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We propose the use of genetic programming to reconstruct the interior boundary of a
double-connected domain, based on known Cauchy data of a harmonic function given on
the exterior boundary. The considered inverse problem is a nonlinear and ill-posed problem.
Genetic programming is a branch of genetic algorithms in which individuals are represented
as trees, and tree-specific crossover and mutation operators are used to generate offspring
during the evolutionary process. We assume that the unknown inner boundary belongs to
the class of star-like boundaries and is defined by an unknown radial function, which is
represented by a tree individual.

To evaluate each individual’s fitness, a nonlinear regularized functional is introduced.
The computation of this functional requires solving the Dirichlet-Neumann problem for the
Laplace equation. This boundary value problem is solved numerically using the method
of fundamental solutions — a meshless numerical method in which the unknown function
is approximated as a linear combination of fundamental solutions, and the collocation
method is subsequently applied to determine the unknown coefficients. The proposed
approach is straightforward to extend to higher dimensions, making it applicable to both
two-dimensional and three-dimensional domains. For both cases, we explicitly provide the
distribution of source and collocation points.

The effectiveness and robustness of the method are demonstrated through several nu-
merical experiments using both exact data and data with added random noise. The under-
lying idea of the method is applicable to any boundary reconstruction problem involving
star-like boundaries, provided the fundamental solution of the governing equation is known.

Key words: genetic programming, inverse geometric problem, Laplace equation, method of
fundamental solutions, genetic algorithms.

1. INTRODUCTION

A method of fundamental solutions (MFS) is a meshless boundary collocation method,
a popular choice for numerical solving of the direct and inverse problems for elliptic partial
differential equations, in the case where the fundamental solution is known, see [2,8,13,
14]. The solution to the problem is sought as a linear combination of the fundamental
solutions followed by the application of the collocation method to find the unknown
coefficients in the MFS-approximation.

In [4], the application of genetic programming (GP) to the problem of boundary
reconstruction is considered. The fitness function in this study is numerically computed
using the boundary integral equations method (BIEM). This is a powerful method but
requires complex calculations, especially in three dimensional domains, see e.g. [3, 6],
therefore the previous study only considers the two dimensional case. We extend the
results proposed in [4] by deriving the MFS approach and including three dimensional
domains.
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Let’s consider the investigated problem in more detail. Let D C R%, d = 2,3 be
the double-connected domain, bounded with the two simple (without self intersections)
closed curves (or surfaces, for d = 3) I'; and I'y, that belongs to C? class. Moreover, the
boundary I'; lies in the interior of I's. Firstly, let’s consider the direct boundary value
problem: find a bounded function v that satisfies the Laplace equation

Au=0 in D, (1)

and boundary Dirichlet and Neumann conditions

u=0 onI; and g—Z:gonI‘g, (2)
where g € C1(I'2) is a given smooth function, v is the outward unit normal to boundaries
'y, £ = 1,2. The existence and uniqueness of classical or weak solutions of the problem
(1)-(2) are well established, see [16, Chapter 6] or [19, Chapter 4].

Then the inverse problem consists in finding the form of the interior boundary I'; by
the additional measure on the boundary I'y

u=f on Iy, (3)

where f # 0 is a given smooth function. Well known that there exists a unique represen-
tation of the I'y, for more details we refer [16, Chapter 18]. To summarize, the inverse
problem (1)-(3) is to reconstruct the unknown boundary I'y from the given Cauchy data
(f,g) on the outer boundary I's, which, as is known, is a non-linear ill-posed problem,
since the solution doesn’t depend continuously on the data.

The problem has important applications and is widely used in impedance tomography,
nondestructive testing, and electrostatics [7,17]. Therefore, there are already several
works based, for example, on BIEM and Newton-type iterative regularization, see, [5,
9,10, 16, 17], which makes it possible to obtain a sufficiently good reconstruction of the
boundary. And also there are already several works where genetic algorithm (GA) is
used, see [7,20].

We suggest using GP instead. It is a GA, in the case when the individual is represented
in the form of tree. For each tree-individual we define the fitness function that is used
as a selection criteria for transition to the next population. In our case, the fitness is
a least-squares penalty functional, which requires the numerical solution of the mixed
boundary value problem using MFS. Nowadays, GP is a popular optimization technique
that is mainly used to find analytical functions, see some researches [22,23] and references
therein.

For the outline of the work, in the section 2 we introduce GP as the main iterative
algorithm for inverse geometric problem. Computation of the fitness function using MFS
is given in the section 3. The configuration of the algorithm and results of the some
numerical experiments are given in the section 4.

