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A practical approach for �uid�rigid interaction in Smoothed Particle Hydrodynamics
(SPH) is introduced. It keeps only one boundary layer and assigns each boundary particle
a volume�corrected e�ective mass. Multi�layer boundaries can be accurate, but in practice
they are heavy: neighbor lists grow, interaction counts rise, and many wall samples do
redundant work. The single�layer idea stays on the rigid surface and compensates missing
neighbors by a local volume estimate Vb, mapped to m̂b = ρ0Vb. With this correction,
density and pressure sums near the wall remain consistent even for thin plates and shells,
while the number of pairwise interactions goes down.

The coupling uses standard symmetric SPH forces, so linear and angular momentum are
preserved without contact penalties or position corrections. Integration is straightforward
in both WCSPH (Weakly compressible SPH) and PCISPH (Predictive�corrective incom-
pressible SPH): only the density summation receives the extra boundary terms, whereas
pressure and viscous parts keep their usual form. The scheme is friendly to implementa-
tion, works with existing neighbor search, and allows slip control through common viscosity
parameters.

Key words: smoothed Particle Hydrodynamics (SPH), �uid�rigid coupling, boundary sam-
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1. Introduction

Smoothed Particle Hydrodynamics (SPH) is a mesh�free method where �elds are ap-
proximated by local sums over neighbors with a smoothing kernel. The early idea comes
from astrophysics [1]. In graphics and engineering, two popular choices are WCSPH
(Weakly compressible SPH) and PCISPH (Predictive-corrective incompressible SPH),
mainly because they are simple and fast for many incompressible scenes [2, 3].

When rigid bodies are introduced into the �uid, behavior becomes more sensitive
near walls. If the kernel support is not fully �lled, �uid particles close to a boundary
lose neighbors. Then density is underestimated and pressure gets noisy. It may lead to
sticking or even small penetrations. Di�erent boundary models try to �x this: frozen or
ghost particles, penalty/contact forces, and particle boundaries sampled on the surface [4,
6]. Each model has bene�ts and costs.

Complementary to our previous IISPH study, where we implemented and validated
an incompressible SPH solver on the Taylor�Green vortex benchmark [7], this paper
focuses on boundary sampling and two�way rigid��uid coupling; the proposed single�
layer scheme integrates with WCSPH/PCISPH without additional forces or position
corrections.

In production code, stable two�way coupling and speed are important. Particle
boundaries are attractive because they match SPH formulas and give symmetric forces
with the rigid body. But a common recommendation is to place several boundary layers
to �ll the kernel radius. Accuracy is good, but cost grows fast with each extra layer. The
aim is to keep cost low and still have smooth density and pressure next to the wall.
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2. Problem statement

The �uid is single-phase and Newtonian; surface tension and multiphase e�ects are
not considered. Flows are low-Mach for WCSPH and near-incompressible for PCISPH.
Rigid bodies are treated as perfectly rigid with six-degree-of-freedom motion and ex-
change linear/angular momentum with the �uid only via particle interactions at the
interface. The method targets moderate Reynolds numbers typical for graphics and
real-time engineering scenarios.

The goal is to design a boundary sampling and weighting scheme that: (i) uses a
single layer of boundary particles placed on the rigid surface, (ii) yields unbiased density
and stable pressures for �uid particles near walls, (iii) preserves pairwise force symmetry
for momentum conservation, (iv) drops into both WCSPH and PCISPH without extra
solver passes, contact penalties, or position corrections, and (v) reduces the number of
�uid-boundary pair evaluations (and thus cost) for a �xed �uid resolution.

Typical use-cases include free-surface �ows in tanks and channels with immersed
rigid obstacles (thin plates, shells, rods), stirrer-like bodies, and moving mechanisms
submerged in liquid. In all cases the interaction is localized to the �uid-solid interface.

E�ectiveness is judged by (a) density/pressure smoothness near the wall, (b) absence
of sticking/penetration, and (c) reduced interaction counts and/or runtime at comparable
accuracy.

