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This paper addresses the development and study of iterative methods for solving non-

linear least squares problems that avoid the direct computation of matrix inverses. Specif-

ically, we investigate successive, synchronous, and asynchronous strategies for approxi-

mating the inverse operator within the Gauss-Newton method, the secant method, and

a method with third-order convergence. We present the theoretical foundations of these

approaches, including their convergence conditions, and provide details on how they can

be implemented in parallel computing environments. Numerical experiments on a series of

benchmark problems illustrate the comparative performance of each method variant. In

particular, we show that methods using asynchronous approximation of the inverse oper-

ator often converge in fewer iterations and with reduced computational time compared to

both their synchronous and successive counterparts.
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1. Introduction

A nonlinear least squares problem is a powerful tool for solving a wide range of applied
problems. These problems arise, in particular, when solving overdetermined systems
of equations, building nonlinear regression models, estimating parameters of physical
processes from experimental data, testing hypotheses in mathematical statistics, and
controlling objects or processes [3].

The Gauss-Newton method is one of the most widely used techniques for solving such
problems. However, its application becomes signi�cantly more complicated if computing
derivatives is di�cult or infeasible. In these scenarios, the secant method can serve as
an e�ective alternative, as it only relies on function evaluations rather than derivatives.

Despite their popularity, many classic methods for solving least squares problems,
including the Gauss-Newton and secant methods, require computing an inverse matrix
(or solving an equivalent system), which can be both computationally expensive and nu-
merically unstable. To overcome this drawback, methods that approximate the inverse
operator for nonlinear least squares problems have been proposed. These methods allow
for �nding approximate solutions without explicitly computing an inverse matrix. More-
over, they naturally lend themselves to parallel or asynchronous implementations, making
them particularly appealing for large-scale problems or problems with high performance
requirements.

In this work, we investigate the e�ciency of iterative methods that use both syn-

chronous and asynchronous approximation of the inverse operator for nonlinear least
squares problems. We build these methods upon three primary algorithmic foundations:
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� The Gauss-Newton method;
� The secant method;
� A method with third-order convergence.

By adapting each of these approaches to approximate the inverse operator rather than
compute it directly, we aim to mitigate numerical challenges and reduce overall compu-
tational costs. In addition, we show how parallel and asynchronous implementations can
further enhance e�ciency by e�ectively distributing the required computations.

A synchronous parallel approximation typically involves updating the approximate
solution and the inverse-operator approximation in lock-step at each iteration; the next it-
eration begins only after both computations have �nished. By contrast, an asynchronous
implementation allows these updates to occur without strict synchronization, letting each
update proceed whenever its data are ready. Consequently, asynchronous methods can
reduce idle time in multi-core or multi-processor environments, although at the cost of
more complex control schemes.

We carry out numerical experiments on test problems of varying complexity to assess
how e�ectively these methods address the nonlinear least squares problem:

min
x∈Rn

1

2
F (x)T F (x), (1)

where F : Rn → Rm (m ≥ n) is a residual function, assumed to be Frechet-di�erentiable
in x. We seek an x∗ such that

f(x∗) = min
x∈Rn

f(x), where f(x) = 1
2 F (x)T F (x).

If f(x∗) = 0, then the problem has a zero residual; otherwise, the residual is nonzero.

Among the most common methods for solving (1) are the Gauss-Newton and
Levenberg-Marquardt methods [5], both of which require solving a system of linear
equations at each iteration. As an alternative, methods with successive and parallel
approximation of the inverse operator can be employed to avoid directly solving these
systems [10]. In general, these methods consist of two key parts:

1. Finding the approximate solution to (1);

2. Approximating the inverse operator needed in that solution step.

Many scienti�c and applied tasks are reduced to solving a nonlinear least squares
problem, further emphasizing the importance of robust and scalable methods. For in-
stance, in positioning based on distance measurements, one may seek the location of an
object x ∈ R3 from measurements of distances to known points [3]. Another example
is �tting a nonlinear model y ≈ f(x; θ) by minimizing the sum of squared residuals for
a given dataset. One can also consider �tting geometric shapes (e.g., circles, ellipses,
spheres) to data in computational geometry or computer graphics. All these illustrate
the breadth and practical signi�cance of nonlinear least squares problems.

In this paper, we focus on methods with synchronous and asynchronous approxi-
mation of the inverse operator. After providing the theoretical underpinnings of these
methods, we detail their numerical implementation and compare their e�ectiveness on a
variety of test problems. Our results highlight the notable advantages of asynchronous
schemes in particular, which often reduce idle CPU time and accelerate convergence
without requiring explicit matrix inversions.
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2. Analysis of Methods with Synchronous and Asynchro-

nous Approximation of the Inverse Operator

2.1. Gauss-Newton Method

The Gauss-Newton method is one of the most popular methods for solving problem
(1). This method exhibits quadratic convergence in the case of zero residual. It is a
modi�cation of Newton's method and has the advantage that it does not require the
computation of second-order derivatives.

