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Smoothed Particle Hydrodynamics (SPH) is widely used in graphics and engineering for
simulating �uids, viscous materials, and deformable solids. This paper presents the devel-
opment and application of the Implicit Incompressible Smoothed Particle Hydrodynamics
(IISPH) algorithm for simulating incompressible �uid dynamics. The IISPH method o�ers
an e�cient solution for enforcing incompressibility by solving the pressure Poisson equation
implicitly, making it well-suited for large-scale simulations. The paper outlines the govern-
ing equations of Smoothed Particle Hydrodynamics (SPH), explains the key components
of the IISPH solver, and demonstrates its e�ectiveness through the classical Taylor-Green
vortex test case. The results show that the algorithm achieves real-time performance even
with high particle counts, while maintaining accuracy and stability. Furthermore, a de-
tailed analysis is provided to compare the numerical results with the analytical solution,
highlighting the in�uence of particle resolution on simulation �delity. The performance
of the solver is validated across di�erent particle counts, demonstrating its robustness for
handling complex �uid dynamics simulations in engineering and computer graphics appli-
cations.
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1. SPH foundation

Smoothed Particle Hydrodynamics (SPH) is a method used to discretize spatial �eld
quantities and di�erential operators such as gradient and divergence. To facilitate this,
the Dirac-δ function is introduced, which represents an idealized point mass. The Dirac-δ
function is de�ned as:

δ(r) =

{
∞, r = 0,

0, otherwise,
(1)

and satis�es the condition: ∫
δ(r)dv = 1.

This function allows the convolution of a continuous compactly supported function
A(x) with the Dirac-δ function, resulting in:

A(x) = (A ∗ δ)(x) =
∫

A(x′)δ(x− x′)dx′. (2)

This forms the basis for the discretization in SPH, originally proposed by Gingold &
Monaghan (1977) [1].
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2. Continuous approximation

To approximate the integral in (2) for numerical computation, we replace the Dirac-δ
function with a smoothing kernelW (r, h). This kernel is used to approximate the integral
as follows:

A(x) ≈ (A ∗W )(x) =

∫
A(x′)W (x− x′, h)dx′, (3)

where W (r, h) satis�es several conditions:
- Normalization condition: ∫

Rd

W (r, h) dr′ = 1

- Dirac-δ condition:
lim
h→0

W (r, h) = δ(r)

- Positivity condition:
W (r, h) ≥ 0

- Symmetry condition:
W (r, h) = W (−r, h)

- Compact support condition:

W (r, h) = 0 for ∥r∥ ≥ ĥ.

To re�ne the approximation of the integral with the smoothing kernel W , we expand
A(x′) around x. This leads to:

(A ∗W )(x) =

∫
[A(x) +∇A|x · (x′ − x)]W (x− x′, h)dx′

+O((x′ − x)2). (4)

This simpli�es to:

A(x)

∫
W (x− x′, h)dx′ +∇A|x

∫
(x′ − x)W (x− x′, h)dx′. (5)

The approximation is accurate to �rst-order if the �rst term integrates to 1 (normal-
ization condition) and the second term vanishes, which is ensured by the symmetry of
the kernel. Di�erent types of smoothing kernels and their properties can be found in [4].

3. Discretization

In SPH, the continuous integral from (2) is approximated by a discrete sum over
particle samples, as shown in (6). This results in the discrete approximation:

⟨A(xi)⟩ ≈
∑
j

Aj
mj

ρj
Wij , (6)
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where Wij represents the kernel function evaluated at the positions of particles i and
j. The �rst-order accuracy of this discretization depends on satisfying the conditions:∑

j

mj

ρj
Wij = 1 and

∑
j

mj

ρj
(xj − xi)Wij = 0.

While these conditions may not always hold due to the particle sampling pattern,
normalization techniques can restore 0th- or 1st-order consistency for more accurate
simulations [3].

