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A �nite zero-sum game de�ned on a uniform lattice of the unit square is solved as a

game of timing. The game is a discrete silent duel, in which the kernel is skew-symmetric,

and the players, referred to as duelists, have identical linear accuracy functions featured

with an accuracy proportionality factor. Due to the skew-symmetry, both the duelists

have the same optimal strategies and the game optimal value is 0. If the accuracy factor is

not less than the number of possible shooting moments decreased by 2 then the duelist's

optimal behavior is to shoot at the middle of the duel time span. A boundary case of the

accuracy factor is determined, where the factor is equal to the reciprocal of the number of

possible shooting moments decreased by 2. In this case, the duel has four pure strategy

solutions issued by the two last moments of possible shooting. Otherwise, the duel has a

single optimal pure strategy situation by when the accuracy factor belongs to the de�nite

nonempty interval. A 4×4 or bigger duel is not solved in pure strategies if this membership

is false or the interval in the membership is empty. The trivial duels, with just two or three

moments of possible shooting, are always solved in pure strategies.

Key words: game of timing, silent duel, linear accuracy, uniform lattice, matrix game, pure

strategy saddle point.

1. Introduction to duels on the uniform lattice

Games of timing model competitive interactions involving two or more intelligent par-
ticipants. Such interactions are typical for most of economic processes, sports, social and
ecological processes, jurisprudence [1, 4, 9, 10, 17]. A distinct feature of the competition
is the moment of decision making or acting. Another feature is a time span during which
the participant (player) must make a decision of acting [2, 3, 7, 14]. Usually the span is
standardized to a unit interval.

The most common games of timing involve two players, where the player does not
learn about the action of the other player until the time span elapses [4, 11, 15, 20].
Such two-person games are referred to as silent duels, and the players are often called
duelists [2, 5, 11, 16, 18]. The duelist possesses a number of bullets, where the bullet is
an abstraction implying an implementation of the decision of acting during the duel time
span. Silent duels model delays typical for time-lagged systems like those in economics,
ecosystems, jurisprudence [6, 8, 10, 16, 20].

In general, the silent duel is a continuous-time game of timing

⟨X, Y, K (x, y)⟩ (1)
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being an in�nite zero-sum game with a kernel K (x, y) de�ned on unit square

X × Y = [0; 1]× [0; 1] (2)

being the Cartesian product of the duel time spans (i. e., the product is the square of
the span), where x ∈ X, y ∈ Y . This is a zero-sum game due to the following reasons.
Given a single bullet, the duelist is featured with an accuracy function which, generally
speaking, is a nondecreasing function of time [3, 4, 10, 16]. In silent duel (1), it is
unknown to the duelist whether the bullet was �red by the other duelist or not until
the end of the duel time span [2, 11, 16, 18]. The duelist may obtain a greater payo�
by �ring (shooting) as late as possible, but then the loss likelihood increases due to the
other duelist may shoot �rst. If both the duelists shoot simultaneously, the payo� of
each of them is 0 [6, 7, 10, 19].

When the accuracy functions pX (x), pY (y) of the duelists are linear and identical,
the kernel is [4, 11]

K (x, y) = ax− ay + a2xy sign (y − x) by a > 0, (3)

where pX (x) = ax, pY (y) = ay, and a is an accuracy proportionality factor. Kernel (3)
is skew-symmetric, i. e.

K (y, x) = ay − ax+ a2yx sign (x− y) = −K (x, y) , (4)

and so both the duelists have the same optimal strategies, and the game optimal value
is 0 [7, 8, 10, 16].

The standardized case of a = 1 simpli�es kernel (3) to

K (x, y) = x− y + xy sign (y − x) . (5)

The duel with kernel (5) was considered in [10], and its solution is the duelist's optimal
strategy

ρ (u) =


0, u ∈

[
0;

1

3

)
0.25 · u−3, u ∈

[
1

3
; 1

] (6)

being a non-continuous probability distribution as a mixed strategy with an uncountably
in�nite support whose measure is less than the duel time span length [4, 5, 16, 17].
Therefore, an in�nite duel solution cannot be completely implemented in practice due
to any sequence of real-world actions is naturally limited [4, 6, 7, 12, 13]. This is why
discrete silent duels are considered instead.

While the duelist is allowed to shoot at any moment during the in�nite duel time
span, in a discrete silent duel the duelist can shoot only at speci�ed time moments.
These moments constitute the duelist's set of pure strategies. The set is �nite by default
(however, the duelist still can possess a countable in�nite set of pure strategies and so the
respective discrete silent duel will be in�nite in this case). Therefore, the kernel of the
discrete silent duel is de�ned on a �nite set of the pairs of pure strategies of the duelists.
The moments of the duel start x = y = 0 and duel end x = y = 1 are included [2, 10, 16,
20].
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Moments of possible shooting can be speci�cally de�ned by uniformly breaking the
time span. Then the identical sets of pure strategies of the duelists are [4, 10, 11]