The iterative process of the classical Gauss-Newton method can be written as follow-
ing [3]:

xk+1 = xk − (F ′(xk)
TF ′(xk))

−1 F ′(xk)
T F (xk), k = 0, 1, . . . (2)

Let us consider a method with successive approximation for solving the normal equa-
tion of the nonlinear least squares problem

F ′(x)T F (x) = 0, (3)

built on the basis of the Gauss-Newton method:

xk+1 = xk −Ak J(xk)
T F (xk), (4)

Ak+1 = Ak

[
2E − J(xk+1)

T J(xk+1)Ak

]
, k = 0, 1, . . . (5)

where E is the identity operator (identity matrix), J(x) = F ′(x), and x0, A0 are initial
approximations to the exact solution x∗ of equation (3) and to the inverse operator
A∗ = [ J(x∗)T J(x∗) ]−1, respectively. The process (4)�(5) consists of two branches,
executed successively one after the other.

The following theorem [9] provides the convergence conditions for the iterative process
(4) (5) in the case of zero residual F (x∗) = 0.

Theorem 1. Suppose the following conditions hold:

1. The problem (3) has a solution x∗ with F (x∗) = 0, and there exists A∗ =
[ J(x∗)T J(x∗) ]−1 such that ∥A∗∥ ≤ B.

2. In the neighborhood Ω∗ = {x : ∥x− x∗∥ ≤ r0}, the following estimates hold:

∥F ′′(x)∥ ≤ L, ∥J(x)T − J(x∗)T ∥ ≤ L ∥x− x∗∥.

3. max{∥J(x∗)∥, ∥J(x∗)T ∥} ≤ C.

4.

h0 = max{K, C2 + (B + r0)
2 LK (2C + Lr0)} <

1

r0
,

where

r0 = max{∥x0 − x∗∥, ∥A0 −A∗∥},

K = C2 + (B + r0)
(
2.5LC + 1.5L2 r0

)
.

Then the sequences {xk} and {Ak}, k = 0, 1, . . ., converge to x∗ and A∗, respectively,

and satisfy

rk = max{ ∥xk − x∗∥, ∥Ak −A∗∥} ≤
(
h0 r0

) 2k−1
r0, k = 0, 1, . . . (6)
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Next, consider the iterative method for solving equation (3) described in [5], intended
for parallel computing processors that share memory. This process is de�ned as:

xk+1 = xk −Ak J(xk)
T F (xk), (7)

Ak+1 = Ak

[
2E − J(xk)

T J(xk)Ak

]
, k = 0, 1, . . . (8)

where similarly x0 and A0 are initial approximations to the exact solution x∗ of (3) and
to the inverse operator A∗ = [ J(x∗)T J(x∗) ]−1, respectively. Like the previous method
(4)�(5), the method (7)�(8) also has two branches, but they can be executed in parallel.
In addition, computations on each branch can be further parallelized by using linear
algebra routines, such as those in the BLAS (Basic Linear Algebra Subprograms) and
LAPACK (Linear Algebra PACKage) libraries.

The su�cient convergence conditions for the method (7)�(8) are established in The-
orem 2.

Theorem 2. Suppose the following conditions hold:

1. The problem (3) has a solution x∗ with F (x∗) = 0, and there exists A∗ =
[ J(x∗)T J(x∗) ]−1 such that ∥A∗∥ ≤ B.

2. In the neighborhood Ω∗ = {x : ∥x− x∗∥ ≤ r0}, the following estimates hold:

∥F ′′(x)∥ ≤ L, ∥J(x)T − J(x∗)T ∥ ≤ L ∥x− x∗∥.

3. max{∥J(x∗)∥, ∥J(x∗)T ∥} ≤ C.

4.

h0 = max{K r0, G} < 1,

where

r0 = max{∥x0 − x∗∥, ∥A0 −A∗∥},

K = C2 + (B + r0)
(
2.5LC + 1.5L2 r0

)
, G = C2 r0 + L (2C + Lr0) (B + r0)

2.

Then the sequences {xk} and {Ak}, k = 0, 1, . . . converge to x∗ and A∗, respectively,

and there exist constants γ1 and γ2 such that the following estimates hold:

∥xk − x∗∥ ≤ hck r0, ∥Ak −A∗∥ ≤ hgk r0, (9)

where

ck = γ1 t
k
1 + γ2 t

k
2 − 2, gk = ck−1 + 1, c−1 = −1,

t1 =
1 +

√
5

2
≈ 1.618, t2 =

1−
√
5

2
≈ −0.618.

The proof of this Theorem is carried out similar to the proof of theorem for nonlinear
equations given by A.Rooze [11].