A single layer of boundary particles is placed directly on the rigid surface, and each
boundary particle is assigned a volume that it represents on the surface. Based on this
volume, its e�ective mass is scaled in density and pressure computations. In this way,
missing neighbors are compensated in the sums. The interaction then uses the usual
symmetric pressure and viscous terms known from WCSPH and PCISPH [2, 3]. In
practice this keeps densities smooth near the wall and reduces interaction counts, while
the implementation stays small.

3. Background and Related Work

This section gives short background and connects to related work used later. Notation
is kept simple and close to common SPH papers.

A �eld A at particle i with neighbors j is approximated using the smoothing kernel
Wij = W (xi − xj , h):

A(xi) ≈
∑
j

Aj
mj

ρj
Wij . (1)

The standard density summation is

ρi =
∑
j

mj Wij . (2)

For incompressible �ows two popular choices exist. In WCSPH, pressure is computed
from a simple state equation and then symmetric forces are applied [3]:

pi = c2 (ρi − ρ0), api = −
∑
j

mj

(
pi
ρ2i

+
pj
ρ2j

)
∇Wij . (3)

Here c is the arti�cial speed of sound and ρ0 is the rest density. PCISPH instead iter-
atively corrects the pressure so that density error becomes small while keeping similar
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symmetric form for forces [2].
Close to a wall, �uid particles lose neighbors inside the kernel support. Then (2)

underestimates ρi and (3) gives noisy pi. Di�erent models try to �x this. Particle
boundaries sampled on the surface are attractive because they �t (1) and keep symmetry
of forces. Monaghan's particle boundary forces treat general shapes [6]. Ihmsen et al.
discuss boundary handling for PCISPH and show how missing neighbors near walls cause
sticking or pressure jumps if not treated carefully [4]. Constraint-based �uids give an-
other angle, where constraints help to control incompressibility and contact, but they are
heavier to integrate into a simple SPH code path [5].

For two�way coupling the goal is the same pairwise symmetry as in (3) so that linear
and angular momentum are conserved between �uid and rigid body. In practice the
pressure part dominates the exchange; the viscous part adds drag and controls slip.
WCSPH [3] and PCISPH [2] both work with particle boundaries, but they are sensitive
to how the wall is sampled because the sums in (1) and (2) expect the kernel to be well
��lled�.

Multi�layer boundary sampling �lls the kernel, but cost grows fast with each extra
layer. Single�layer sampling is cheap and easy to prepare, yet it su�ers from particle
de�ciency: boundary contributions in (1) and (2) are too small, so the �uid near the wall
gets biased density and pressure. Prior works add special forces or extra corrections [4, 6],
which increases complexity. A simpler alternative is to keep one boundary layer, estimate
the represented boundary volume, and scale its contribution by a corrected mass

m̂b = ρ0 Vb, (4)

so that standard SPH sums recover the �missing� neighbors without new force terms.
Here m̂b is the e�ective mass assigned to boundary particle b; ρ0 is the �uid rest density
from (3); and Vb is the small volume of solid represented by particle b. The volume Vb

is determined from the local boundary sampling density, becoming smaller in densely
sampled regions and larger in sparse ones.

4. Preliminaries and Notation

This section sets the notation for later parts and recalls basic SPH facts needed by
the method. Notation is kept simple and compact. Equations (1)�(3) from Section 2
serve as the base formulas.

LetW (r, h) be the smoothing kernel with length scale h and relative vector r = xi−xj .
Normalization and compact support are∫

Rd

W (r, h) dr = 1, W (r, h) = 0 for ∥r∥ ≥ rsupp. (5)

Symmetry implies antisymmetry for the gradient,

W (r, h) = W (−r, h), ∇iW (xi − xj , h) = −∇jW (xj − xi, h). (6)

For a well sampled neighborhood, the discrete 0th- and 1st-order consistency conditions
read ∑

j

mj

ρj
Wij ≈ 1, (7)

∑
j

mj

ρj
(xj − xi)Wij ≈ 0. (8)
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When (7)�(8) hold, interpolation (1) is unbiased to �rst order. The popular cubic spline
kernel satis�es (5)�(6) and is used in experiments, but the derivations do not depend on
a speci�c kernel.