X = {xi}Ni=1 =

{
i− 1

N − 1

}N

i=1

⊂ [0; 1] for N ∈ N\ {1} (7)

and

Y = {yj}Nj=1 =

{
j − 1

N − 1

}N

j=1

⊂ [0; 1] for N ∈ N\ {1} . (8)

Then game (1) by kernel (3) de�ned on a �nite lattice

X × Y =

{
i− 1

N − 1

}N

i=1

×
{

j − 1

N − 1

}N

j=1

⊂ [0; 1]× [0; 1] (9)

is a discrete silent duel with identical linear accuracy functions of the duelists scaled
with factor a. The discrete silent duel is an N ×N matrix game whose payo� matrix is
skew-symmetric. Any solution of this matrix game is of �nite supports only [7, 8, 10, 12,
16]. Owing to that, any solution of the discrete silent duel is computed far easier than
that in the case of in�nite game (1).

It is obvious that this duel solution depends on N and a. The goal is to study pure
strategy solutions of this silent duel. In terms of the matrix game, its saddle points are to
be found. To achieve the goal, the discrete silent duel is �rst formalized in Section 2. The
most trivial case, when the duelist is allowed to shoot at either the very start or end of the
duel, is considered in Section 3. Section 4 ascertains whether the duel can be solved in
pure strategies at the very start. Pure strategy solutions are generally noted in Section 5.
Then pure strategy saddle points in the case of the duelist's three possible actions (the
start, middle, and end of the duel time span) are deduced in Section 6. The existence
of pure strategy solutions is proved in Section 7. The singleness of the pure strategy
solution is ascertained in Section 8, whereupon the study is discussed, recapitulated, and
concluded in Section 9.

2. Discrete silent duel

In fact, the discrete silent duel with identical linear accuracy functions is a matrix
game ⟨

{xi}Ni=1 , {yj}
N
j=1 , KN

⟩
(10)

by (7), (8), and payo� matrix

KN = [kij ]N×N by

kij = K (xi, yj) = axi − ayj + a2xiyj sign (yj − xi) by a > 0. (11)

Followed by (4), matrix (11) is skew-symmetric. Therefore, owing to the skew-symmetry
of matrix (11) and identical sets of pure strategies (7), (8) of the duelists, the sets of
optimal strategies of the duelists are identical, and the game optimal value is 0.

If a = 1 then the accuracy is exactly equal to the time moment at which the bullet
is �red. Although by a ̸= 1 the linear accuracy is just scaled by a > 0, the scaling does
in�uence the solution, and this is yet to be shown below.
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3. The duel with only two shooting moments

Whereas the case of N = 1 is obviously excluded, the case of N = 2 is the most
trivial, where the duelist is allowed to shoot at either the very start or end of the duel.
As the shooting is allowed only at moments t1 = 0 and t2 = 1, the respective payo�
matrix (11) is

K2 = [kij ]2×2 =

[
0 −a
a 0

]
(12)

whence situation
{x2, y2} = {1, 1} (13)

is the single saddle point. Therefore, the silent duels with only two shooting moments
t1 = 0 and t2 = 1 are solved identically: the best action of the duelist is to shoot at the
end of the duel.

4. No pure strategy solutions at the very start

In general, the �rst row of matrix (11) contains a negative entry:

K (x1, yN ) = K (0, 1) = −a = −K (1, 0) = −K (xN , y1) . (14)

Therefore, the minimum of the �rst row does not exceed −a < 0 and thus the game
optimal value cannot be reached in this row, whichever number N is. So, the �rst row of
matrix (11) does not contain saddle points. Due to the skew-symmetry of matrix (11),
the stated inference is immediately followed by that the �rst column does not contain
saddle points either. Hence, there are no pure strategy solutions at the very start of the
duel, whichever the number of possible shooting moments is.

5. Pure strategy solutions in general

Inasmuch as the game optimal value is 0, it is quite obvious that only a zero entry
of skew-symmetric matrix (11) can be a saddle point (i. e., a pure strategy solution).
Obviously, if a row contains a negative entry, this row does not contain saddle points. Due
to the skew-symmetry of matrix (11), the stated inference is immediately followed by that
the respective column sharing only the main diagonal zero entry with the abovementioned
row does not contain saddle points either. Henceforward, mentioning a row without
saddle points immediately implies that there are no saddle points in the respective column
(of the same number).

If a row contains only nonnegative entries, this row contains at least one saddle point
located on the main diagonal. Besides, if a row of a skew-symmetric matrix contains
only nonnegative entries, and a zero entry located o� the main diagonal in this row is a
saddle point, the matrix game has at least four saddle points [8, 10, 11]. If there are two
saddle points on the main diagonal of a skew-symmetric matrix, the matrix game has at
least four saddle points also [2, 7, 8, 10, 16].

