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A practical approach for fluid-rigid interaction in Smoothed Particle Hydrodynamics
(SPH) is introduced. It keeps only one boundary layer and assigns each boundary particle
a volume—corrected effective mass. Multi—layer boundaries can be accurate, but in practice
they are heavy: neighbor lists grow, interaction counts rise, and many wall samples do
redundant work. The single—layer idea stays on the rigid surface and compensates missing
neighbors by a local volume estimate V3, mapped to my = pgV}. With this correction,
density and pressure sums near the wall remain consistent even for thin plates and shells,
while the number of pairwise interactions goes down.

The coupling uses standard symmetric SPH forces, so linear and angular momentum are
preserved without contact penalties or position corrections. Integration is straightforward
in both WCSPH (Weakly compressible SPH) and PCISPH (Predictive—corrective incom-
pressible SPH): only the density summation receives the extra boundary terms, whereas
pressure and viscous parts keep their usual form. The scheme is friendly to implementa-
tion, works with existing neighbor search, and allows slip control through common viscosity
parameters.

Key words: smoothed Particle Hydrodynamics (SPH), fluid-rigid coupling, boundary sam-
pling, single-layer boundary, volume correction, particle deficiency, real-time simulation.

1. INTRODUCTION

Smoothed Particle Hydrodynamics (SPH) is a mesh—free method where fields are ap-
proximated by local sums over neighbors with a smoothing kernel. The early idea comes
from astrophysics [1]. In graphics and engineering, two popular choices are WCSPH
(Weakly compressible SPH) and PCISPH (Predictive-corrective incompressible SPH),
mainly because they are simple and fast for many incompressible scenes [2, 3].

When rigid bodies are introduced into the fluid, behavior becomes more sensitive
near walls. If the kernel support is not fully filled, fluid particles close to a boundary
lose neighbors. Then density is underestimated and pressure gets noisy. It may lead to
sticking or even small penetrations. Different boundary models try to fix this: frozen or
ghost particles, penalty/contact forces, and particle boundaries sampled on the surface [4,
6]. Each model has benefits and costs.

Complementary to our previous IISPH study, where we implemented and validated
an incompressible SPH solver on the Taylor—Green vortex benchmark [7], this paper
focuses on boundary sampling and two—way rigid—fluid coupling; the proposed single—
layer scheme integrates with WCSPH/PCISPH without additional forces or position
corrections.

In production code, stable two—way coupling and speed are important. Particle
boundaries are attractive because they match SPH formulas and give symmetric forces
with the rigid body. But a common recommendation is to place several boundary layers
to fill the kernel radius. Accuracy is good, but cost grows fast with each extra layer. The
aim is to keep cost low and still have smooth density and pressure next to the wall.
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2. PROBLEM STATEMENT

The fluid is single-phase and Newtonian; surface tension and multiphase effects are
not considered. Flows are low-Mach for WCSPH and near-incompressible for PCISPH.
Rigid bodies are treated as perfectly rigid with six-degree-of-freedom motion and ex-
change linear/angular momentum with the fluid only via particle interactions at the
interface. The method targets moderate Reynolds numbers typical for graphics and
real-time engineering scenarios.

The goal is to design a boundary sampling and weighting scheme that: (i) uses a
single layer of boundary particles placed on the rigid surface, (ii) yields unbiased density
and stable pressures for fluid particles near walls, (iii) preserves pairwise force symmetry
for momentum conservation, (iv) drops into both WCSPH and PCISPH without extra
solver passes, contact penalties, or position corrections, and (v) reduces the number of
fluid-boundary pair evaluations (and thus cost) for a fixed fluid resolution.

Typical use-cases include free-surface flows in tanks and channels with immersed
rigid obstacles (thin plates, shells, rods), stirrer-like bodies, and moving mechanisms
submerged in liquid. In all cases the interaction is localized to the fluid-solid interface.

Effectiveness is judged by (a) density/pressure smoothness near the wall, (b) absence
of sticking/penetration, and (c) reduced interaction counts and /or runtime at comparable
accuracy.

A single layer of boundary particles is placed directly on the rigid surface, and each
boundary particle is assigned a volume that it represents on the surface. Based on this
volume, its effective mass is scaled in density and pressure computations. In this way,
missing neighbors are compensated in the sums. The interaction then uses the usual
symmetric pressure and viscous terms known from WCSPH and PCISPH [2, 3]. In
practice this keeps densities smooth near the wall and reduces interaction counts, while
the implementation stays small.