3.1. Discretization of differential operators

In SPH, the gradient of a �eld can be approximated by discretizing the di�erential
operators. The gradient of the �eld is given by:

∇Ai ≈
∑
j

Aj
mj

ρj
∇Wij . (7)

For higher-dimensional functions, other operators like divergence and curl can be
discretized similarly:

∇ ·Ai ≈
∑
j

mj

ρj
Aj · ∇Wij , (8)

∇×Ai ≈
∑
j

mj

ρj
Aj ×∇Wij . (9)

However, direct computation using these formulas often results in poor accuracy. The
di�erence formula, de�ned as:

∇Ai ≈
∑
j

mj

ρj
(Aj −Ai)∇Wij , (10)

provides a better approximation and can be improved by solving a small linear system:

∇Ai ≈ Li

∑
j

mj

ρj
(Aj −Ai)∇Wij

 , (11)

where Li is computed from the inverse of:

Li =

∑
j

mj

ρj
∇Wij × (xj − xi)

−1

. (12)

Another approach is the symmetric formula [3], which approximates the gradient as:

∇Ai ≈ ρi
∑
j

mj

(
Ai

ρ2i
+

Aj

ρ2j

)
∇Wij . (13)

While this formula does not exactly reproduce constant or linear gradients, it is
advantageous for simulations as it conserves linear and angular momentum, making it
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more robust for physical simulations. The error in the symmetric gradient is governed
by how much

∑
j

mj

(
1

ρ2i
+

1

ρ2j

)
∇Wij ≈ 0 (14)

deviates from zero. This formula tends to reorder particles until the condition is
satis�ed. In summary, the di�erence formula yields more accurate gradients, while the
symmetric formula is more stable due to its conservation of momentum.

4. Governing equations

This section outlines the fundamental equations governing �uid dynamics, including
the continuity equation, which ensures mass conservation; the conservation law of linear
momentum, extending Newton's second law to continuous media; and the Navier-Stokes
equation, which models viscous �uid motion.

4.1. Continuity equation

The continuity equation governs the change in mass density, ρ, of an object over time.
It is given by:

Dρ

Dt
= −ρ(∇ · v), (15)

where D
Dt represents the material derivative. This equation plays a crucial role in sim-

ulations involving incompressible materials. For such materials, the condition simpli�es
to:

Dρ

Dt
= 0 ⇔ ∇ · v = 0. (16)

This constraint ensures that the mass density remains constant and must be main-
tained at all times and at every point within the material. The continuity equation and
its use in Smoothed Particle Hydrodynamics (SPH) for �uid simulations are thoroughly
discussed by Monaghan [2].

4.2. Conservation law of linear momentum

The conservation of linear momentum can be viewed as an extension of Newton's
second law for continuous media, often referred to as the equation of motion. This
principle states that the rate of change of momentum of a material particle is equal to
the sum of all internal and external volume forces acting on it, expressed as:

ρ
D2x

Dt2
= ∇ ·T+ fext, (17)

where T is the stress tensor and fext represents body forces (forces per unit volume).
This relation is independent of the material composition since the material behavior is
captured in the stress tensor, which is de�ned by constitutive laws.
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4.3. Navier-Stokes equation
For incompressible �uid �ow, a common constitutive law is given by:

T = −pI+ µ(∇v +∇vT ), (18)

where p is the pressure, µ is the dynamic viscosity, and v is the velocity �eld. In the case
of strict incompressibility, p can act as a Lagrange multiplier, ensuring the condition from
Eq. (16). If incompressibility is not strictly enforced, a state equation can be introduced
to relate pressure to density changes, for example:

p = p(ρ). (19)

One commonly used state equation is derived from the ideal gas law, expressed as:

p(ρ) = k

(
ρ

ρ0
− 1

)
, (20)

where k is a sti�ness constant and ρ0 is the reference density. Substituting the con-
stitutive law (Eq. (18) into the equation of motion (Eq. (17) gives the incompressible
Navier-Stokes equation:

ρ
Dv

Dt
= −∇p+ µ∇2v + fext. (21)

The Navier-Stokes equation, which describes the motion of viscous �uid substances,
is a fundamental equation in �uid dynamics. Its application in the context of Smoothed
Particle Hydrodynamics (SPH) for incompressible �ow is well discussed in foundational
works such as Monaghan [2] and Morris [7].