6. Pure strategy solutions for three shooting moments

Another trivial case is when the shooting, apart from the very start and end moments

t1 = 0, t3 = 1, is also allowed at moment t2 =
1

2
. This is the case of N = 3, i. e. the

duelist has three possible actions.
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Theorem 1. In a discrete silent duel (10) by (7), (8), (11) for N = 3, situation

{x2, y2} =

{
1

2
,
1

2

}
(15)

is optimal only by a ⩾ 1 but it is never optimal by 0 < a < 1. Besides, saddle point (15)
is single by a > 1. Any pure strategy situation in the 3× 3 duel, not containing the duel
start moment, is optimal by a = 1, whereas situation

{x3, y3} = {1, 1} (16)

is the single saddle point by 0 < a < 1.
Proof. Due to (14), situation

{x1, y1} = {0, 0}

is never optimal in the duel. The respective payo� matrix is

K3 = [kij ]3×3 =


0 −a

2
−a

a

2
0

a

2
(a− 1)

a −a

2
(a− 1) 0

 . (17)

If a− 1 > 0, i. e. a > 1, then the second row of matrix (17) is nonnegative and the third
row contains a negative entry. The only zero entry in the second row is k22. So, situation
(15) is optimal and it is the single saddle point for (17) by a > 1. If a = 1 then the
respective payo� matrix is

K3 = [kij ]3×3 =


0 −1

2
−1

1

2
0 0

1 0 0

 . (18)

This matrix game has four saddle points: situation (15), situation (16), and non-
symmetric situations

{x2, y3} =

{
1

2
, 1

}
(19)

and

{x3, y2} =

{
1,

1

2

}
. (20)

If 0 < a < 1 then the second row of matrix (17) contains a negative entry and the third
row is nonnegative. The only zero entry in the third row is k33. So, situation (16) is the
single saddle point for (17) by 0 < a < 1. □

7. Existence of pure strategy solutions

Now, the general case for N ∈ N\ {1, 2, 3} is to be considered in order to �nd where
pure strategy solutions exist. As the �rst row of matrix (11) never has a saddle point,
the consideration is started with the second row of matrix (11).
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Theorem 2. In a progressive discrete silent duel (10) by (7), (8), (11) for N ∈
N\ {1, 2, 3}, situation

{x2, y2} =

{
1

N − 1
,

1

N − 1

}
(21)

is optimal only if
a ⩾ N − 2. (22)

Proof. If situation (21) is optimal, then inequalities

K (x2, yj) = ax2 − ayj − a2x2yj =
a

N − 1
− ayj −

a2yj
N − 1

⩾ 0 ∀ yj < x2 (23)

and

K (x2, yj) = ax2 − ayj + a2x2yj =
a

N − 1
− ayj +

a2yj
N − 1

⩾ 0 ∀ yj > x2 (24)

must hold. Inequality (23) is simpli�ed to inequality

K (x2, y1) = K (x2, 0) =
a

N − 1
⩾ 0 (25)

that always holds. From inequality (24) it follows that

1

N − 1
− yj +

ayj
N − 1

⩾ 0,

whence

a ⩾ N − 1− 1

yj
∀ yj > x2. (26)

As

1 ⩾ yj ⩾
2

N − 1
>

1

N − 1
= x2

then
a ⩾ N − 1− 1 = N − 2

that is (22). So, situation (21) is a saddle point if just inequality (22) holds. □
In a way, Theorem 2 extends Theorem 1: situation (21) is optimal only if (22) is true

for N ∈ N\ {1, 2}. The optimality of other pure strategy situations is to be ascertained
yet.
Theorem 3. In a progressive discrete silent duel (10) by (7), (8), (11) for N ∈

N\ {1, 2, 3}, situation

{xn, yn} =

{
n− 1

N − 1
,
n− 1

N − 1

}
(27)

is optimal only if

a ∈
[
N − n

n− 1
;

N − 1

(n− 2) · (n− 1)

]
⊂
(
0;

N − 1

(n− 2) · (n− 1)

]
(28)

is true for n ∈
{
3, N

}
.

Proof. If situation (27) is optimal, then inequalities

K (xn, yj) = axn − ayj − a2xnyj ⩾ 0 ∀ yj < xn (29)
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and
K (xn, yj) = axn − ayj + a2xnyj ⩾ 0 ∀ yj > xn (30)

must hold. From inequality (29) it follows that

xn − yj − axnyj ⩾ 0,

whence
xn

1 + axn
⩾ yj ∀ yj < xn. (31)

As

yj ⩽
n− 2

N − 1
<

n− 1

N − 1
= xn

then
n− 1

N − 1
· 1

1 + a · n− 1

N − 1

⩾ n− 2

N − 1
,

n− 1

N − 1 + a · (n− 1)
⩾ n− 2

N − 1
,

(n− 1) · (N − 1) ⩾ (n− 2) · (N − 1) + a · (n− 2) · (n− 1) ,

N − 1 ⩾ a · (n− 2) · (n− 1) ,

whence
N − 1

(n− 2) · (n− 1)
⩾ a. (32)

From inequality (30) it follows that

xn − yj + axnyj ⩾ 0,

whence

a ⩾ yj − xn

xnyj
=

1

xn
− 1

yj
∀ yj > xn. (33)