Despite certain advantages of the method (7)�(8), it also has drawbacks. First, the
convergence rate decreases to approximately 1.618... < 2, which is lower than that
of the method (4)�(5). Second, the uneven distribution of computational load due to
the di�erent numbers of computations in formulas (7) and (8) can lead to idle time on
one of the processors or threads. Nonetheless, despite not fully utilizing the available
computational resources during parallelization, the overall problem-solving time is still
expected to decrease.
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To overcome these shortcomings, one can implement the computational process with-
out synchronizing computations across di�erent processors. In this case, an asynchronous
version of the method (7)�(8) can be written as [5]:

xm+1
k+1 = xm

k+1 −Ak J
(
xmk−1
k

)T
F
(
xm
k+1

)
, m = 0, 1, . . . ,mk+1 − 1, (10)

Ak+1 = Ak

[
2E − J

(
xmk−1
k

)T
J
(
xmk−1
k

)
Ak

]
, k = 0, 1, . . . , (11)

where xmk

k is the latest approximation to the exact solution x∗ of (3), for which the inverse
operator approximation Ak−1 is applied, and xmk

k = xk = x0
k+1. Moreover, x0, A0 are

the initial approximations for x∗ and A∗, respectively. This method implements an
asynchronous approximation of the inverse operator.

The main advantage of (10)�(11) over the parallel approximation of the inverse op-
erator (7)�(8) is that, on architectures with shared memory, processors do not remain
idle. In addition, the order of convergence of (10)�(11) equals 2, which exceeds the
convergence order of about 1.618 for the parallel approximation of the inverse operator
(7)�(8).

Su�cient convergence conditions for the iterative process (10)�(11) are given in the
next theorem.

Theorem 3. Suppose the following conditions hold:

1. The problem (3) has a solution x∗, F (x∗) = 0, and there exists

A∗ = [ J(x∗)T J(x∗) ]−1

such that ∥A∗∥ ≤ B.

2. In the neighborhood Ω∗ = {x : ∥x− x∗∥ ≤ r0}, the following estimates hold:

∥F ′′(x)∥ ≤ L, ∥J(x)T − J(x∗)T ∥ ≤ L ∥x− x∗∥.

3. max{∥J(x∗)∥, ∥J(x∗)T ∥} ≤ C.

4.

h0 = max{K r0, G} < 1,

where

r0 = max{∥x0 − x∗∥, ∥A0 −A∗∥},

K = C2 + (B + r0)
(
2.5LC + 1.5L2 r0

)
, G = C2 r0 + L (2C + Lr0) (B + r0)

2.

5. mk > N1, N1 ≥ 2; k = 1, 2, . . .

Then the sequences {xk} and {Ak}, k = 0, 1, . . . , converge to x∗ and A∗, respectively,

and satisfy

∥xk − x∗∥ ≤ h (N1+1) (2k−1) r0,

∥Ak −A∗∥ ≤ h2k−1 r0, k = 0, 1, . . .
(12)

The estimates (12) indicate that the iterative process (10)�(11) has quadratic con-
vergence order [9].
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2.2. Secant Method

In certain cases, due to the properties of nonlinear functions (for example, F may be
non-di�erentiable), using the Gauss-Newton method to solve a nonlinear least squares
problem can be impossible. Then it is prudent to use alternative approaches, such as the
secant method, which does not require computing a derivative of the function.

In the general case, the secant method for solving a nonlinear least squares problem
can be presented as [6]:

xk+1 = xk −
(
AT

k Ak

)−1
AT

k F (xk), k = 0, 1, . . . , (13)

where Ak = F
(
xk, xk + αk (xk−1 − xk)

)
, [x, y;F ] is the �rst-order divided di�erence of

F (x) at points x and y, αk ∈ [0, 1], αk is a nonincreasing sequence, and x−1, x0 are given
initial values.

If αk = 1, then to �nd an approximate solution to problem (1), a secant method was
proposed as a modi�cation of the Gauss-Newton method [7]:

xk+1 = xk −
(
[xk, xk−1;F ]T [xk, xk−1;F ]

)−1
[xk, xk−1;F ]T F (xk), k = 0, 1, . . . , (14)

where x−1, x0 ∈ D are given initial approximations, and [xk, xk−1;F ] is the �rst-order
divided di�erence of F (x) at points xk and xk−1.

Like the Gauss-Newton method (2), the secant method (14) requires either computing
the inverse matrix or solving a system of linear equations to �nd the solution of the
nonlinear least squares problem. Thus, iterative methods with approximation of the
inverse operator can also be applied to this method.