5. Discretization with implicit incompressible
SPH (IISPH)

The Implicit Incompressible SPH (IISPH) algorithm, as proposed in [6], is an al-
ternative discretization method for simulating incompressible �ows. The method solves
the pressure implicitly to ensure incompressibility, making it e�cient for particle-based
simulations.

The IISPH method is based on solving the pressure Poisson equation (PPE), refor-
mulated for each particle i:

∆t2∇2pi = ρ0 − ρ∗i . (22)

The source term, ρ∗i , for SPH is computed as:

ρ0 − ρ∗i = ρ0 − ρi −∆t
∑
j

mj(v
∗
i − v∗

j ) · ∇Wij , (23)

where v∗
i = vi +∆tanonpi , and the pressure acceleration is:

api = − 1

ρi
∇pi = −

∑
j

mj

(
pi
ρ2i

+
pj
ρ2j

)
∇Wij . (24)

The IISPH discretization of the PPE becomes:
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∆t2
∑
j

mj

(
api − apj

)
· ∇Wij = ρ0 − ρ∗i . (25)

The terms used in the pressure update are de�ned as follows:

(Ap)i = ∆t2
∑
j

mj

(
api − apj

)
· ∇Wij , (26)

where api is the pressure acceleration at particle i, and ∇Wij is the gradient of the kernel
function between particles i and j.

The source term si is given by:

si = ρ0 − ρ∗i , (27)

where ρ0 is the rest density, and ρ∗i is the predicted density at particle i.
This system is solved iteratively for pressure, where pressure updates ensure that the

divergence of the pressure acceleration leads to the correction of density changes. The
�nal update for pressure is computed using a Jacobi solver:

p
(l+1)
i = (1− ω) p

(l)
i +

ω

aii

si −
∑
j ̸=i

aijp
(l)
j

 , (28)

where ω is the relaxation coe�cient, typically set to 0.5, and aii and aij are matrix
elements computed from the pressure accelerations.

The update in Eq. (28) requires the diagonal element aii, which can be calculated by
accumulating all coe�cients of pi. The diagonal element is:

aii = −∆t2
∑
j

mj

∑
j

mj

ρ2j
∇Wij

 · ∇Wij −∆t2
∑
j

mj

(
mi

ρ2i
∇Wij

)
· ∇Wij . (29)

5.1. Stop criterion

There is no widely accepted method for determining when to stop the Jacobi itera-
tions. The iterations can either be stopped after a �xed number of steps or when the
predicted density error falls below a certain threshold. The predicted relative density
error for particle i, based on the pressure �eld at iteration l, is calculated as:

ρerr,∗i =
(Ap)i − si

ρ0
=

(Ap)i + ρ∗i − ρ0

ρ0
. (30)

Typically, the stopping criterion is based on the average of all relative density errors,
ρavg,err,∗i , which is computed as:

ρavg,err,∗i =
1

n

∑
i

∣∣ρerr,∗i

∣∣ . (31)

As proposed in [6], a common threshold is to stop the iterations when ρavg,err,∗i is less
than 0.1%, ensuring the overall �uid volume �uctuation is below this value.
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6. Implementation of IISPH solver

The IISPH solver iterates over particles to calculate pressure corrections and ensure
incompressibility. The source term si and the diagonal element aii are computed once

at the start. During each iteration l, the pressure Laplacian (Ap)
(l)
i is computed in two

stages.