As

1 ⩾ yj ⩾
n

N − 1
>

n− 1

N − 1
= xn for n ∈

{
2, N − 1

}
then

a ⩾ N − 1

n− 1
− 1 =

N − n

n− 1
. (34)

So, according to simultaneous inequalities (32) and (34), if

a ∈
[
N − n

n− 1
;

N − 1

(n− 2) · (n− 1)

]
(35)

for some N ∈ N\ {1, 2, 3} and n ∈
{
3, N − 1

}
then situation (27) is a saddle point. If

n = N then only inequality (29) must hold so that

{xN , yN} = {1, 1} (36)
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be a saddle point. This is true by only (32), i. e. by

1

N − 2
⩾ a,

or, being more precise,

a ∈
(
0;

1

N − 2

]
. (37)

As a generalization, if (28) is true for some N ∈ N\ {1, 2, 3} and n ∈
{
3, N

}
then

situation (27) is a saddle point. □
As of this place, it has not been ascertained yet whether the main diagonal of matrix

(11) can have more than just a one saddle point. Nevertheless, there is an easily noticeable
case in which the duel has four saddle points.
Theorem 4. In a progressive discrete silent duel (10) by (7), (8), (11) for N ∈

N\ {1, 2, 3}, situations

{xN−1, yN−1} =

{
N − 2

N − 1
,
N − 2

N − 1

}
, (38)

{xN , yN−1} =

{
1,

N − 2

N − 1

}
, (39)

{xN−1, yN} =

{
N − 2

N − 1
, 1

}
, (40)

and (36) are optimal only if a =
1

N − 2
.

Proof. Owing to Theorem 3, if a =
1

N − 2
then (36) is a saddle point. For n = N − 1

situation (38) is a saddle point if, in accordance with (28),

a =
1

N − 2
∈
[
N − n

n− 1
;

N − 1

(n− 2) · (n− 1)

]
,

that is

a =
1

N − 2
∈
[

1

N − 2
;

N − 1

(N − 3) · (N − 2)

]
. (41)

As
N − 1

(N − 3) · (N − 2)
− 1

N − 2
=

N − 1−N + 3

(N − 3) · (N − 2)
=

2

(N − 3) · (N − 2)
> 0

then the membership in (41) is indeed true, and a =
1

N − 2
satis�es condition (28)

issuing saddle point (38). Moreover, due to the skew-symmetry of matrix (11) having
saddle points (38) and (36) in its main diagonal, situations (39) and (40) are saddle
points also. □

It is easy to get convinced that the membership in (28) is not true for any N and
n. After all, Theorem 3 does not ensure that the interval in the membership in (28) is
nonempty ever.
Theorem 5. A progressive discrete silent duel (10) by (7), (8), (11) for N ∈

{4, 5, 6, 7} has an optimal situation (27) by (28), wherein the interval in the mem-
bership is nonempty by the respective n ∈

{
3, N

}
.
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Proof. According to Theorem 3, situation (27) is optimal if (28) is true, where the
interval in the membership should be nonempty. Consider the di�erence between the
endpoints of the interval:

N − 1

(n− 2) · (n− 1)
− N − n

n− 1
=

=
n2 − n (N + 2) + 3N − 1

(n− 2) · (n− 1)
. (42)

A quadratic equation

n2 − n (N + 2) + 3N − 1 = 0 (43)

from the numerator of the last term in (42) has the disciminant

D = (N + 2)
2 − 4 · (3N − 1) = N2 − 8N + 8, (44)

where

N2 − 8N + 8 ⩽ 0

if

1 < 4− 2
√
2 < 2 ⩽ N ⩽ 6 < 4 + 2

√
2 < 7.

The latter means that if N ∈ {2, 3, 4, 5, 6} then discriminant (44) of equation (43) is
nonpositive. This implies the numerator of the last term in (42) is nonnegative for any
n ∈

{
2, N

}
and so the interval in the membership of (28) is nonempty. The latter means

that an optimal situation (27) always exists by (28) for N ∈ {4, 5, 6}.
If N = 7 then D = 1 and so the numerator of the last term in (42) can be negative.

However, it is negative for

n ∈

(
N + 2−

√
D

2
;
N + 2 +

√
D

2

)
= (4; 5)

which is impossible for integer n. So, the numerator of the last term in (42) is nonnegative
for N = 7 as well. Then the interval in the membership of (28) is nonempty by N = 7
also, and an optimal situation (27) always exists by (28) and N = 7. □

Now, consider bigger duels for N ∈ N\
{
1, 7

}
. It turns out that the bigger duels

already lose optimality of some rows of matrix (11) due to the empty interval in the
membership of (28).

Theorem 6. In a progressive discrete silent duel (10) by (7), (8), (11) ∃ n ∈
{
3, N

}
for every N ∈ N\

{
1, 7

}
such that situation (27) is non-optimal if

n ∈

(
N + 2−

√
N2 − 8N + 8

2
;
N + 2 +

√
N2 − 8N + 8

2

)
, (45)

wherein the interval in the membership of (28) is empty.