Density is computed by the standard sum (2). In WCSPH, pressure follows the state
relation (3) [3], while PCISPH predicts and corrects pressure iteratively to drive the
density error to a small value [2]. In both cases, the symmetric pressure acceleration has
the form already shown in (3) and guarantees momentum conservation for particle pairs.

Laminar arti�cial viscosity is used for dissipation and simple slip control. For �uid�
�uid pairs (i, j) it is convenient to de�ne

Πij = − ν
min

(
vij ·xij , 0

)
∥xij∥2 + εh2

, ν =
2αh c

ρi + ρj
, ε = 10−2, (9)

with vij = vi − vj and xij = xi − xj [3]. The corresponding viscous acceleration is

aνi = −
∑
j

mj Πij ∇Wij . (10)

Parameters α and c are shared with WCSPH/PCISPH settings from (3). These choices
are standard in graphics and give robust behavior for moderate Reynolds numbers.

Near a wall, the kernel support is truncated and the sums in (2) and (3) lose neighbors
on the boundary side. Two small diagnostics help to detect this situation in a solver:

First, the normalization de�cit,

e
(0)
i =

∣∣∣∣∣∣ 1−
∑
j

mj

ρj
Wij

∣∣∣∣∣∣ , (11)

which should be close to zero when the neighborhood is well �lled. Second, the �rst-
moment residual,

e
(1)
i =

∥∥∥∥∥∥
∑
j

mj

ρj
(xj − xi)Wij

∥∥∥∥∥∥ , (12)

which should be small for a roughly symmetric neighbor distribution. Large values of
(11) or (12) mark particle de�ciency and often correlate with noisy pressures from (3).

The single-layer boundary model addresses this by adding boundary contributions
that use a corrected mass m̂b as in (4). In Section 4, the corrected density and force
terms will be written so that (7) is approximately restored close to the wall and (11)�(12)
are reduced in practice [4, 6].

5. Method: Single�Layer Boundary Sampling with Volu-

me�Corrected Mass

This section presents the concrete boundary sampling on the rigid surface and the
formulas used later in the solver. The plan is to keep one boundary layer and compensate
missing neighbors by a local volume and a corrected mass. Interpolation (1), density sum
(2), and the symmetric pressure term from (3) stay unchanged for �uid��uid pairs.

The rigid surface is sampled by a single layer of boundary particles with spacing close
to the �uid particle spacing. Let B be the set of boundary particles. Only boundary
particles that have at least one �uid neighbor inside the kernel support are considered
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active in a time step to save cost [4]. For compact notation, F(i) and B(i) denote �uid
and boundary neighbors of a �uid particle i.

A boundary particle represents a small portion of solid volume around the surface.
This portion is estimated by the local boundary sampling density

δb =
∑

k∈B(b)

W (xb − xk, h). (13)

Assuming equal boundary masses in the layer, the represented volume becomes

Vb ≈ 1

δb
. (14)

Using the �uid rest density from (3), the corrected boundary mass follows from (4) as
m̂b = ρ0Vb. In dense regions δb is larger and Vb becomes smaller; in sparse regions Vb

grows and compensates the missing neighbors.
The density estimate of a �uid particle near a wall is extended by boundary contri-

butions that use the corrected mass:

ρi =
∑

j∈F(i)

mj Wij +
∑

b∈B(i)

m̂b Wib. (15)

The �rst term equals the standard density sum (2), while the second term restores the
missing mass from the wall side. With (15), the state relation in (3) produces smoother
pressures next to the boundary.