3. BACKGROUND AND RELATED WORK

This section gives short background and connects to related work used later. Notation
is kept simple and close to common SPH papers.
A field A at particle ¢ with neighbors j is approximated using the smoothing kernel
Wij = VV(XZ — Xy, h)
M
—~ 7 p
The standard density summation is

pi = > m;Wij. (2)
j

For incompressible flows two popular choices exist. In WCSPH, pressure is computed
from a simple state equation and then symmetric forces are applied [3]:

Di Dj
pi = pi—p), Al = - my (ﬁ*p;)VWU. (3)
J i J

Here c is the artificial speed of sound and pg is the rest density. PCISPH instead iter-
atively corrects the pressure so that density error becomes small while keeping similar
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symmetric form for forces [2].

Close to a wall, fluid particles lose neighbors inside the kernel support. Then (2)
underestimates p; and (3) gives noisy p;. Different models try to fix this. Particle
boundaries sampled on the surface are attractive because they fit (1) and keep symmetry
of forces. Monaghan’s particle boundary forces treat general shapes [6]. Thmsen et al.
discuss boundary handling for PCISPH and show how missing neighbors near walls cause
sticking or pressure jumps if not treated carefully [4]. Constraint-based fluids give an-
other angle, where constraints help to control incompressibility and contact, but they are
heavier to integrate into a simple SPH code path [5].

For two—way coupling the goal is the same pairwise symmetry as in (3) so that linear
and angular momentum are conserved between fluid and rigid body. In practice the
pressure part dominates the exchange; the viscous part adds drag and controls slip.
WCSPH [3] and PCISPH [2] both work with particle boundaries, but they are sensitive
to how the wall is sampled because the sums in (1) and (2) expect the kernel to be well
“filled”.

Multi-layer boundary sampling fills the kernel, but cost grows fast with each extra
layer. Single-layer sampling is cheap and easy to prepare, yet it suffers from particle
deficiency: boundary contributions in (1) and (2) are too small, so the fluid near the wall
gets biased density and pressure. Prior works add special forces or extra corrections [4, 6],
which increases complexity. A simpler alternative is to keep one boundary layer, estimate
the represented boundary volume, and scale its contribution by a corrected mass

my = po Vi, (4)

so that standard SPH sums recover the “missing” neighbors without new force terms.
Here my is the effective mass assigned to boundary particle b; pg is the fluid rest density
from (3); and V4 is the small volume of solid represented by particle b. The volume V},
is determined from the local boundary sampling density, becoming smaller in densely
sampled regions and larger in sparse ones.

4. PRELIMINARIES AND NOTATION

This section sets the notation for later parts and recalls basic SPH facts needed by
the method. Notation is kept simple and compact. Equations (1)—(3) from Section 2
serve as the base formulas.

Let W(r, h) be the smoothing kernel with length scale h and relative vector r = x; —x;.
Normalization and compact support are

W(r,h)dr =1, W(r,h) =0 for ||r|| > rsupp- (5)
Rd
Symmetry implies antisymmetry for the gradient,

VV(I‘7 h) = M/(—I‘7 h), VZ‘W(Xi — X5, h) = — VjW(Xj — X, h) (6)

For a well sampled neighborhood, the discrete Oth- and 1st-order consistency conditions
read

% Wij =1, (7)
j J
P (% — %) Wiy ~ 0. (8)

~ P
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When (7)—(8) hold, interpolation (1) is unbiased to first order. The popular cubic spline
kernel satisfies (5)—(6) and is used in experiments, but the derivations do not depend on
a specific kernel.

Density is computed by the standard sum (2). In WCSPH, pressure follows the state
relation (3) [3], while PCISPH predicts and corrects pressure iteratively to drive the
density error to a small value [2]. In both cases, the symmetric pressure acceleration has
the form already shown in (3) and guarantees momentum conservation for particle pairs.