Proof. Discriminant (44) of equation (43) is positive by

N ⩾ 7 > 4 + 2
√
2,
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i. e. it is always positive by N ∈ N\
{
1, 7

}
. Because of its positivity property, the

numerator of the last term in (42) is negative if (45) is true. To study the di�erence
between the endpoints of the interval in (45), denote them by

n∗ (N) =
N + 2−

√
N2 − 8N + 8

2
(46)

and

n∗ (N) =
N + 2 +

√
N2 − 8N + 8

2
. (47)

Thus,

δ (N) = n∗ (N)− n∗ (N) =

=
N + 2 +

√
N2 − 8N + 8

2
− N + 2−

√
N2 − 8N + 8

2
=

=
√
N2 − 8N + 8 (48)

and it is obvious that di�erence (48) increases as N increases. In particular, δ (8) = 2
√
2

that formally would mean that at least two n ∈
{
3, 8

}
exist such that situation (27) is

non-optimal. In reality, situation (27) is non-optimal by n ∈ {4, 5, 6}. As N increases,
the number of such n ∈

{
3, 8

}
at which situation (27) is non-optimal cannot decrease.

□
The non-optimality consideration is not exhausted by Theorem 6. The following

assertion ascertains which rows of matrix (11) will not contain saddle points.
Theorem 7. In a progressive discrete silent duel (10) by (7), (8), (11) for N ∈

N\
{
1, 7

}
situation (27) is non-optimal for every n = 4, N − 2.

Proof. According to Theorem 6, situation (27) is non-optimal for some n ∈
{
3, N

}
if

(45) is true. The left endpoint (46) being a function of N has the derivative:

dn∗ (N)

dN
=

1

2
·
(
1− 2N − 8

2
√
N2 − 8N + 8

)
=

√
N2 − 8N + 8−N + 4

2
√
N2 − 8N + 8

. (49)

Ratio (49) is simpli�ed: √
N2 − 8N + 8−N + 4

2
√
N2 − 8N + 8

=

=

√
N2 − 8N + 8− (N − 4)

2
√
N2 − 8N + 8

·
√
N2 − 8N + 8 + (N − 4)√
N2 − 8N + 8 + (N − 4)

=

=
N2 − 8N + 8−N2 + 8N − 16

2
√
N2 − 8N + 8 ·

(√
N2 − 8N + 8 + (N − 4)

) =

=
−8

2
√
N2 − 8N + 8 ·

(√
N2 − 8N + 8 + (N − 4)

) < 0.

Therefore, function n∗ (N) is decreasing. Its maximal value

max
N⩾7

n∗ (N) = n∗ (7) = 4.

The minimal value of function (46) is

min
N⩾7

n∗ (N) = lim
N→∞

n∗ (N) =
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= lim
N→∞

N + 2−
√
N2 − 8N + 8

2
= 1 +

1

2
· lim
N→∞

(
N −

√
N2 − 8N + 8

)
=

= 1 +
1

2
· lim
N→∞

(
N −

√
N2 − 8N + 8

)
·
(
N +

√
N2 − 8N + 8

)
N +

√
N2 − 8N + 8

=

= 1 +
1

2
· lim
N→∞

8N − 8

N +
√
N2 − 8N + 8

=

= 1 +
1

2
· lim
N→∞

 8N

N +N

√
1− 8

N
+

8

N2

− 8

N +
√
N2 − 8N + 8

 =

= 1 +
1

2
· lim
N→∞

 8

1 +

√
1− 8

N
+

8

N2

− 8

N +
√
N2 − 8N + 8

 =

= 1 +
1

2
·
(

8

1 +
√
1− 0

− 0

)
= 1 +

1

2
· 4 = 3.

Therefore, n∗ (N) ∈ (3; 4]. Inasmuch as

4 > n∗ (N) > 3 ∀ N ∈ N\
{
1, 7

}
,

the situation

{x3, y3} =

{
2

N − 1
,

2

N − 1

}
(50)

is optimal. Then the task is to ascertain how many integer values of n starting from
4 are less than the right endpoint (47). According to the assertion in this theorem, an
equality

N − 2 < n∗ (N) < N − 1 (51)

must hold. So, it must be

n∗ (N)− (N − 2) =
N + 2 +

√
N2 − 8N + 8

2
−N + 2 =

= 3− N

2
+

√
N2 − 8N + 8

2
> 0. (52)

As N2 − 8N + 8 > 0, inequality (52) is equivalent to the following:

√
N2 − 8N + 8

2
>

N

2
− 3,

N2 − 8N + 8

4
>

(
N

2
− 3

)2

=
N2

4
− 3N + 9,

−2N + 2 > −3N + 9,

N > 7,
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which is true. On the other side of inequality (51), it must be

n∗ (N)− (N − 1) =
N + 2 +

√
N2 − 8N + 8

2
−N + 1 =

= 2− N

2
+

√
N2 − 8N + 8

2
< 0, (53)

where inequality (53) is equivalent to the following:√
N2 − 8N + 8 < N − 4,

N2 − 8N + 8 < (N − 4)
2
= N2 − 8N + 16,

8 < 16,

which is true as well. So, inequality (51) holds for the increasing function (47) that,
according to Theorem 6, implies the non-optimality of situation (27) for every n ∈{
4, N − 2