Algorithm 1 Pressure Computation with the IISPH Solver

1: for all particles i do
2: Compute diagonal element aii with Eq. (29)
3: Compute source term si with Eq. (27)

4: Initialize pressure p
(0)
i = 0

5: end for
6: Set l = 0
7: repeat
8: for all particles i do
9: Compute pressure acceleration a

p(l)
i with Eq. (24)

10: end for
11: for all particles i do
12: Compute Laplacian (Ap)

(l)
i with Eq. (26)

13: Update pressure p
(l+1)
i with Eq. (28)

14: end for
15: Increment l = l + 1
16: until ρavg, err,∗i < 0.1%

7. Neighborhood search

In particle-based simulations, evaluating the force terms for all particles can be ine�-
cient, leading to a computational complexity of O(n2), where n is the number of particles.
To improve e�ciency, smoothing kernels with compact support are employed, where in-
teractions occur only between neighboring particles within a speci�c radius. This reduces
the complexity to O(nm), where m is the number of neighboring particles.

There are algorithms designed to solve this problem more e�ciently, such as the one
using compact hashing described by [5]. The idea is to place a uniform grid over the
domain with a grid cell size equal to the kernel support radius, reducing the complexity
to O(n) by e�ciently querying only neighboring cells. On a CPU, this approach is highly
e�cient, but adapting it for GPU architectures requires further optimizations.

7.1. Compact hashing approach for neighborhood search

The method described in [5] introduces an e�cient neighborhood search approach for
Smoothed Particle Hydrodynamics (SPH) simulations on multi-core CPUs. The authors
propose an optimized spatial hashing scheme, referred to as compact hashing, to address
the ine�ciencies of traditional uniform grids and spatial hashing methods.
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7.1.1. Overview of compact hashing

In this method, a uniform grid is constructed over the simulation domain, where
the cell size equals the kernel support radius h. Each particle is assigned to a grid cell
based on its spatial coordinates. A key improvement is the use of a compact list to store
only non-empty cells. Instead of allocating memory for all possible cells in the domain,
the compact hashing technique dynamically allocates memory only for cells that contain
particles. Each cell in the hash table points to a compact list entry, reducing memory
overhead and improving e�ciency for sparsely populated domains.

The structure of the data and its mapping is illustrated in Figure 1. The �rst array
represents the hash table, which stores handles pointing to the second array, a compact
list of non-empty cells. Each non-empty cell further points to an array of particle indices
for particles assigned to that cell. Memory is dynamically allocated for the particle
indices in each non-empty cell, with a �xed allocation size k for each cell.

The hash function used to map 3D spatial coordinates (x, y, z) to a 1D hash table
index is:

c =
(⌊x

d

⌋
p1 ⊕

⌊y
d

⌋
p2 ⊕

⌊z
d

⌋
p3

)
mod m,

where d is the cell size, p1, p2, p3 are large prime numbers, and m is the hash table size.
This function minimizes collisions by spreading the data evenly across the table. While
this description is for 3D space, the same approach applies to 2D simulations by omitting
the z-coordinate.

Fig. 1. Compact hashing. The hash table (size m) stores handles pointing to a compact list of
n non-empty cells (yellow). Each cell reserves memory for k entries, with total memory usage
O(n · k + m). The neighborhood query only processes these n non-empty cells. Figure taken

from [5]

7.1.2. Neighborhood query

To �nd neighbors for a particle, the algorithm evaluates only the 27 (9 for 2D space)
cells in the immediate vicinity of the particle's grid cell. This ensures that the computa-
tional cost of the query scales linearly with the number of particles, i.e., O(n).
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7.1.3. Limitations and applicability

Although compact hashing is highly e�cient on CPUs, the hash function does not
preserve spatial locality, which can lead to increased memory transfers. The method
performs best when combined with techniques such as reordering particles to enforce
spatial locality.

7.2. Applying compact hashing to GPUs

Adapting compact hashing for GPUs requires leveraging compute shaders for e�cient
parallelism while addressing GPU-speci�c challenges such as memory management, hash
collisions, and sorting.

To ensure predictable memory access and reduce runtime overhead, the hash table is
pre-allocated with a size equal to the number of particles. While this approach does not
eliminate hash collisions, it minimizes memory allocation overhead and allows for more
e�cient parallel processing compared to dynamic memory allocation.