Pressure exchange with the wall keeps the symmetric SPH form but replaces the
neighbor mass by the corrected boundary mass. The acceleration of a �uid particle due
to pressure from boundary neighbors is

a
p|B
i = −

∑
b∈B(i)

m̂b

(
pi
ρ2i

)
∇Wib. (16)

This follows the idea used in particle boundary forces [4, 6] but stays consistent with the
symmetric term of (3). Equal and opposite forces are applied to the rigid body through
its boundary particles, so momentum is conserved.

Slip control and drag are added with a laminar arti�cial viscosity acting between �uid
and boundary neighbors, similar in spirit to (9) but using the boundary mass correction:

Πib = − ν
min(vib ·xib, 0)

∥xib∥2 + εh2
, ν =

2αh c

ρi + ρ0
, ε = 10−2, (17)

with vib = vi−vb and xib = xi−xb. The boundary contribution to viscous acceleration
is then

a
ν|B
i = −

∑
b∈B(i)

m̂b Πib ∇Wib. (18)

Parameter α controls slip: α = 0 gives almost free slip; larger α increases tangential
drag [3].

Because Vb adapts to local sampling through (14), the single-layer model stays stable
on thin plates, rods, and non�manifold junctions. Dense areas contribute less due to
smaller Vb; sparse areas contribute more. As a result, density (15) and forces (16)�(18)
remain consistent without extra layers or position correction [4].
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6. Two�Way Coupling Forces

This section de�nes the forces exchanged between �uid and rigid through boundary
particles. The pairwise form keeps symmetry and uses the corrected boundary mass
from (4) together with the kernel interactions already used in (16) and (18). Momentum
conservation then follows directly from action-reaction pairs [4, 6].

For a �uid particle i and a boundary particle b, the pairwise pressure force applied
to the �uid is written from the acceleration in (16) as

fpi←b = mi a
p|b
i = −mi m̂b

(
pi
ρ2i

)
∇Wib. (19)

The boundary particle receives the opposite reaction,

fpb←i = − fpi←b. (20)

Equations (19)�(20) are consistent with symmetric SPH pressure forms and use only
the �uid state (pi, ρi) on the right, which is standard for particle boundaries [4, 6]. As
density near the wall is stabilized by (15), the pressure from (3) grows smoothly with
compression and prevents penetration without extra position correction.

Tangential drag and slip control follow the laminar arti�cial viscosity. Using Πib from
(17), the pairwise viscous force to the �uid is

fνi←b = −mi m̂b Πib ∇Wib, (21)

and the reaction on the boundary particle is

fνb←i = − fνi←b. (22)

The parameter α in (17) sets the e�ective slip: small α produces almost free slip, while
larger values increase drag along the surface [3]. The same form is used for WCSPH and
PCISPH [2].

For every interacting pair (i, b) the pressure and viscous forces satisfy

fpi←b + fpb←i = 0, fνi←b + fνb←i = 0. (23)

Summing (23) over all pairs gives zero net internal force, so linear and angular momentum
are conserved by construction. This is the key advantage of particle boundaries with
symmetric forms [6].

The total force on a boundary particle from nearby �uid particles is

fb =
∑

i∈F(b)

(
fpb←i + fνb←i

)
. (24)

For a rigid body with boundary set Br and center of mass xcm, the net force and torque
are

Frigid =
∑
b∈Br

fb, τ rigid =
∑
b∈Br

(xb − xcm)× fb. (25)

These quantities are passed to the rigid-body solver at each step. No boundary normals
are required, and multiple contacts are handled naturally since (24) is local per boundary
particle [4].
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Stable behavior depends on three simple conditions. The density near walls should
be computed with (15) so that (3) gives consistent pressures. The viscosity parameters
in (17) should respect the time-step limits in Section 3 to avoid oversmoothing. Finally,
the corrected mass m̂b should be updated from (14) when boundary sampling density
changes, for example during contacts or fast motion [4].

7. Solver Integration

This section shows how the boundary model is inserted into a standard SPH loop.
The order is: synchronize the rigid state, activate nearby boundary particles, evaluate
densities and pressures, assemble two-way forces, and integrate in time. Formulas from
Sections 2-5 are reused without modi�cation.