One can approximate the inverse operator A−1 of a linear operator A using Newton's
method:

Ak+1 = Ak

(
2E −AAk

)
, k = 0, 1, . . . , (15)

where E is the identity operator, and A0 is an initial approximation to A−1 [12]. Ulm
also described a Newton method with successive approximation of the inverse operator
for solving the nonlinear equation

xk+1 = xk −Ak F (xk),

Ak+1 = Ak

(
2E − F ′(xk+1)Ak

)
, k = 0, 1, . . . ,

(16)

where A0 is the initial approximation of
(
F ′(x∗)

)−1
, and x0 is the initial approximation

to the exact solution of F (x) = 0.
The secant method with successive approximation of the inverse operator for solving

(1) can be written as [10]:

xk+1 = xk −Ak B
T
k F (xk),

Ak+1 = Ak

(
2E −BT

k+1 Bk+1 Ak

)
, k = 0, 1, . . . ,

(17)

where Bk = [xk, xk−1;F ]; x−1, x0 are given initial approximations to x∗; A0 is the initial

approximation to
(
F ′(x∗)

T F ′(x∗)
)−1

(e.g., A0 = (BT
0 B0)

−1); and E is the identity
matrix. If Bk = F ′(xk), then one obtains a Gauss-Newton type method, which was
discussed in Section 2.1.
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We now examine the local convergence of (17) in the zero-residual case under classical
Lipschitz conditions for �rst-order divided di�erences.

For the divided-di�erence operator [x, y;F ], a Lipschitz condition with constant L
holds in domain D:

∥[x, y;F ]− [u, v;F ]∥ ≤ L
(
∥x− u∥+ ∥y − v∥

)
, ∀x, y, u, v ∈ D. (18)

Let U(x0, r) = {x : ∥x − x0∥ < r} be a sphere of radius r centered at x0. Then the
classical Lipschitz conditions can be expressed as follows:

1. The condition ∥[x, y;F ] − F ′(x0)∥ ≤ L
(
∥x − x0∥ + ∥y − x0∥

)
∀x, y ∈ U(x0, r) is

called the central Lipschitz condition on U(x0, r) with Lipschitz constant L.

2. The condition ∥F ′(x0)
−1 [x, x0;F ] − I∥ ≤ L ∥x − x0∥ ∀x ∈ U(x0, r) is called the

radial Lipschitz condition on U(x0, r) with Lipschitz constant L.
Theorem 4. [10] Let F be a nonlinear operator de�ned on an open convex setD ⊂ Rp

with values in a Banach space Rm. Suppose that
1. The problem (1) has a solution x∗ ∈ D, F (x∗) = 0, and there exists A∗ =

[F ′(x∗)T F ′(x∗) ]−1 such that
∥A∗∥ ≤ B. (19)

2. In the closed sphere U(x∗, r) = {x : ∥x− x∗∥ ≤ r0}, where

r0 = max{∥x0 − x∗∥, ∥x−1 − x∗∥, ∥A0 −A∗∥}, (20)

the following estimates hold:

max{∥F ′(x∗)∥, ∥F ′(x∗)T ∥} ≤ C, (21)

∥F ′(x∗)− [x, y;F ]∥ ≤ L
(
∥x− x∗∥+ ∥y − x∗∥

)
. (22)

3. The initial approximations x−1, x0, and A0 are such that

q < 1, (23)

where q = max{a1 r0, a2}, a1 = C2 + (B + r0)
(
3CL + 2L2 r0

)
, and a2 = C2 r0 +

(B + r0)
2 [ 4CL+ 4L2 r0 ].

Then the sequences {xk} and {Ak}, k = 0, 1, . . . , converge to x∗ and A∗, respectively,
and satisfy

∥xk − x∗∥ ≤ qck r0, ∥Ak −A∗∥ ≤ qgk r0, (24)

where c−1 = −1, c0 = 0, ck = ck−2 + ck−1, k = 1, 2, . . ., gk = ck−1 + 1, k = 0, 1, . . ..
Similar to the Gauss-Newton type method, one can consider an iterative process with

a parallel approximation of the inverse operator for the secant method as well. This
process has the form [10]:

xk+1 = xk −Ak B
T
k F (xk),

Ak+1 = Ak

(
2E −BT

k Bk Ak

)
, k = 0, 1, . . . ,

(25)

where Bk = [xk, xk−1;F ]; x−1, x0 are given initial approximations to the solution x∗; A0

is an initial approximation to
(
F ′(x∗)

T F ′(x∗)
)−1

; and E is the identity matrix.
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Thus, the iterative process of the form

xk+1 = xk − [AT
k Ak ]

−1 AT
k F (xk), k = 0, 1, . . . , (26)

where Ak = [xk, xk−1;F ] is the �rst-order divided di�erence operator of F (x), has a

convergence order of 1+
√
5

2 = 1.618 . . . in the zero-residual case [7]. In the case of the se-
cant method, applying asynchronous approximation of the inverse operator is also highly
practical because it avoids synchronization between computations, reducing the likeli-
hood of processor idling in a parallel environment and improving overall computational
e�ciency.