The GPU implementation processes particles in parallel, with grid cell indices calcu-
lated for all particles simultaneously. Neighbor searches are also performed in parallel,
querying the surrounding cells to identify interactions.

A crucial step in this approach is sorting particles based on their grid indices to
improve memory access patterns during neighbor searches. Sorting is a challenging part of
the implementation, especially on GPUs, where performance depends on e�cient parallel
algorithms. To address this, it is proposed to use Bitonic sort [9], a parallel sorting
method optimized for GPUs.

7.3. Bitonic sort for efficient GPU sorting

Sorting particles by their grid indices is an important step in the GPU implementation
of compact hashing. It ensures that particles in the same or neighboring grid cells are
grouped together, which makes neighbor searches much faster. Bitonic sort, introduced
by Batcher [9], is a parallel sorting algorithm that works well on GPUs because it is
highly structured and easy to parallelize.

A sequence is called bitonic if it �rst increases and then decreases, or vice versa.
Bitonic sort uses this property to sort the sequence into order. The algorithm works by
repeatedly comparing pairs of elements and swapping them to divide the sequence into
smaller sorted parts. These smaller parts are then combined into a fully sorted sequence.

On GPUs, Bitonic sort is implemented using compute shaders, where each thread
handles a speci�c comparison and swap. This allows many operations to run at the same
time, making the sorting process much faster than on a CPU.

8. Results

This section presents the validation and performance of the Smoothed Particle Hy-
drodynamics (SPH) method applied to the Taylor-Green vortex problem, a benchmark
for incompressible Navier-Stokes simulations. The results include an overview of the vor-
tex's initial conditions, its analytical solution, and the evolution of the �ow over time,
highlighting the decay due to viscosity. Simulations demonstrate the method's ability to
accurately capture vortex dynamics and its suitability for real-time �uid simulations.
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Algorithm 2 Bitonic Sort

1: function BitonicSort(array, up)
2: Divide array into two halves
3: Sort �rst half with BitonicSort(�rst_half, True)
4: Sort second half with BitonicSort(second_half, False)
5: return BitonicMerge(�rst_half + second_half, up)
6: end function
7: function BitonicMerge(array, up)
8: CompareAndSwap(array, up)
9: Merge �rst half with BitonicMerge(�rst_half, up)
10: Merge second half with BitonicMerge(second_half, up)
11: return �rst_half + second_half
12: end function
13: function CompareAndSwap(array, up)
14: for all indices i in the �rst half of array do
15: if (array[i] > array[i + n/2]) == up then
16: Swap array[i] and array[i + n/2]
17: end if
18: end for
19: end function

8.1. Taylor-Green vortex
The Taylor-Green vortex is a classical test case for validating numerical methods

applied to the incompressible Navier-Stokes equations. This vortex �ow is characterized
by periodic vortex structures that decay over time due to viscosity. It is commonly used
to benchmark the accuracy and stability of �uid simulation methods, such as Smoothed
Particle Hydrodynamics (SPH). The test case was originally introduced by Taylor and
Green (1937), making it a widely used benchmark in computational �uid dynamics [8].

8.1.1. Initial conditions
The initial velocity �eld for the 2D Taylor-Green vortex in a domain [0, 2π]× [0, 2π]

is de�ned as:

u(x, y, 0) = sin(x) cos(y), (32)

v(x, y, 0) = − cos(x) sin(y), (33)

where u and v are the velocity components in the x and y directions, respectively. The
initial pressure is assumed to be constant, and the initial density is typically set to a
uniform value.