Laminar artificial viscosity is used for dissipation and simple slip control. For fluid—
fluid pairs (7, j) it is convenient to define

min (viijij, O) 2ahc

I, = —v—— 229 v = , =102, 9
f [+ ek P o

with v;; = v; — v; and x;; = x; — Xx; [3]. The corresponding viscous acceleration is

ai” = — Z m; Hij VW” (10)
J

Parameters « and ¢ are shared with WCSPH/PCISPH settings from (3). These choices

are standard in graphics and give robust behavior for moderate Reynolds numbers.
Near a wall, the kernel support is truncated and the sums in (2) and (3) lose neighbors

on the boundary side. Two small diagnostics help to detect this situation in a solver:
First, the normalization deficit,

el = 1—Zﬁsz ; (11)
— 0

which should be close to zero when the neighborhood is well filled. Second, the first-
moment residual,

el = Zﬁ(xj_xi)wi‘ ; (12)
—~ 0

which should be small for a roughly symmetric neighbor distribution. Large values of
(11) or (12) mark particle deficiency and often correlate with noisy pressures from (3).

The single-layer boundary model addresses this by adding boundary contributions
that use a corrected mass 1, as in (4). In Section 4, the corrected density and force
terms will be written so that (7) is approximately restored close to the wall and (11)—(12)
are reduced in practice [4, 6].

5. METHOD: SINGLE-LAYER BOUNDARY SAMPLING WITH VOLU-
ME-CORRECTED MASS

This section presents the concrete boundary sampling on the rigid surface and the
formulas used later in the solver. The plan is to keep one boundary layer and compensate
missing neighbors by a local volume and a corrected mass. Interpolation (1), density sum
(2), and the symmetric pressure term from (3) stay unchanged for fluid—fluid pairs.

The rigid surface is sampled by a single layer of boundary particles with spacing close
to the fluid particle spacing. Let B be the set of boundary particles. Only boundary
particles that have at least one fluid neighbor inside the kernel support are considered
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active in a time step to save cost [4]. For compact notation, F (i) and B(i) denote fluid
and boundary neighbors of a fluid particle <.

A boundary particle represents a small portion of solid volume around the surface.
This portion is estimated by the local boundary sampling density

& = Y Wi(xy—xx,h). (13)
kEB(b)

Assuming equal boundary masses in the layer, the represented volume becomes

Using the fluid rest density from (3), the corrected boundary mass follows from (4) as
mp = poVp. In dense regions & is larger and V; becomes smaller; in sparse regions V;,
grows and compensates the missing neighbors.

The density estimate of a fluid particle near a wall is extended by boundary contri-
butions that use the corrected mass:

pi = Z m; Wij + Z mp Wip. (15)
FEF() beB(3)

The first term equals the standard density sum (2), while the second term restores the
missing mass from the wall side. With (15), the state relation in (3) produces smoother
pressures next to the boundary.

Pressure exchange with the wall keeps the symmetric SPH form but replaces the
neighbor mass by the corrected boundary mass. The acceleration of a fluid particle due
to pressure from boundary neighbors is

ale = — Z mp <p;> VWip. (16)

beB(1) v

This follows the idea used in particle boundary forces [4, 6] but stays consistent with the
symmetric term of (3). Equal and opposite forces are applied to the rigid body through
its boundary particles, so momentum is conserved.

Slip control and drag are added with a laminar artificial viscosity acting between fluid
and boundary neighbors, similar in spirit to (9) but using the boundary mass correction:
min(vp X, 0) 2ahe

-V, v = ,
x| + eh? pi + po

I = e=10"% (17)

with v, = v; — v and x;, = X; — Xp. The boundary contribution to viscous acceleration

is then 5

all® = — N iy Iy VW, (18)
beB(i)

Parameter o controls slip: a = 0 gives almost free slip; larger « increases tangential
drag [3].

Because Vj, adapts to local sampling through (14), the single-layer model stays stable
on thin plates, rods, and non—manifold junctions. Dense areas contribute less due to
smaller V;; sparse areas contribute more. As a result, density (15) and forces (16)—(18)
remain consistent without extra layers or position correction [4].
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6. Two—WAYy COUPLING FORCES

This section defines the forces exchanged between fluid and rigid through boundary
particles. The pairwise form keeps symmetry and uses the corrected boundary mass
from (4) together with the kernel interactions already used in (16) and (18). Momentum
conservation then follows directly from action-reaction pairs [4, 6].