2. APPLICATION OF GP

GP is a stochastic optimization technique that models the process of the evolution and
manages the population of the tree-individuals. Following [11,21], the algorithm starts
with a randomly generated population. Next tree-specific genetic operators are applied
to selected individuals to create a new offspring. The next population is created by the r-
model [12] using the offspring, while bad candidates die. The process continues until the
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stop criteria are met. The stopping criteria include a maximum number of consecutive
iterations t,,4, without fitness improvement and a chosen accuracy threshold 9,4, > 0.

We assume that the unknown interior boundary I' is a star-like curve (or star-like
surface for d = 3) and has the following parametrization

r(s)(cos s,sins), s € |0, 27|, d=2,
:{()( ). s € 0,2 "

(0, ¢)(sin @ cos ¢, sin @ sin ¢, cos 0), 0 € [0, 7], ¢ € [0,27], d =3,

where 7 : R — (0, 00) is a periodic unknown function, representing the radial distance
from the origin. By v = v(r) we denote the individual that represents the radial function
r in a tree form. For the individual we use the following fitness function

J(o(r) = [ = fI7, 0, + allu™ 2, r,), ()

where u(") is a numerical solution of the boundary value problem (1)-(2) for the interior
curve I'1, given by the radial function r. The penalty functional (5) is constructed
from the additional measurement (3). Since the inverse problem is ill-posed, we add
a regularization term a||u(r)||%2(rz), where o > 0 is a regularization parameter. The
calculation of (5) and numerical solution of the (1)-(2), when both boundaries are known,
will be presented in the next section. The best individual is the one in which the fitness
function is smaller.

Let F' be a set of predefined functions, and T a set of predefined terminals, where
T. C T represents constant values and T, C T represents variables. Tree nodes can be
from both F' (non-terminal nodes) and 7' (terminal nodes) sets.

Initially, a population of pops;.. > 0 random individuals is generated. To generate
the random tree we use the Full-Grow algorithm, see [18]. To obtain offspring, we use
the tournament method for the selection of parents. For the tournament selection we
use fitnesses computed by (5). New individuals are then created using crossover and
mutation operators with selected probabilities peross% and p.:%, applied to parents.
We use the following mutation operators, see [15].

Subtree mutation: replaces a randomly chosen node (except the root) with a newly
generated subtree.

Uplift mutation: selects a subtree and treats it as a new one.

Node replace mutation: randomly replaces a node with another of the same type.
Shrink mutation: replaces a randomly selected subtree with a terminal node.
Terminal mutation: replaces a randomly chosen leaf with a new terminal.

Constant mutation: replaces a random terminal with a new random value from the
range [—1—CJ(v(r)), 14+ CJ(v(r))], where C is a predefined constant and J(v(r))
the fitness of the current individual.

We use the following crossover operators.

One point crossover: a classic genetic operator that selects random subtrees from each
parent and swaps them.
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Uniform crossover: similar to one-point crossover, but swaps common nodes between
parents based on a coin toss probability. If the node belongs to the common region
and is a function, the entire subtree rooted at that node is inherited.

In addition to these genetic operators, geometric semantic operators, described in
[22,23], are also used.

To filter out the solutions that do not satisfy the basic conditions, such as closed
boundary, real values, and interposition in exterior of I's, the penalty values are set.

At the end of the process, the best chromosome r* is selected as the numerical ap-
proximation of the unknown function r and interior boundary I'y is given by (4). In the
next section, we focus on computing individual’s fitness.

3. THE MF'S FOR CALCULATING THE FITNESS FUNCTION

In this section, we assume that both boundaries I'y, ¢ = 1,2 are known and we focus
on the fitness (5) computation. Firstly, let’s consider the numerical solution of the well-
posed mixed boundary value problem (1)-(2). For two-dimensional domains, we assume
that boundary curves have following parametrization

IVES {78(5) = (’7@1(5)7752(5))’5 € [0,27T]}, =12 (6)

and for three-dimensional domains

ry= {7[(97¢) = (7@1(05¢)77€2(07¢)37€3(97¢))7 b € [Ovﬂ]’d) € [05271-]}7 t= 172' (7)

The solution u is approximated as a linear combination of fundamental solutions:

u(x) ~ up(x) = Z/\j@(;c,yj), xeD, (8)
j=1
wheren € N, \; € R, j =1,..., N are unknown coefficients, ® is a fundamental solution

of the Laplace equation and y; ¢ D are chosen source points. The fundamental solution

has the following representation
1 1
—1117,1:7&3;, d:27
2 o -y

S@y) =y (9)
T o X 7é Y, d= 37
Ar | — y|
d

Z(Iz — )2, x, y € R%. According to |1], the source points chosen

i=1

according to the following rule:

with | —y| =

2955, for even 3,
Y= f _ (10)
0.594;, for odd j,
where 5
T,
B FYZ(tj)v tj = ;]7 d=2,

