end
end

In general, after the printer module shows results, we expect to see the current state
of the local data of each node. The result can be varied depending on the number of



TerletskyiM., ZholtkevychG.

ISSN 2078�5097. Âiñí. Ëüâiâ. óí-òó. Ñåð. ïðèêë. ìàòåì. òà iíô. 2025. Âèï. 34 97

transactions. As the transaction number represents the data we want to store in the node,
we can expect values: 1 or 2 for the execution of the program with two transactions;
1..5 for the execution of �ve transactions; and �nally, 1..10 for the execution of ten
transactions.

4. Results

For each of the nine con�gurations we listed in Section 2, we ran �ve executions to
obtain various results. All transactions (messages) are sent successively, and the delay
between each transaction ranges approximately from 0.1 to 1 millisecond.

The result �gures show the state of data consistency for each run as a percentage of
all correct values. We understand 100 percent consistency as achieved, a successful state.
This means that all nodes show the last transaction value stored locally. Any other value
that di�ers from 100 percent is considered a failed state of data consistency.

To consider consistency as achieved (successful) for an execution, all nodes must show
the value of local storage equal to the latest transaction value. The latest transaction
value always equals the number of transactions we run. In our research, the options are
2, 5, or 10.

In Fig. 5, we demonstrate the achievement of consistency for small distributed sys-
tems. The results explicitly show us how consistency depends on the frequency of the
transactions. The best results were achieved for infrequent transactions, and as the num-
ber of transactions increased, the percentage of consistency decreased dramatically. We
also need to mention that even the best results did not provide consistent data across
all �ve runs. We can see that only two of the �ve are consistent. Runs for the moderate
usage level demonstrate only one successful result, and the high usage runs yielded zero
percent success, with zero percent success in four out of the �ve runs.

Fig. 5. Results for Con�gurations 1, 2, and 3

The subsequent experiments were conducted for medium distributed systems, and
their results are visualized in Fig. 6. Despite an increasing number of nodes in the sys-
tem, the result for infrequent transactions remains very similar to that of the previous
con�guration of the small distributed system. However, the results for moderate and high
frequencies are unacceptable in achieving data consistency when using Tarry's algorithm.

The results of the last con�gurations, which mimic large distributed systems, do not
di�er much from the previous ones. Fig. 7 shows that frequency is more important in
achieving data consistency than the number of nodes: the runs for infrequent transactions
are much closer to the goal, unlike those for moderate and high frequency.
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Fig. 6. Results for Con�gurations 4, 5, and 6

Fig. 7. Results for Con�gurations 7, 8, and 9

Summarizing, as evident from Figs. 5, 6, and 7, data consistency is a rare case for
Tarry's algorithm and a tree-like distributed system. Additionally, we must emphasize
that there are cases where the value of the latest transactions is not even presented
in the results (resulting in a zero percentage). In these cases, we presume that some
transactions were processed longer than the latest because of the way the transactions
had to traverse, and that they overwrote the newest transaction value.

Therefore, one can see that achieving data consistency for tree-like networks is almost
impossible using only Tarry's algorithm for message exchange, and it cannot be used
for real-time projects without additional algorithms or improvements to prevent the
overwriting of local states or by implementing transaction ordering.

5. Conclusion

The research results, as shown in Figs. 5, 6, and 7, indicate that one cannot guaran-
tee data consistency by using only Tarry's algorithm in the case of undirected tree-like
distributed networks. Furthermore, it is not a case of proving strong or eventual consis-
tency. It is a case where we cannot achieve consistency, neither at once nor eventually,
despite seeing some successful results for the con�guration of the small distributed sys-
tem (Fig. 5). We conclude that Tarry's algorithm ensures that each node of the system is
visited and processes each transaction. However, with an increasing frequency of trans-
actions, we are far from achieving data consistency.

However, during program execution, we found that some additional factors have an



TerletskyiM., ZholtkevychG.

ISSN 2078�5097. Âiñí. Ëüâiâ. óí-òó. Ñåð. ïðèêë. ìàòåì. òà iíô. 2025. Âèï. 34 99

impact on data consistency, while others do not. Here, we list these factors and discuss
their impact on data consistency:

• node location in the system. In other words, it is the path a transaction must tra-
verse to complete a full traversal according to the logic of Tarry's algorithm. For our
tree-like, undirected, distributed system, as shown in Figs. 5, 6, and 7, we observe
that fourteen of 45 runs achieved zero data consistency. This is approximately
30 percent of the total executions. We understand that for these transactions,
messages should cover a more complicated path to traverse all nodes than for the
last transaction of these executions, and this is determined by overwriting the last
transaction values.

• number of transactions. It is a very in�uential factor. With an increase in the
number of transactions, the results decrease from one run to the next. Further-
more, even for two subsequent transactions, the algorithm cannot guarantee data
consistency. The more transactions we run, the more zero percentage results we
see.