}
. □

By the way, the optimality of situation (50) can be checked in a simpler way. Plugging
n = 3 into (35) gives

a ∈
[
N − 3

2
;
N − 1

2

]
. (54)

The interval in the membership of (54) is obviously nonempty, which, according to The-
orem 3, implies the optimality of situation (50). In the same way to be shown, situation

{x4, y4} =

{
3

N − 1
,

3

N − 1

}
(55)

is never optimal in duels with 8 and greater pure strategies at the duelist: plugging n = 4
into (35) gives

a ∈
[
N − 4

3
;
N − 1

6

]
,

where

N − 1

6
− N − 4

3
=

N − 1− 2N + 8

6
=

7−N

6
< 0 ∀ N ∈ N\

{
1, 7

}
and so situation (55) violating condition (28) in Theorem 3 by the empty interval in the
membership of (28) cannot be optimal.

8. Singleness

Strictly speaking, Theorem 3 does not claim that pure strategy solution (27) by the
respective condition (28) with the nonempty interval in the membership exists only for
one n ∈

{
3, N

}
. Nor claims Theorem 5 the singleness. Theorem 2 does not claim it,

too. The following assertions clarify the cases of when saddle point (27) is single.
Theorem 8. A progressive discrete silent duel (10) by (7), (8), (11) forN ∈ N\

{
1, 7

}
has a single optimal situation (27) by the respective n ∈ {2, 3, N − 1, N} and a ̸=

1

N − 2
.
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Proof. According to Theorem 7, situation (27) is non-optimal for every n = 4, N − 2.
According to Theorem 2, situation (21) is optimal (here n = 2) if (22) is true, i. e.

a ∈ [N − 2; ∞) . (56)

Situation (50) is optimal (here n = 3) if (54) is true. Situation (38) is optimal (here

n = N − 1) by a ̸= 1

N − 2
if

a ∈
(

1

N − 2
;

N − 1

(N − 3) · (N − 2)

]
. (57)

Situation (36) is optimal (here n = N) by a ̸= 1

N − 2
if

a ∈
(
0;

1

N − 2

)
. (58)

As
1

N − 2
<

N − 1

(N − 3) · (N − 2)
<

N − 3

2
<

N − 1

2
< N − 2,

the intervals in (56), (54), (57), (58) are pairwise non-overlapping. This means that for
each N ∈ N\

{
1, 7

}
exists only one n ∈ {2, 3, N − 1, N} such that situation (27) is

optimal by just if (28) is true. □
Clearly, if a =

1

N − 2
then it is the condition for Theorem 4, which also extends

Theorem 1: situations (38) � (40), (36) are optimal only by a =
1

N − 2
for N ∈ N\ {1, 2}.

The condition for the single saddle point for N ∈ {4, 5, 6, 7} is the same.
Theorem 9. A progressive discrete silent duel (10) by (7), (8), (11) for N ∈

{4, 5, 6, 7} has a single optimal situation (27) by the respective n ∈
{
2, N

}
and

a ̸= 1

N − 2
.

Proof. According to Theorem 2, situation (21) is optimal (here n = 2) if (56) is true.
According to Theorem 3, situation (27) is optimal if: (54) is true for n = 3,

a ∈
[
N − 4

3
;
N − 1

6

]
(59)

is true for n = 4,

a ∈
[
N − 5

4
;
N − 1

12

]
(60)

is true for n = 5,

a ∈
[
N − 6

5
;
N − 1

20

]
(61)

is true for n = 6,

a ∈
[
N − 7

6
;
N − 1

30

]
(62)

is true for n = 7 (surely, by keeping a > 0). According to Theorem 5, each of the intervals
in (54), (59) � (62) is nonempty. Intervals in (56) and (54) do not overlap. Intervals in
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(54) and (59) overlap at point
1

2
=

1

N − 2
(where N = 4 for their respective left and

right endpoints), but
N − 1

6
<

N − 3

2

owing to
N − 1− 3N + 9

6
=

8− 2N

6
< 0 for N > 4.

Intervals in (59) and (60) overlap at point
1

3
=

1

N − 2
(where N = 5 for their respective

left and right endpoints), but
N − 1

12
<

N − 4

3

owing to
N − 1− 4N + 16

12
=

15− 3N

12
< 0 for N > 5.

Intervals in (60) and (61) overlap at point
1

4
=

1

N − 2
(where N = 6 for their respective

left and right endpoints), but
N − 1

20
<

N − 5

4

owing to
N − 1− 5N + 25

20
=

24− 4N

20
< 0 for N > 6.

Intervals in (61) and (62) overlap at point
1

5
=

1

N − 2
(where N = 7 for their respective

left and right endpoints), but
N − 1

30
<

N − 6

5

owing to
N − 1− 6N + 36

30
=

35− 5N

30
< 0 for N > 7.