8.1.2. Analytical solution
As time evolves, the velocity �eld decays due to the action of viscosity. The exact

solution for the velocity components at any time t is given by:

u(x, y, t) = sin(x) cos(y)e−2νt, (34)

v(x, y, t) = − cos(x) sin(y)e−2νt. (35)
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8.2. Taylor-Green vortex simulation

This subsection presents the evolution of the Taylor-Green vortex using 6,000 particles
in a [0, 2π] × [0, 2π] domain. The Figure 2 show the simulation results at di�erent time
frames from t = 0 to t = 5, where the vortex fully decays by t = 5 due to the e�ect of
viscosity.

a t = 0 b t = 1 c t = 2

d t = 3 e t = 4 f t = 5

Fig. 2. Taylor-Green vortex simulation at di�erent times, showing the progression
of the vortex decay from t = 0 to t = 5

8.3. Comparison to analytic solution

In this section, we compare the simulation results for the Taylor-Green vortex problem
to the analytic solution at di�erent particle resolutions: 1500, 6000, and 12000 particles.
The objective is to assess how increasing the number of particles a�ects the accuracy of
the simulation and the level of detail captured in the �ow �eld.

8.4. Initial state comparison at t = 0

Figure 3 presents the velocity �eld of the Taylor-Green vortex at the initial time
t = 0 for di�erent particle counts: 1500, 6000, and 12000 particles. As the number of
particles increases, the simulation captures �ner details of the �ow structure, illustrating
the bene�t of higher resolution in accurately representing the vortex dynamics.
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1500 particles 6000 particles 12000 particles

Fig. 3. Velocity �eld comparison at t = 0 for di�erent particle resolutions.
As the number of particles increases, more details of the �ow are captured

8.5. Error analysis over time
The accuracy of the simulation can be quanti�ed by comparing the simulated velocity

�eld to the analytic solution using the root mean square error (RMSE). Figure 4 shows
the RMSE evolution over time for the three di�erent particle resolutions: 1500, 6000,
and 12000. As expected, higher particle counts result in lower RMSE, indicating better
accuracy. The results demonstrate that simulations with more particles capture the decay
of the vortex more precisely, especially in the later stages of the simulation.

Fig. 4. RMSE comparison between the simulated and analytic velocities for di�erent particle
resolutions over time. The accuracy improves as the number of particles increases

As seen in Figure 4, the 12000-particle simulation closely follows the analytic solu-
tion, with minimal error throughout the time evolution. In contrast, the 1500-particle
simulation exhibits higher RMSE, particularly in the later stages, where the resolution
is insu�cient to accurately model the vortex decay.
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All simulation steps are performed with a �xed time step, and the computational
time for each step remains approximately 0.15 ms, regardless of particle count, whether
the simulation uses 1500 or 12000 particles. In order to enhance accuracy and reduce
numerical error, especially in capturing �ne details of �uid dynamics, we execute �ve
physics simulation steps for each rendered frame. This ensures that smaller time steps
are utilized, leading to a more precise evolution of the velocity �eld over time. By per-
forming multiple simulation steps per frame, the method reduces the cumulative error,
particularly in the later stages of the vortex decay, where �ner time resolution plays a
critical role in maintaining simulation �delity. As a result, even high-resolution simula-
tions maintain real-time performance while achieving greater accuracy.

9. Conclusion

This paper presents the application of the Implicit Incompressible Smoothed Particle
Hydrodynamics (IISPH) algorithm to simulate incompressible �uid dynamics. By uti-
lizing the IISPH approach, we ensured accurate enforcement of incompressibility while
maintaining computational e�ciency. The Taylor-Green vortex problem was used as a
benchmark to validate the solver's accuracy and performance across di�erent particle
resolutions.

The results demonstrated that as the number of particles increased from 1500 to
12000, the simulation's accuracy improved, with �ner details of the vortex structure
being captured. The root mean square error (RMSE) analysis con�rmed that higher
particle counts better matched the analytic solution, especially during the later stages
when vortex decay becomes more prominent. Additionally, even at the highest resolution
with 12000 particles, the simulation ran in real-time, demonstrating the e�ciency of the
IISPH solver in handling large particle counts without sacri�cing performance.

To further improve computational e�ciency, GPU-based techniques were incorpo-
rated into the implementation. Compact hashing was adapted for GPUs to accelerate
neighborhood searches, and Bitonic sort was used to e�ciently sort particles by their
grid indices. These optimizations allowed the solver to maintain real-time performance
even at higher resolutions, making it scalable for large-scale simulations.