Rigid transforms are applied to boundary particle positions xb at the beginning of
the step. A neighbor search is then executed for all �uid particles. A boundary particle
becomes active if at least one �uid particle is inside its kernel support; this is expressed
by the indicator

χb =

{
1, ∃ i s.t. ∥xb − xi∥ < rsupp,

0, otherwise.
(26)

Only active boundary particles take part in the following computations. For each active
b, the local boundary sampling density δb is computed by (13), the represented volume
Vb by (14), and the corrected mass m̂b = ρ0Vb by (4). Processing only particles with
χb = 1 keeps the overhead proportional to the e�ective contact area [4].

Fluid density employs the extended summation

ρi =
∑

j∈F(i)

mj Wij +
∑

b∈B(i)

m̂b Wib, (27)

which is identical to (15) and repeated here for completeness of the solver description.
In WCSPH, pressure follows the equation of state (3) [3]. In PCISPH, the same density
estimate (27) is used inside the pressure correction loop until the target density error
is met [2]. The corrected boundary mass m̂b removes the typical underestimation of ρi
close to walls and avoids noisy pi values [4, 6].

Fluid-�uid pressure uses the standard symmetric form

a
p|F
i = −

∑
j∈F(i)

mj

(
pi
ρ2i

+
pj
ρ2j

)
∇Wij ,

and �uid-boundary pressure uses (16). Viscous terms combine the �uid-�uid contribution
(10) with the �uid-boundary contribution (18). External accelerations (e.g., gravity) are
then added. The total acceleration becomes

ai = a
p|F
i + a

p|B
i + aνi + a

ν|B
i + aexti .

On the rigid side, action-reaction pairs from Section 5 are accumulated per boundary
particle and converted to forces and torques by (24)�(25). This keeps momentum con-
servation without normals or penetration constraints [4, 6].

The step size follows standard WCSPH/PCISPH limits [2�4]. First, a CFL-like bound
and a viscous bound are computed,

∆tcfl = Ccfl
h

c+maxi ∥vi∥
,
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∆tν = Cν
h2

max(νi)
, νi from (9) or (17).

The step size is then chosen as

∆t = min
(
∆tcfl, ∆tν

)
, (28)

with safety factors Ccfl, Cν ∈ [0.2, 0.4]. For PCISPH, (28) de�nes the predictor step;
several pressure corrections are performed inside the step until the density error target
is reached [2]. States are advanced explicitly,

v t+∆t
i = v t

i +∆tai, x t+∆t
i = x t

i +∆tv t+∆t
i .

Before the next step, neighbors and the activation mask (26) are rebuilt to avoid tunneling
of fast moving boundaries [4].

The dominant cost remains the neighbor search and pressure evaluation. Activating
only boundary particles with χb = 1 limits overhead. Volumes Vb adapt to the local
sampling density via (14), so thin plates, rods, and non-manifold junctions behave stably
without extra layers. When contact patterns change, δb, Vb, and m̂b are recomputed
before evaluating (27) and the forces, keeping density and pressure smooth across time [4].

8. Results

This section evaluates the proposed single-layer boundary with volume-corrected mass
on a �xed benchmark scene and reports interaction counts together with qualitative
stability observations.

The benchmark is a two-dimensional rectangular tank with static outer walls (left,
right, bottom, top). Inside the tank, �ve rigid bodies are present: four rectangular boxes
and one sphere. All �ve interior bodies are treated as dynamic rigid bodies (they receive
and apply two-way forces), whereas the tank walls are static boundaries.

The boxes are initially resting on the bottom and arranged as in Fig. 1. The sphere
starts above the free surface at mid-width and is released from rest at t = 0 under
gravity, producing a crater, side jets, and a central splash upon impact. Color in the
frames corresponds to velocity of �uid particles (blue → low, red → high).