• number of nodes. Based on the results, the number of nodes does not have an
impact, such as, for example, the number of transactions. This factor in�uences
the overall execution time of the program, but does not impact the consistency of
the data.

• time delay between transactions. It is another in�uential factor. As mentioned in
Section 4, the time delays between each transaction ranged from 0.1 to 1 millisec-
onds. As we can see from the results, such a slight delay does not have a bene�cial
impact on consistency. Here, we can state that the placement of the node has a
much greater impact on the �nal result. However, increasing the delay to 10-100
milliseconds reduces the impact of node location, which is not a crucial impact
compared to lower delays. With that increased delay, we can receive much better
results for the research algorithm and system.

According to these factors and the research results, the most e�ective way to achieve
data consistency in an undirected, tree-like distributed system is to implement transac-
tion ordering based on the time they occur. This neutralizes the impact of complicated
paths for some transaction initiators and helps to avoid the problem of overwriting the
local state data. Ordering can be achieved by considering the following enhancements:
transaction centralization, physical time, or joint agreement of all nodes. The �rst is
outside our research, as we look for a solution for distributed systems. The second en-
hancement complicates our research by adding a central time server or by connecting
each node to external systems. The third improvement is the one for which we chose to
continue further research. Its main idea is to utilize logical clock algorithm [5] and Dis-
tributed Ledger Technology (DLT) [10] as the primary common register of transactions
for all nodes, which provides ordering of transactions, and to introduce an election algo-
rithm to establish a safe method for electing a responsible node every time the system is
ready to save transactions to DLT. The election method is also considered a step away
from any centralization or vulnerability.

Summarizing, we can state that, based on the results provided by our research, Tarry's
algorithm, by itself, cannot guarantee data consistency in tree-like undirected distributed
systems and requires additional improvements to achieve data consistency. We continue
our research by incorporating DLT and introducing the election algorithm into the study.
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Ó ðîçïîäiëåíèõ ñèñòåìàõ åôåêòèâíèé i ïåðåäáà÷óâàíèé îáõiä ìåðåæi êðèòè÷íî
âàæëèâèé äëÿ êîîðäèíàöi¨, ðîçïîâñþäæåííÿ äàíèõ i ïiäòðèìêè óçãîäæåíîñòi ìiæ
âóçëàìè. Äîñëiäæó¹ìî ïîâåäiíêó îáõiäíîãî àëãîðèòìó Òåðði â äåðåâîïîäiáíèõ íå-
îði¹íòîâàíèõ ìåðåæàõ çà ðiçíèõ ðîáî÷èõ íàâàíòàæåíü, ç îñîáëèâèì àêöåíòîì íà
óçãîäæåíiñòü. Âèêîðèñòîâóþ÷è çìîäåëüîâàíi ñåðåäîâèùà ç 10, 100 òà 1000 âóçëàìè,
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ìè iíiöiþâàëè êiëüêà õâèëü òðàíçàêöié (T = 2, 5, 10), ùîá îöiíèòè çäàòíiñòü àëãîðèòìó
ïiäòðèìóâàòè óçãîäæåíiñòü ó ðàçi ïîøèðåííÿ äàíèõ. Íàøi ðåçóëüòàòè ïiäòâåðäæóþòü,
ùî, ç îäíîãî áîêó, àëãîðèòì Òåðði çàâäÿêè ñâî¨é áåçöèêëi÷íié i âèçíà÷åíié ïðèðîäi
ãàðàíòó¹, ùî âñi âóçëè âiäâiäóþòüñÿ áåç äóáëþâàííÿ àáî ïðîïóñêiâ, ïðîòå, ç iíøîãî �
éîãî ñàìîãî íåäîñòàòíüî äëÿ ãàðàíòóâàííÿ óçãîäæåíîñòi äàíèõ. Õî÷à âií çàáåçïå÷ó¹
íàäiéíó îñíîâó äëÿ îáõîäó ñèñòåìè, ïiäòðèìêà ïîâíî¨ óçãîäæåíîñòi â äåðåâîïîäiáíèõ
ðîçïîäiëåíèõ ñèñòåìàõ ïîòðåáó¹ äîäàòêîâèõ ìåõàíiçìiâ ñèíõðîíiçàöi¨ àáî êîîðäèíàöi¨
äëÿ çàáåçïå÷åííÿ óçãîäæåíîñòi. Öi ðåçóëüòàòè äåìîíñòðóþòü ñèëüíi ñòîðîíè òà
íàÿâíi îáìåæåííÿ àëãîðèòìó â ïiäòðèìöi óçãîäæåíèõ ñòàíiâ âóçëiâ ó ðîçïîäiëåíèõ
ñåðåäîâèùàõ.

Êëþ÷îâi ñëîâà: àëãîðèòì Òåðði, óçãîäæåíiñòü äàíèõ, äåðåâîïîäiáíi ðîçïîäiëåíi ñèñòå-
ìè.