The iterative process of the secant method with asynchronous approximation of the
inverse operator has the following form:

xm+1
k+1 = xm

k+1 −Ak
T [xmk−1

k , xmk−2
k ;F ]T F

(
xm
k+1

)
, m = 0, 1, . . . ,mk+1 − 1,

Ak+1 = Ak

[
2E − [xmk−1

k , xmk−2
k ;F ]T [xmk

k , xmk−1
k ;F ]Ak

]
, k = 0, 1, . . . ,

(27)

where xmk

k is the latest approximation to the exact solution x∗, in which the approxima-
tion of the inverse operator Ak−1 is used; xmk

k = xk = x0
k+1. Moreover, x0 and A0 are

the initial approximations for x∗ and A∗, respectively.
Compared to the method with parallel approximation of the inverse operator (25),

this asynchronous version of the secant method also avoids processor idle time on shared-
memory architectures and provides a higher order of convergence.

2.3. Two-Step Iterative Methods

To �nd a solution to the nonlinear least squares problem (1), one may use a di�erence
modi�cation of the two-step Gauss-Newton method of the form [8]:

xk+1 = xk − (AT
kAk)

−1AT
k F (xk),

yk+1 = xk+1 − (AT
kAk)

−1AT
k F (xk+1), k = 0, 1, . . . ,

(28)

where Ak = [xk, yk;F ] is the �rst-order divided di�erence of the function F (x) at points
xk and yk; x0, y0 are given initial approximations.

The residual is zero, the order of convergence of the iterative process (28) equals
1 +

√
2.

Similarly to previous iterative processes, the inverse operator (AT
kAk)

−1 in the di�er-
ence modi�cation of the two-step Gauss-Newton method can also be approximated.

Thus, in the case of an approximate inverse operator, the two-step iterative process
(28) can be written as [8]:

xk+1 = xk −AkB
T
k F (xk),

yk+1 = xk+1 −AkB
T
k F (xk+1),

Ak+1 = Ak

(
2E −BT

k+1Bk+1Ak

)
, k = 0, 1, . . . ,

(29)

where Bk = [xk, yk;F ]; x0, y0 are given initial approximations; A0 is the initial approxi-
mation of the operator, and E is the identity matrix.

Hence, at each iteration (29), a single matrix Ak is used to compute xk+1 and yk+1.
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In 1983, methods of the third, �fth, and sixth order that use approximation of the
inverse operator were proposed for solving operator equations. The third-order method
for operator equations has the form [2]:

yk = xk −AkF (xk),

xk+1 = yk −AkF (yk),

Bk = Ak

(
2E − [xk+1, uk+1;F ]Ak

)
,

Ak+1 = Bk

(
2E − [xk+1, uk+1;F ]Bk

)
, k = 0, 1, . . . ,

(30)

where uk+1 = xk+1 − ϵk+1F (xk+1), and ϵk+1 is a real parameter.
To increase the order of convergence, the e�ciency, and the potential applications

of the Ulm-type method given by (30), the authors of [1] proposed replacing divided
di�erences with Frechet derivatives, leading to an improved method that can be written
as:

yk = xk −AkF (xk),

xk+1 = yk −AkF (yk),

Bk = Ak(2E − F ′(xk+1)Ak),

Ak+1 = Bk(2E − F ′(xk+1)Bk), k = 0, 1, . . . ,

(31)

Based on method (31), which was de�ned for operator equations, one can derive
a similar method for solving nonlinear least squares problems. Thus, the third-order
convergence method with successive approximation of the inverse operator for nonlinear
least squares problems will have the form:

yk = xk −AkF
′(xk)

TF (xk),

xk+1 = yk −AkF
′(yk)

TF (yk),

Bk = Ak

(
2E − F ′(xk+1)

TF ′(xk+1)Ak

)
,

Ak+1 = Bk

(
2E − F ′(xk+1)

TF ′(xk+1)Bk

)
, k = 0, 1, . . . ,

(32)

where x0, y0 are given initial approximations to the solution x∗, A0 is the initial approx-

imation to
(
F ′(x∗)TF ′(x∗)

)−1
, and E is the identity matrix.

One may also propose a method for nonlinear least squares problems that syn-
chronously and in parallel computes both the approximate solution and the inverse op-
erator:

yk = xk −AkF
′(xk)

TF (xk),

xk+1 = yk −AkF
′(yk)

TF (yk),

Bk = Ak(2E − F ′(xk)
TF ′(xk)Ak),

Ak+1 = Bk(2E − F ′(xk)
TF ′(xk)Bk), k = 0, 1, . . . ,

(33)

Hence, each branch carries out operations, which are performed in parallel. A draw-
back of this method may be that computing the next approximation of the inverse op-
erator is more time-consuming than computing the next approximation of the solution.
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Consequently, one of the processors may remain idle for some time, which can be signif-
icant if the operations on the two branches di�er greatly in their computational costs.