A reference scene was simulated for 24 steps with 20,000 �uid particles. Two boundary
samplings were compared: a multi-layer discretization with 14,272 boundary particles
and a single-layer discretization with 3,032 boundary particles. Both runs used the same
�uid settings and the same rigid motion. The single-layer variant employed the density
extension in (15) together with the corrected mass m̂b = ρ0Vb from (4).

Across all frames, the total number of �uid-boundary interactions was lower for the
single-layer case. The multi-layer con�guration produced on average about 18,032 inter-
actions per step, while the single-layer case produced about 13,958. This is a reduction
of roughly 4,074 interactions per step, i.e. about 22.6% fewer pair evaluations for the
same �uid state. Fig. 2 summarizes the trend.

When normalized per �uid particle, the interaction rate was around 0.90 for the multi-
layer and 0.70 for the single-layer sampling. When normalized per boundary particle,
the di�erence is stronger: each boundary particle in the single-layer setup contributed
on average to more than 4.6 interactions, while in the multi-layer case the value was
about 1.26. This shows that multi-layer sampling tends to oversample the wall region
and triggers redundant computations that do not change the �ow noticeably.
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Fig. 1. Benchmark snapshots (left-to-right, top-to-bottom): The sphere falls into
the �uid and generates a cavity, plunging jet, and subsequent rebound.

Colors indicate velocity. Container walls are static throughout

Fig. 2. Interaction rate over time for single-layer and multi-layer boundary samplings.
Lower curve corresponds to the single-layer setup

Without the mass correction, a single layer near thin plates, shells, or rods would
su�er from particle de�ciency: the kernel support is not �lled and density close to the
wall is underestimated. With the corrected contribution m̂b = ρ0Vb and the extended
density sum (15), this de�ciency is compensated. In the tested scene, the pressure �eld
near walls stayed smooth and penetration was not observed, even for lower-dimensional
shapes. The model therefore allows simpler and cheaper boundary representations while
keeping the same symmetric force exchange used in Section 6

9. Conclusions

The paper presented a compact boundary model for SPH that uses a single particle
layer on rigid surfaces together with a volume-corrected boundary mass. The correction
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is expressed by m̂b = ρ0Vb in (4), where Vb adapts to the local sampling density. With
this choice, the extended density sum (15) restores the missing support close to walls,
while pressure and viscous exchanges keep the standard symmetric pairwise form, see
(19)�(22). The method integrates directly into WCSPH and PCISPH loops without
extra position corrections or special boundary forces.

Experiments with 20,000 �uid particles showed that the single-layer sampling with
volume correction reduces the total number of �uid-boundary interactions by about 22.6%
compared to a multi-layer discretization (on average 13,958 vs. 18,032 pairs per step),
see Figure 2. Normalized per �uid particle, rates were roughly 0.70 (single layer) vs.
0.90 (multi layer). Normalized per boundary particle, the single layer was much more
e�cient (≈ 4.6 vs. 1.26 interactions on average). At the same time, density and pressure
near walls stayed smooth; sticking and small penetrations were not observed in the tested
scene.

From an implementation view, the model stays light. Only boundary particles that
are close to the �uid are activated each step, their local sampling δb is evaluated by (13),
and the represented volume Vb by (14). Forces are then accumulated with (24)�(25)
to drive the rigid solver. No boundary normals are required, and thin plates, rods, or
non-manifold junctions are handled naturally because Vb adapts to the local sampling.