For a fluid particle ¢ and a boundary particle b, the pairwise pressure force applied
to the fluid is written from the acceleration in (16) as

b A Di

fipeb = m; afl = —m; my (p;) VWib. (19)
3

The boundary particle receives the opposite reaction,

fbpei = —ff;b, (20)

Equations (19)—(20) are consistent with symmetric SPH pressure forms and use only
the fluid state (p;, p;) on the right, which is standard for particle boundaries [4, 6]. As
density near the wall is stabilized by (15), the pressure from (3) grows smoothly with
compression and prevents penetration without extra position correction.

Tangential drag and slip control follow the laminar artificial viscosity. Using IL;; from
(17), the pairwise viscous force to the fluid is

Z-ka = —m; mb Hib VWib, (2].)
and the reaction on the boundary particle is

17
fbei -

—fiy (22)

The parameter « in (17) sets the effective slip: small o produces almost free slip, while
larger values increase drag along the surface [3]. The same form is used for WCSPH and
PCISPH [2].
For every interacting pair (i,b) the pressure and viscous forces satisfy
fip<—b + fy.

b1

=0, fip +f i =0. (23)

Summing (23) over all pairs gives zero net internal force, so linear and angular momentum
are conserved by construction. This is the key advantage of particle boundaries with
symmetric forms [6].

The total force on a boundary particle from nearby fluid particles is

£, = > (o +6): (24)

i€ F(b)

For a rigid body with boundary set 5, and center of mass X.p,, the net force and torque

are
Frga = > £, Trigia = »_ (X — Xem) X fi. (25)
beB, beB,
These quantities are passed to the rigid-body solver at each step. No boundary normals
are required, and multiple contacts are handled naturally since (24) is local per boundary
particle [4].
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Stable behavior depends on three simple conditions. The density near walls should
be computed with (15) so that (3) gives consistent pressures. The viscosity parameters
in (17) should respect the time-step limits in Section 3 to avoid oversmoothing. Finally,
the corrected mass 1y should be updated from (14) when boundary sampling density
changes, for example during contacts or fast motion [4].

7. SOLVER INTEGRATION

This section shows how the boundary model is inserted into a standard SPH loop.
The order is: synchronize the rigid state, activate nearby boundary particles, evaluate
densities and pressures, assemble two-way forces, and integrate in time. Formulas from
Sections 2-5 are reused without modification.

Rigid transforms are applied to boundary particle positions x; at the beginning of
the step. A neighbor search is then executed for all fluid particles. A boundary particle
becomes active if at least one fluid particle is inside its kernel support; this is expressed
by the indicator

- (26)

]., di s.t. ||Xb — XZH < Tsupp>
Xb = .
0, otherwise.

Only active boundary particles take part in the following computations. For each active
b, the local boundary sampling density J, is computed by (13), the represented volume
Vp by (14), and the corrected mass 7, = poV) by (4). Processing only particles with
Xb» = 1 keeps the overhead proportional to the effective contact area [4].

Fluid density employs the extended summation

Pi = Z m; Wij + Z my Wip, (27)
JEF (i) beB(7)

which is identical to (15) and repeated here for completeness of the solver description.
In WCSPH, pressure follows the equation of state (3) [3]. In PCISPH, the same density
estimate (27) is used inside the pressure correction loop until the target density error
is met [2]. The corrected boundary mass 7, removes the typical underestimation of p;
close to walls and avoids noisy p; values [4, 6].

Fluid-fluid pressure uses the standard symmetric form

F b pj
= 5w (B ow
JEF (i) i J
and fluid-boundary pressure uses (16). Viscous terms combine the fluid-fluid contribution
(10) with the fluid-boundary contribution (18). External accelerations (e.g., gravity) are
then added. The total acceleration becomes

|B v|B

p|F P t
al-:ai| +a;, +aj+a; +a.

On the rigid side, action-reaction pairs from Section 5 are accumulated per boundary
particle and converted to forces and torques by (24)—(25). This keeps momentum con-
servation without normals or penetration constraints [4, 6].

The step size follows standard WCSPH/PCISPH limits [2-4]. First, a CFL-like bound
and a viscous bound are computed,

h

Atcﬂ = Cc



Hrytsyshyn O., Trushevskyy V.
74 ISSN 2078-5097. Bicu. JIbsis. yu-ty. Cep. npuksa. marem. ta indg. 2025. Bun. 34

h2
Atu = Cuiv
max(v;)

v; from (9) or (17).
The step size is then chosen as
At = min (Ateg, At), (28)

with safety factors Ceq,C, € [0.2,0.4]. For PCISPH, (28) defines the predictor step;
several pressure corrections are performed inside the step until the density error target
is reached [2]. States are advanced explicitly,

ViHAt = vl + Ata, xiHAt = x! + At vitJrAt.
Before the next step, neighbors and the activation mask (26) are rebuilt to avoid tunneling
of fast moving boundaries [4].