3. Numerical Results

We compare the methods with successive and parallel approximation of the inverse
operator, applied to nonlinear least squares problems, assuming one processor is used
in the �rst case and two identical processors in the second case. Let one iteration of
the successive approximation of the inverse operator require time τ1 + τ2, where τ1 is
the time to compute the next approximation of the inverse operator, and τ2 is the time
to compute the next approximate solution. Then, when using two identical processors,
one that runs the method with a parallel approximation of the inverse operator, and
one that runs the successive method, one iteration of the parallel approximation method
takes max{τ1, τ2}, since both computations are performed simultaneously on di�erent
processors. Therefore, using two parallel branches for the method with a synchronous
parallel approximation of the inverse operator makes sense only if Ts − Tp > 0, where
Ts is the total runtime of the method with a successive approximation of the inverse
operator, and Tp is the total runtime of the parallel method [11]. We can simulate the
described approach by de�ning processes that engage one or two processor cores.

We examine the e�ciency of the Gauss-Newton method, the secant method, and the
third-order convergence method with synchronous and asynchronous approximation of
the inverse operator, comparing them with methods that use successive approximation
of the inverse operator. The methods were tested on the following functions [4, 7]:

Example 1. Brown's function. n = 4, m = 4,

Fi(x) = xi +

n∑
j=1

xj − n− 1, i = 1, 2, . . . , n− 1,

Fn(x) =

n∏
j=1

xj − 1;

x0 = (0.5, 0.5, 0.5, 0.5); x∗ = (α, α, α, α1−n), where α satis�es nαn− (n+1)αn−1+1 = 0;
f(x∗) = 0.

Remark. For Brown's function, the Gauss-Newton methods with an approxima-
tion of the inverse operator yielded the solution (1, 1, 1, 1), whereas the classical Gauss-
Newton method yielded the solution (0.868877, 0.868877, 0.868877, 1.524492). All the
other methods found the solution x∗ = (1, 1, 1, 1).

Example 2. Freudenstein-Roth function. n = 2, m = 2,

F1(x) = −13 + x1 + ((5− x2)x2 − 2)x2,

F2(x) = −29 + x1 + ((x2 + 1)x2 − 14)x2,

x0 = (7, 6); x∗ = (5, 4); f(x∗) = 0.
Example 3. Rosenbrock's function. n = 8, m = 8,

F2i−1 = 10(x2i − x2
2i−1),

F2i = 1− x2i−1, i = 1, 2, . . . , n/2,

x0 = (1, 10, 1, 10, 1, 10, 1, 10); x∗ = (1, 1, 1, 1, 1, 1, 1, 1); f(x∗) = 0. We also consider
options when n = 16,m = 16 and n = 64,m = 64.
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For Rosenbrock's function, we consider three variations in dimension, namely n =
m = 8, n = m = 16, and n = m = 64. We can conclude that changing the dimension of
the original problem does not a�ect the overall distribution of method e�ciency.

Since this example requires more total iterations to �nd the approximate solution
than the other test problems, the following tables show that the asynchronous methods
demonstrate signi�cant e�ciency.

For this problem, the methods with successive and synchronous parallel approxima-
tion of the inverse operator based on the third-order convergence method are quite e�-
cient. Meanwhile, the asynchronous secant method is outperformed by the asynchronous
Gauss-Newton method.

For this test problem, where m > n, the most e�cient methods are the asynchronous
Gauss-Newton and secant methods, as well as the synchronous inverse-operator approx-
imation method based on the third-order convergence method.

Example 4. Kowalik and Osborne function [7]. n = 4; m = 11,

Fi(x) = yi −
x1(u

2
i + uix2)

u2
i + uix3 + x4

,

where

i yi ui i yi ui i yi ui i yi ui

1 0.1957 4.0000 4 0.1600 0.5000 7 0.0456 0.1250 10 0.0235 0.0714
2 0.1947 2.0000 5 0.0844 0.2500 8 0.0342 0.1000 11 0.0246 0.0625
3 0.1735 1.0000 6 0.0627 0.1670 9 0.0323 0.0833

x0 = (0.25; 0.39; 0.415; 0.39),

x∗ = (0.1928 . . . ; 0.1912 . . . ; 0.1230 . . . ; 0.1360 . . .),

f(x∗) = 3.07505 . . .× 10−4.

Example 5. [7] n = 4; m = 7,

Fi(x) = x1e
tix3 + x2e

tix4 − yi, ti =
(ui − 425)

195
,

where
u 230 295 360 425 490 555 620
y 64.0 66.0 69.5 74.0 80.8 91.0 103.5

x0 = (25; 45; 1; 0), x∗ = (30.716958; 43.423609; 0.759299; −0.134355),

f(x∗) =
1

2
F (x∗)

TF (x∗) = 0.1423405.