Hence, the sequence of inequalities

N − 7

6
<

N − 1

30
<

<
N − 6

5
<

N − 1

20
<

<
N − 5

4
<

N − 1

12
<

<
N − 4

3
<

N − 1

6
<

<
N − 3

2
<

N − 1

2
< N − 2

holds by a ̸= 1

N − 2
and it means the intervals in (56), (54), (59) � (62) are pairwise

non-overlapping. This means that for each N ∈ {4, 5, 6, 7} exists only one n ∈
{
2, N

}
such that situation (27) is optimal by just if (28) is true. □
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And what about the duel end moment and its respective situation (36) being optimal
by (37)? It is the easiest to see when this optimal situation is single.
Theorem 10. A progressive discrete silent duel (10) by (7), (8), (11) for N ∈

N\ {1, 2, 3} by

a ∈
(
0;

1

N − 2

)
(63)

has the single saddle point (36).
Proof. Owing to Theorem 3, situation (36) is a saddle point by (63). Considering the

N -th row of matrix (11), there is an inequality

yj ⩽
N − 2

N − 1
< 1 = xN . (64)

From (63) it follows that
a · (N − 2) < 1,

a · (N − 2) +N − 2 < N − 1,

N − 2

N − 1
<

1

1 + a
,

whence
1

1 + a
> yj ∀ yj < xN = 1 (65)

by using inequality (64). Inequality (65) is followed by inequality

1− yj − ayj > 0

implying that inequality

K (xN , yj) = K (1, yj) = a− ayj − a2yj > 0 ∀ yj < xN = 1 (66)

holds in the N -th row of matrix (11). Inequality (66) implies that situation (36) is the
single saddle point in the N -th row, and entries kiN < 0 ∀ i = 1, N − 1 in the N -th
column. The latter implies that the N -th row is the single nonnegative row by (63) and
saddle point (36) is the single one also. □

So, according to Theorems 8 � 10, if a ̸= 1

N − 2
and the duel has a pure strategy

solution, this solution is a single situation. If a =
1

N − 2
then, according to Theorem 4,

the duel has four pure strategy solutions issued by the two last moments tN−1 =
N − 2

N − 1
,

tN = 1 of possible shooting. Apart from those solutions, there are no other saddle points
in the duel. Indeed, according to Theorem 7, for each N ∈ N\

{
1, 7

}
situation (27) can

be optimal only for n ∈ {2, 3, N − 1, N}. For a =
1

N − 2
situation (21) is non-optimal

due to (22) does not hold (Theorem 2). Situation (50) is also non-optimal due to (54)

does not hold by a =
1

N − 2
. For each N ∈ {4, 5, 6, 7} only every two intervals in (54)

and (59), (59) and (60), (60) and (61), (61) and (62) overlap at point a =
1

N − 2
, which

implies the existence of just two saddle points on the main diagonal of matrix (11).
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9. Discussion and conclusion

Theorem 2 extending Theorem 1 claims that if the accuracy factor is not less than
the number of possible shooting moments decreased by 2 then the duelist's optimal
behavior is to shoot at the middle of the duel time span. Theorem 3 ascertains when
the situation corresponding to an entry on the main diagonal is optimal. Theorem 4
clari�es it for the accuracy factor being equal to the reciprocal of the number of possible
shooting moments decreased by 2, where the duelist's optimal behavior is to shoot at

one of the two last moments tN−1 =
N − 2

N − 1
, tN = 1 of possible shooting. Therefore,

Theorem 4 is supplemented by Theorem 1 in the part of when the accuracy factor is 1
in the 3× 3 duel. Theorem 5 claims that the conditions of optimality in Theorem 3 are
always true and a saddle point on the main diagonal exists at the respective values of
the accuracy factor when the number of possible shooting moments varies between 4 and
7. Theorem 6 clari�es when the conditions of optimality in Theorem 3 are violated for 8
and more moments of possible shooting. For this case Theorem 7 additionally ascertains
that the main diagonal can contain saddle points only on second, third, and the last two
rows of matrix (11). Theorem 8 extending Theorem 7 further ascertains that the saddle
point is single in those rows if the accuracy factor is not equal to the reciprocal of the
number of possible shooting moments decreased by 2. The solution singleness for such
accuracy factors is proved in Theorem 9 for the duels in which the number of possible
shooting moments varies between 4 and 7. In a way, Theorem 9 also extends Theorem 1
for bigger duels up to 7 × 7 duels, but Theorem 9 claiming the solution singleness does
not specify the solution (for the speci�cation, the reference to Theorem 3 is implied).
Finally, Theorem 10 ascertains that the duel end moment is the only optimal strategy
of the duelist if the accuracy factor is less than the reciprocal of the number of possible
shooting moments decreased by 2.