The dominant cost remains the neighbor search and pressure evaluation. Activating
only boundary particles with x;, = 1 limits overhead. Volumes V, adapt to the local
sampling density via (14), so thin plates, rods, and non-manifold junctions behave stably
without extra layers. When contact patterns change, d;, V3, and ry are recomputed
before evaluating (27) and the forces, keeping density and pressure smooth across time [4].

8. REsuULTS

This section evaluates the proposed single-layer boundary with volume-corrected mass
on a fixed benchmark scene and reports interaction counts together with qualitative
stability observations.

The benchmark is a two-dimensional rectangular tank with static outer walls (left,
right, bottom, top). Inside the tank, five rigid bodies are present: four rectangular boxes
and one sphere. All five interior bodies are treated as dynamic rigid bodies (they receive
and apply two-way forces), whereas the tank walls are static boundaries.

The boxes are initially resting on the bottom and arranged as in Fig.1. The sphere
starts above the free surface at mid-width and is released from rest at ¢ = 0 under
gravity, producing a crater, side jets, and a central splash upon impact. Color in the
frames corresponds to velocity of fluid particles (blue — low, red — high).

A reference scene was simulated for 24 steps with 20,000 fluid particles. Two boundary
samplings were compared: a multi-layer discretization with 14,272 boundary particles
and a single-layer discretization with 3,032 boundary particles. Both runs used the same
fluid settings and the same rigid motion. The single-layer variant employed the density
extension in (15) together with the corrected mass m, = poV} from (4).

Across all frames, the total number of fluid-boundary interactions was lower for the
single-layer case. The multi-layer configuration produced on average about 18,032 inter-
actions per step, while the single-layer case produced about 13,958. This is a reduction
of roughly 4,074 interactions per step, i.e. about 22.6% fewer pair evaluations for the
same fluid state. Fig. 2 summarizes the trend.

When normalized per fluid particle, the interaction rate was around 0.90 for the multi-
layer and 0.70 for the single-layer sampling. When normalized per boundary particle,
the difference is stronger: each boundary particle in the single-layer setup contributed
on average to more than 4.6 interactions, while in the multi-layer case the value was
about 1.26. This shows that multi-layer sampling tends to oversample the wall region
and triggers redundant computations that do not change the flow noticeably.
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Fig. 1. Benchmark snapshots (left-to-right, top-to-bottom): The sphere falls into
the fluid and generates a cavity, plunging jet, and subsequent rebound.
Colors indicate velocity. Container walls are static throughout

Corrected Interaction Rate Per Fluid Particle
single Layer
16 I

= Multi Layer
fol
i

14 fy

Interactions f Fluid Particle

0.8 L =

0.6

2
lime {seconds)

Fig. 2. Interaction rate over time for single-layer and multi-layer boundary samplings.
Lower curve corresponds to the single-layer setup

Without the mass correction, a single layer near thin plates, shells, or rods would
suffer from particle deficiency: the kernel support is not filled and density close to the
wall is underestimated. With the corrected contribution my, = poV, and the extended
density sum (15), this deficiency is compensated. In the tested scene, the pressure field
near walls stayed smooth and penetration was not observed, even for lower-dimensional

shapes. The model therefore allows simpler and cheaper boundary representations while
keeping the same symmetric force exchange used in Section 6

9. CONCLUSIONS

The paper presented a compact boundary model for SPH that uses a single particle
layer on rigid surfaces together with a volume-corrected boundary mass. The correction
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is expressed by my = poV} in (4), where V;, adapts to the local sampling density. With
this choice, the extended density sum (15) restores the missing support close to walls,
while pressure and viscous exchanges keep the standard symmetric pairwise form, see
(19)-(22). The method integrates directly into WCSPH and PCISPH loops without
extra position corrections or special boundary forces.