Future work could explore extending the IISPH method to simulate multi-phase
�uids, handling more complex boundary conditions, and applying the solver to three-
dimensional �ows. Additionally, integrating adaptive particle re�nement techniques
could improve e�ciency while maintaining high accuracy in regions of interest.

Overall, the IISPH method, enhanced with GPU optimizations such as compact hash-
ing and Bitonic sort, proves to be a robust and e�ective tool for simulating incompressible
�uids in real-time, making it suitable for a wide range of applications in both engineering
and computer graphics.
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Ìåòîä ãiäðîäèíàìiêè çãëàäæåíèõ ÷àñòèíîê (SPH) øèðîêî âèêîðèñòîâóþòü â ãðà-
ôiöi òà iíæåíåði¨ äëÿ ñèìóëÿöi¨ ðiäèí, â'ÿçêèõ ìàòåðiàëiâ i äåôîðìîâàíèõ òië. Ïîäàíî
ðîçðîáêó òà çàñòîñóâàííÿ àëãîðèòìó íåÿâíî¨ íåñòèñëèâî¨ ãiäðîäèíàìiêè çãëàäæåíèõ
÷àñòèíîê (IISPH) äëÿ ñèìóëÿöi¨ äèíàìiêè íåñòèñëèâèõ ðiäèí. Ìåòîä IISPH çàáåçïå÷ó¹
åôåêòèâíå âèðiøåííÿ ïðîáëåìè ïiäòðèìàííÿ íåñòèñëèâîñòi øëÿõîì íåÿâíîãî ðîçâ'ÿç-
êó ðiâíÿííÿ Ïóàññîíà äëÿ òèñêó, ùî ðîáèòü éîãî ïðèäàòíèì äëÿ âåëèêîìàñøòàáíèõ
ñèìóëÿöié. Îïèñàíî îñíîâíi ðiâíÿííÿ ìåòîäó SPH, ïîÿñíåíî êëþ÷îâi êîìïîíåíòè
ðîçâ'ÿçóâà÷à IISPH i ïðîäåìîíñòðîâàíî éîãî åôåêòèâíiñòü íà ïðèêëàäi êëàñè÷íî¨
çàäà÷i âèõîðó Òåéëîðà-Ãðiíà. Ðåçóëüòàòè ïiäòâåðäæóþòü, ùî àëãîðèòì äîñÿãà¹ åôåê-
òèâíîñòi â ðåàëüíîìó ÷àñi íàâiòü çà âåëèêî¨ êiëüêîñòi ÷àñòèíîê, çáåðiãàþ÷è òî÷íiñòü i
ñòàáiëüíiñòü. Êðiì òîãî, íàäàíî äåòàëüíèé àíàëiç äëÿ ïîðiâíÿííÿ ÷èñåëüíèõ ðåçóëüòà-
òiâ ç àíàëiòè÷íèì ðîçâ'ÿçêîì, ùî íàãîëîøó¹ íà âïëèâi ðîçäiëüíî¨ çäàòíîñòi ÷àñòèíîê
íà òî÷íiñòü ñèìóëÿöi¨. Åôåêòèâíiñòü àëãîðèòìó ïiäòâåðäæåíà íà ðiçíèõ êiëüêîñòÿõ
÷àñòèíîê, ùî äåìîíñòðó¹ éîãî íàäiéíiñòü äëÿ ìîäåëþâàííÿ ñêëàäíî¨ äèíàìiêè ðiäèí
â iíæåíåði¨ òà êîìï'þòåðíié ãðàôiöi.

Êëþ÷îâi ñëîâà: ãiäðîäèíàìiêà çãëàäæåíèõ ÷àñòèíîê, SPH, ñèìóëÿöiÿ ðiäèíè, Ëàãðàí-
æåâi ìåòîäè, íåñòèñëèâiñòü, ôóíêöi¨ ÿäðà, ïîøóê ñóñiäiâ.