Value a =
1

N − 2
is a boundary case of the accuracy factor. This is the only case

where the duel has multiple pure strategy solutions (having no fewer than three moments
of possible shooting). These four optimal situations are constituted by two last moments

tN−1 =
N − 2

N − 1
, tN = 1 of possible shooting. Otherwise, excluding the boundary case,

the duel has either single optimal pure strategy situation (21) by

a > N − 2 for N ∈ N\ {1, 2}

or single optimal pure strategy situation (27) by

a ∈
(
N − n

n− 1
;

N − 1

(n− 2) · (n− 1)

]
for N ∈ N\ {1, 2, 3} and n ∈

{
3, N

}
.

A 4× 4 or bigger duel is not solved in pure strategies if the membership in (28) is false
or the interval in the membership is empty. Then, however, a mixed strategy solution
always exists owing to that this is a matrix game [10, 16]. The trivial duels, with just
two or three moments of possible shooting, are always solved in pure strategies.

Specifying locations of moments of possible shooting as (7), (8) de�nes an approxi-
mation of the initial continuous-time game of timing. The approximation is uniform in
this case. Nevertheless, the locations can be jittered to some extent by adding random
values to the values in sets (7), (8). And this is an open question of whether the proved
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assertions remain valid (by the respective modi�cations) after the jittering. Another
open question is a nonlinearity in the accuracy functions and its in�uence on the duel
solution.
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Ðîçâ'ÿçó¹òüñÿ ñêií÷åííà ãðà ç íóëüîâîþ ñóìîþ, ÿêà âèçíà÷åíà íà ðiâíîìiðíié

ðåøiòöi îäèíè÷íîãî êâàäðàòó, ÿê ãðà ðîçðàõóíêó ÷àñó. Öÿ ãðà ¹ äèñêðåòíîþ áåç-

øóìíîþ äóåëëþ, ó ÿêié ÿäðî ¹ êîñîñèìåòðè÷íèì, i ãðàâöi, äî ÿêèõ ïîñèëàþòüñÿ ÿê

äî äóåëÿíòiâ, ìàþòü iäåíòè÷íi ôóíêöi¨ ëiíiéíî¨ âëó÷íîñòi, çìiíþâàíi êîåôiöi¹íòîì

ïðîïîðöiéíîñòi âëó÷íîñòi. Âíàñëiäîê êîñîñèìåòðè÷íîñòi îáèäâà äóåëÿíòè ìàþòü òi

ñàìi îïòèìàëüíi ñòðàòåãi¨, à îïòèìàëüíå çíà÷åííÿ ãðè äîðiâíþ¹ 0. ßêùî êîåôiöi¹íò

ïðîïîðöiéíîñòi âëó÷íîñòi ¹ íå ìåíøèì, íiæ êiëüêiñòü ìîìåíòiâ ìîæëèâîãî ïîñòðiëó,

çìåíøåíà íà 2, òî îïòèìàëüíîþ ïîâåäiíêà äóåëÿíòà ¹ ïîñòðië ó ñåðåäèíi iíòåðâàëó ÷àñó

òðèâàííÿ äóåëi. Âèçíà÷åíî ãðàíè÷íå çíà÷åííÿ êîåôiöi¹íòà ïðîïîðöiéíîñòi âëó÷íîñòi,

ÿêå äîðiâíþ¹ îáåðíåíîìó çíà÷åííþ êiëüêîñòi ìîìåíòiâ ïîñòðiëó, çìåíøåíié íà 2. Ó

öüîìó âèïàäêó äóåëü ìà¹ ÷îòèðè ðîçâ'ÿçêè ó ÷èñòèõ ñòðàòåãiÿõ, â ÿêèõ ôiãóðóþòü

äâà îñòàííi ìîìåíòè ìîæëèâîãî ïîñòðiëó. Ó ïðîòèëåæíîìó âèïàäêó äóåëü ìà¹ ¹äèíó

îïòèìàëüíó ñèòóàöiþ ó ÷èñòèõ ñòðàòåãiÿõ, êîëè êîåôiöi¹íò ïðîïîðöiéíîñòi âëó÷íîñòi

íàëåæèòü ïåâíîìó íåïîðîæíüîìó iíòåðâàëó 4 × 4 àáî áiëüøà äóåëü íå ðîçâ'ÿçó¹òüñÿ

ó ÷èñòèõ ñòðàòåãiÿõ, ÿêùî òàêî¨ íàëåæíîñòi íå iñíó¹ àáî iíòåðâàë íàëåæíîñòi ¹

ïîðîæíiì. Òðèâiàëüíi äóåëi, ç ëèøå äâîìà àáî òðüîìà ìîìåíòàìè ìîæëèâîãî ïîñòðiëó,

çàâæäè ðîçâ'ÿçóþòüñÿ ó ÷èñòèõ ñòðàòåãiÿõ.

Êëþ÷îâi ñëîâà: ãðà ðîçðàõóíêó ÷àñó, áåçøóìíà äóåëü, ëiíiéíà âëó÷íiñòü, ðiâíîìiðíà

ðåøiòêà, ìàòðè÷íà ãðà, ñiäëîâà òî÷êà ó ÷èñòèõ ñòðàòåãiÿõ.