Example 6. Gnedenko-Veibull distribution [7]. n = 2; m = 8,

Fi(x) = 1− e
−
(

ti
x1

)x2

− yi,

i 1 2 3 4 5 6 7 8
ti 0.1000 0.5000 0.7000 1.0000 1.2000 1.7000 2.2000 4.5000
yi 0.0050 0.1175 0.2173 0.3939 0.5132 0.7643 0.9111 0.99961

x0 = (1, 1), x∗ = (1.4140, 2.0000), f(x∗) = 1.3833 · 10−7.
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Example 7. Wood function [7]. n = 4; m = 6,

F1(x) = 10(x2 − x2
1), F2(x) = 1− x1,

F3(x) =
√
90(x4 − x2

3), F4(x) = 1− x3,

F5(x) =
√
10(x4 + x2 − 2), F6(x) = (10)−1/2(x2 − x4),

x0 = (−3,−1,−3,−1); x∗ = (1, 1, 1, 1); f(x∗) = 0.

All calculations were carried out with an accuracy of ϵ = 10−6. For the secant method,
the additional approximation (x−1) is constructed as x0 + 10−5. To stop the iterative
process, we check whether ∥xk+1 − xk∥ ≤ ϵ.

We summarize the program execution results for the test examples in comparative
tables for each type of method, where K is the number of iterations (for asynchronous
methods, the number of iterations to get an approximation of the inverse operator); t -
the total execution time of the program in seconds; τ - the average percentage of wait
time in the main branch; Q - the number of main-branch iterations. Program execution
time was determined as the average time of 50 separate runs to get a more generalized
result.

Table 1

Gauss-Newton method

Example
Successive (4)-(5) Synchronous (7)-(8) Asynchronous (10)-(11)
K t K t τ K t Q

1 5 0.4657 6 0.3040 15% 2 0.1860 45
2 8 1.4535 10 1.2149 9% 2 0.3572 193

3 (8) 4 0.2470 4 0.1921 4% 2 0.1396 131
3 (16) 4 0.6710 4 0.4442 16% 2 0.3950 59
3 (64) 4 1.0536 4 0.8095 17% 2 0.7620 15
4 14 1.2101 14 0.9860 13% 7 0.6966 172
5 11 1.3935 11 1.1015 28% 8 1.3551 336
6 11 0.8032 9 0.6822 5% 6 0.3455 180
7 13 1.3578 14 1.2144 7% 6 0.8195 645

Thus, comparing the methods with successive and synchronous parallel approxima-
tion of the inverse operator shows that, because the methods with synchronous parallel
approximation of the inverse operator for nonlinear least squares use the approximate
solution from the previous iteration to compute the next approximation of the inverse
operator (rather than the current iteration as in the successive approach), these methods
often require equal or more iterations to converge. Nevertheless, due to the parallelization
of computations on separate processes, the overall program execution time is reduced.

Implementing the asynchronous approximation of the inverse operator for both the
Gauss-Newton and secant methods makes it possible to �nd an approximate solution to
the nonlinear least squares problem in fewer iterations and, accordingly, in less time than
with the analogous successive or synchronous approximations of the inverse operator.
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Table 2

Secant method

Example
Successive (17) Synchronous (25) Asynchronous (27)
K t K t τ K t Q

1 5 0.4821 6 0.4423 36% 2 0.2694 11
2 8 1.2787 10 1.2288 11% 2 0.7342 103

3 (8) 5 0.4266 10 0.3690 22% 2 0.1337 12
3 (16) 5 1.3002 10 1.2893 26% 2 0.7673 7
3 (64) 6 9.5897 10 9.6478 43% 3 6.1277 8
4 16 2.8313 16 2.6275 26% 12 2.5487 95
5 11 2.9480 11 2.6786 12% 9 1.4102 187
6 11 3.5172 12 2.2798 7% 4 1.9386 135
7 13 3.6506 14 3.2904 4% 6 2.6222 370

Table 3

Third-order convergence method

Example
Successive (32) Synchronous (33)
K t K t τ

1 4 0.4009 4 0.2536 16%
2 5 0.9603 7 0.6396 17%

3 (8) 3 0.2215 3 0.1754 16%
3 (16) 3 0.8591 3 0.6769 8%
3 (64) 3 1.7044 3 1.0262 20%
4 8 3.4034 3 4.0262 4%
5 11 6.4261 11 6.2134 2%
6 11 4.2412 12 4.0602 5%
7 13 3.8755 12 3.8211 1%

For the classical methods of solving least squares problems in our research, we used
the built-in matrix inversion function from the NumPy library. This function is based
on optimized low-level libraries such as BLAS and LAPACK, which are widely used for
numerical computations. They implement highly e�cient matrix algorithms such as LU
and Cholesky factorizations, which allow performing matrix inversion with maximum
possible speed for the given platform. In addition, NumPy supports the use of multi-
core CPU architectures, which enables computation distribution among cores, greatly
reducing execution time. Owing to these optimizations, classical methods can o�er com-
petitive computation speeds even for large matrices. However, for problems with large
dimensions or poorly conditioned matrices, numerical instabilities may arise, which are
avoided by methods that approximate the inverse operator.
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Therefore, in comparing methods that use an approximate inverse operator with their
classical variants, one should keep in mind that these methods do not require comput-
ing the matrix inverse, thus avoiding possible stability issues and signi�cant growth in
computational resources.