Experiments with 20,000 fluid particles showed that the single-layer sampling with
volume correction reduces the total number of fluid-boundary interactions by about 22.6%
compared to a multi-layer discretization (on average 13,958 vs. 18,032 pairs per step),
see Figure 2. Normalized per fluid particle, rates were roughly 0.70 (single layer) vs.
0.90 (multi layer). Normalized per boundary particle, the single layer was much more
efficient (= 4.6 vs. 1.26 interactions on average). At the same time, density and pressure
near walls stayed smooth; sticking and small penetrations were not observed in the tested
scene.

From an implementation view, the model stays light. Only boundary particles that
are close to the fluid are activated each step, their local sampling dj, is evaluated by (13),
and the represented volume V; by (14). Forces are then accumulated with (24)—(25)
to drive the rigid solver. No boundary normals are required, and thin plates, rods, or
non-manifold junctions are handled naturally because V, adapts to the local sampling.

There are still limits. The minimal thickness that can be represented is tied to the
fluid particle scale; extremely compressible flows were not addressed; very fast motions
need the standard SPH time-step control of Section 3 to avoid tunneling. Future work can
include adaptive boundary sampling (coarser in flat regions, denser in high curvature),
coupling with measured wall roughness for better slip control through the o parameter in
(17), and validation on multi-phase scenes and higher Reynolds numbers. Despite these
open points, the volume-corrected single layer offers a simple, robust, and efficient option
for two-way rigid-fluid coupling.
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3amponoHOBaHO TPAKTUIHUHN MiaXig 0 B3AEMOIT piguHa—TBEpAe TiJI0 B METOAI Smoo-
thed Particle Hydrodynamics (SPH). Banumaerscst jauie OfMH map YaCTHHOK MeXi, a
KOXKHI TpaHUIHIN YaCTHUHII NPU3HAYAECTHCS e€(EeKTHUBHA Maca 3 IOIPABKOK HA 006’eM.
BararomapoBi Mexxi MOXyTh JaBaTh BHUCOKY TOYHICTh, OJlHAK Ha NPAKTHUI{ BOHM BaXKKi:
POCTYTb CHHCKH CyCiaiB, 30imbIIyeThbCs KiJIBKICTH B3a€MOAiil, 6araTo YaCTUHOK CTiHKH
BUKOHYIOTH 3aiiBy poGoTy. [mes ogHOIApOBOTO CEMILTIOBAHHS TPUMAETHCA GE3MOCEpeTHBO
Ha [MOBEPXHI TBEPJOTO Tijla Ta KOMIIEHCYE BiJICyTHIX CYCi/IiB JIOKaJbHOO OI[iHKOIO 00’emy Vy,
mo BimoOpaKaeTbecsa y My = poVp. 3aBAAKH Iilt KOPEKIil CyMH JJIs HIITBHOCTI Ta THCKY
n06/IM3y CTIHKY 3aJIMIIAI0THCS Y3rOAXKEHUMHU HABITh JIJIsI TOHKHUX IJIACTUH i 000JIOHOK, TOJ1
K KiJIbKICTb MOMapHUX B3a€MOJIN 3MEHIIYETHCS.

3B’s3yBaHHS BUKOPHUCTOBYE CTaHAAPTHI cumerpuuni cunmu SPH, Tromy miniitaumit i xyTo-
BUi iMIysibC 30epiraroTecs 6e3 mTpadiB 3a KOHTAKT i 6e3 Kopekiil mosoxkenHsa. [HTerpamnisa
€ npocroro y WCSPH (caabkocrucnusa SPH) ta y PCISPH (mporro3no—kopurysasibHa
recrucausa SPH): 1ogaTKoBi rpaHnYHI ZOJAHKE OTPUMYE JINIIE HiACYMOBYBAHHS IIIJIBHOC-
Ti, TOAI SK THUCKOBI Ta B’a3Ki CkiagoBi 30epiraiorh 3BuuHy ¢dopMmy. Cxema 3pydHa B
peasmizariil, mpamioe 3 HASBHAM IOIIYKOM CyCimiB i jomomarae KepyBaTH KOB3AHHSIM UYepe3
THUMOBI MapaMeTpH B’sI3KOCTI.
Kumowosi caosa: SPH (Meros 3riajKeHHX YaCTHHOK), B3aE€MOis piauHa-TBepae Tijo,
CEeMIJIFOBAHHSI MEXKi, OJHOIIAPOBI Mexi, 06’eMHa KOpeKIisi, gedinuT 4acTUHOK, MOJIEJIIO-
BaHHS B PEAJBbHOMY daci.