There are still limits. The minimal thickness that can be represented is tied to the
�uid particle scale; extremely compressible �ows were not addressed; very fast motions
need the standard SPH time-step control of Section 3 to avoid tunneling. Future work can
include adaptive boundary sampling (coarser in �at regions, denser in high curvature),
coupling with measured wall roughness for better slip control through the α parameter in
(17), and validation on multi-phase scenes and higher Reynolds numbers. Despite these
open points, the volume-corrected single layer o�ers a simple, robust, and e�cient option
for two-way rigid-�uid coupling.
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ÌÅÒÎÄÓ SPH Ç ÄÂÎÑÒÎÐÎÍÍÜÎÞ ÂÇÀ�ÌÎÄI�Þ

Ç ÒÂÅÐÄÈÌÈ ÒIËÀÌÈ
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Çàïðîïîíîâàíî ïðàêòè÷íèé ïiäõiä äî âçà¹ìîäi¨ ðiäèíà�òâåðäå òiëî â ìåòîäi Smoo-
thed Particle Hydrodynamics (SPH). Çàëèøà¹òüñÿ ëèøå îäèí øàð ÷àñòèíîê ìåæi, à
êîæíié ãðàíè÷íié ÷àñòèíöi ïðèçíà÷à¹òüñÿ åôåêòèâíà ìàñà ç ïîïðàâêîþ íà îá'¹ì.
Áàãàòîøàðîâi ìåæi ìîæóòü äàâàòè âèñîêó òî÷íiñòü, îäíàê íà ïðàêòèöi âîíè âàæêi:
ðîñòóòü ñïèñêè ñóñiäiâ, çáiëüøó¹òüñÿ êiëüêiñòü âçà¹ìîäié, áàãàòî ÷àñòèíîê ñòiíêè
âèêîíóþòü çàéâó ðîáîòó. Iäåÿ îäíîøàðîâîãî ñåìïëþâàííÿ òðèìà¹òüñÿ áåçïîñåðåäíüî
íà ïîâåðõíi òâåðäîãî òiëà òà êîìïåíñó¹ âiäñóòíiõ ñóñiäiâ ëîêàëüíîþ îöiíêîþ îá'¹ìó Vb,
ùî âiäîáðàæà¹òüñÿ ó m̂b = ρ0Vb. Çàâäÿêè öié êîðåêöi¨ ñóìè äëÿ ùiëüíîñòi òà òèñêó
ïîáëèçó ñòiíêè çàëèøàþòüñÿ óçãîäæåíèìè íàâiòü äëÿ òîíêèõ ïëàñòèí i îáîëîíîê, òîäi
ÿê êiëüêiñòü ïîïàðíèõ âçà¹ìîäié çìåíøó¹òüñÿ.

Çâ'ÿçóâàííÿ âèêîðèñòîâó¹ ñòàíäàðòíi ñèìåòðè÷íi ñèëè SPH, òîìó ëiíiéíèé i êóòî-
âèé iìïóëüñ çáåðiãàþòüñÿ áåç øòðàôiâ çà êîíòàêò i áåç êîðåêöié ïîëîæåííÿ. Iíòåãðàöiÿ
¹ ïðîñòîþ ó WCSPH (ñëàáêîñòèñëèâà SPH) òà ó PCISPH (ïðîãíîçíî�êîðèãóâàëüíà
íåñòèñëèâà SPH): äîäàòêîâi ãðàíè÷íi äîäàíêè îòðèìó¹ ëèøå ïiäñóìîâóâàííÿ ùiëüíîñ-
òi, òîäi ÿê òèñêîâi òà â'ÿçêi ñêëàäîâi çáåðiãàþòü çâè÷íó ôîðìó. Ñõåìà çðó÷íà â
ðåàëiçàöi¨, ïðàöþ¹ ç íàÿâíèì ïîøóêîì ñóñiäiâ i äîïîìàãà¹ êåðóâàòè êîâçàííÿì ÷åðåç
òèïîâi ïàðàìåòðè â'ÿçêîñòi.

Êëþ÷îâi ñëîâà: SPH (ìåòîä çãëàäæåíèõ ÷àñòèíîê), âçà¹ìîäiÿ ðiäèíà�òâåðäå òiëî,
ñåìïëþâàííÿ ìåæi, îäíîøàðîâi ìåæi, îá'¹ìíà êîðåêöiÿ, äåôiöèò ÷àñòèíîê, ìîäåëþ-
âàííÿ â ðåàëüíîìó ÷àñi.