Hence, according to Tables 1�3, for the considered test examples, parallelizing the
computation of the inverse operator and the approximate solution on two CPU cores
results in a lower overall execution time compared to successive computation, despite a
potentially higher number of iterations.

Consequently, among the approaches considered, the methods with asynchronous
approximation of the inverse operator for nonlinear least squares problems show the
best performance. Compared to synchronous methods, they reduce the time required to
achieve a speci�ed solution accuracy by avoiding the need for synchronization between
processors. Meanwhile, the methods with synchronous approximation of the inverse
operator exhibit better performance compared to the successive methods, since they
allow for the distribution of computations among processors at each iteration.

4. Conclusions

In this work, methods with approximation of the inverse operator for nonlinear least
squares problems were investigated. We formulated iterative processes for methods with
successive, synchronous, and asynchronous approximation of the inverse operator to solve
nonlinear least squares problems based on the Gauss-Newton method, the secant method,
and a third-order convergence method, and studied their convergence conditions.

We carried out a software implementation of the methods that approximate the in-
verse operator and conducted a comparative analysis of these methods based on numerical
experiments on selected test problems.

It was established that methods with asynchronous approximation of the inverse
operator for nonlinear least squares problems delivered the best results among those
considered, thus providing the most e�cient use of available computational resources.
In turn, methods with synchronous approximation of the inverse operator demonstrated
higher e�ciency compared to successive methods, though they often required a larger
number of iterations. However, due to parallel execution of computations, the total
runtime of the synchronous methods was reduced relative to the corresponding successive
methods.

The results obtained serve as a basis for further research into solving nonlinear least
squares problems using the approximation of the inverse operator. One direction for fu-
ture work involves constructing iterative processes and analyzing the e�ciency of meth-
ods with synchronous and asynchronous approximation of the inverse operator based on
other foundational methods.
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Ðîçãëÿíóòî ïîáóäîâó òà äîñëiäæåííÿ iòåðàöiéíèõ ìåòîäiâ äëÿ ðîçâ'ÿçàííÿ íåëi-

íiéíèõ çàäà÷ íàéìåíøèõ êâàäðàòiâ, ÿêi íå ïîòðåáóþòü ïðÿìîãî îá÷èñëåííÿ îáåð-

íåíèõ ìàòðèöü. Çîêðåìà, äîñëiäæåíî ïîñëiäîâíi, ñèíõðîííi é àñèíõðîííi ñòðàòåãi¨

àïðîêñèìàöi¨ îáåðíåíîãî îïåðàòîðà ó ðàìêàõ ìåòîäó Ãàóññà-Íüþòîíà, ìåòîäó õîðä

òà ìåòîäó ç òðåòiì ïîðÿäêîì çáiæíîñòi. Ïîäàíî òåîðåòè÷íi îñíîâè öèõ ïiäõîäiâ,

âðàõîâóþ÷è óìîâè ¨õíüî¨ çáiæíîñòi. Îïèñàíî, ÿê ¨õ ìîæíà ðåàëiçóâàòè â óìîâàõ

ñåðåäîâèù ç ïàðàëåëüíèìè îá÷èñëåííÿìè. ×èñëîâi åêñïåðèìåíòè íà ñåði¨ òåñòîâèõ
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çàäà÷ äåìîíñòðóþòü ïîðiâíÿëüíó åôåêòèâíiñòü êîæíîãî âàðiàíòó ìåòîäó. Çîêðåìà,

ç'ÿñîâàíî, ùî ìåòîäè ç àñèíõðîííîþ àïðîêñèìàöi¹þ îáåðíåíîãî îïåðàòîðà ÷àñòî çái-

ãàþòüñÿ çà ìåíøó êiëüêiñòü iòåðàöié i ç ìåíøèìè âèòðàòàìè ÷àñó íà îá÷èñëåííÿ

ïîðiâíÿíî ç ñèíõðîííèìè òà ïîñëiäîâíèìè àíàëîãàìè.

Êëþ÷îâi ñëîâà: ïàðàëåëüíi iòåðàöiéíi ìåòîäè, íåëiíiéíà çàäà÷à íàéìåíøèõ êâàäðàòiâ,

àïðîêñèìàöiÿ îáåðíåíîãî îïåðàòîðà, àñèíõðîííi îá÷èñëåííÿ.