T . 21 |
7@(9]7¢j)7 oj:m]a Qs]:;.]a d:37
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for ¢ = 1,2, 7 =1,...,n. By applying the collocation method and taking into account
boundary conditions (2), we receive the following system of linear equations to determine
the unknown coeflicients A;

n
Z)‘jq)(xllay])zoa izlv"'vnv

n 8(1) wZuyj)

Z j

with collocation points x¢; = 7,;. The system (11) is over-determined 2n x n and is
solved by the least squares method.
Finally, the fitness function (5) is represented in the discrete form as:

(11)
=g(xz;), i=1,...,n,

2
n

J(v(r)) = Z Z)\;T)é(wm, y;) — [(m2i) | + Oéz (/\?“))2’ (12)

i=1 |j=1
where )\y) are solutions of the (11), for the given r.

4. ALGORITHM CONFIGURATION AND NUMERICAL EXAMPLES

In this section, we describe the configuration of the GP algorithm and present the
results of two numerical experiments for exact and noisy data.
The following parameters of the algorithm are used:
- n =64,
— a = le — 10 for exact data, or &« = le — 5 for noised data;
— DPOPsize = 500,
— in the r-model selection, r is 40% of popsiz. (see [21]);
— maximum accuracy O, = 1073;
— nondecreasing-fitness number of iterations t,,q, = 100;
— mutation probability pm,.: = 0.3 and when it is applied, we use the following
mutation operators based on the probabilities:
— subtree mutation 10%;
— uplift mutation 10%;
— node replace mutation 25%;
— shrink mutation 5%;
— terminal mutation 20%;
— constant mutation 50%;
— geometric semantic mutation 40%;
— constant mutation scale Cicq7e = 0.01;
— crossover probability peross = 0.7 and when it is applied, we use the following
crossover operators based on the probabilities:
— one point crossover 10%;
— uniform crossover 70%;
— geometric semantic crossover 50%;
— predefined functions and terminals:
— T, = {s} (or T, = {6, ¢}, for d = 3);
- T.=[-10,...,10];
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Fig. 1. Exact (green line) and reconstructed (dashed blue line) curves I'y
for different noise levels, for examples 1 and 2

— F ={+, —, *,protectedDiv,lf},

X
Rl Oa 1
VY ad @)

where protectedDiv(z,y) = = —.
Ly=0, 1+e(2)

Having described the configuration of the GP, let’s consider the results of numerical
examples.

4.1. NUMERICAL EXAMPLES

For all examples we use the same outer boundary I's, defined by
1.5(cos(s), sin(s)), s € [0, 27], d=2,
a 5(sin @ cos ¢, sin  sin ¢, cosB), 8 € [0, 7], ¢ € [0,27], d=3.

To generate the boundary function f, we solve the mixed boundary value problem (1)-(2)
with g(x) =2, ¢ € I's and exact boundary I'1, by the MFS and use double number of
n, to avoid the inverse crime. The noised data f€ is generated from the exact boundary
function f by the following rule

fo=F+e@n=1fl L.

where ¢ is a noise level and 7 is a random value in a range (0, 1).

Firstly, we consider two-dimensional domains. Exact radial functions, the best fitness
in the case of exact and noised data for two examples are provided in the table 1 and in
the fig. 1 are given exact and reconstructed boundary curves: 1.a) — 1.¢) for the example
1, 1.d) — 1.f) for the example 2, for different noise levels.

Next we consider three-dimensional domains. Exact radial functions, the best fitness
in the case of exact and noised data for two examples are provided in the table 2. For
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Fig. 2. Exact and reconstructed surfaces I'; for different noise levels, for example 3

Table 1

Exact radial functions, the best fitness and number of iterations for exact and noisy
data for examples 1 and 2 (d = 2)

r(s), s € [0,27] ¢ | Iterations J(v(r*))
0% 428 0.0002435263
Example 1 | /(0.5cos s)? + (0.25sins)? | 2% 219 0.0031541706

5% 302 0.1199570379

z 0% 357 0.0019720625

Example 2 cos3(2s +1) + ———— | 2% 431 0.0313415499
2+ cos? s

5% 183 0.5381723422

the first three-dimensional example: in the fig. 2.a) the exact surface is presented and
in the fig. 2.b)-2.d) are given reconstructed surfaces, for different noise levels. Similar
results are presented in the fig. 3.a)-3.d), for another radial function, for the example 4.

As can be seen from the results of numerical examples, GP can be used as the al-
gorithm for solving the non-linear ill-posed inverse geometric problem. For exact input
data and noised data (up to 5%) the inner boundary is reconstructed, for higher noise
levels the results are distorted. Provided results confirm the application of the proposed
method. A combination of GP with some classical regularization algorithm can be further
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Fig. 3. Exact and reconstructed surfaces I'1 for different noise levels, for example 4.

Table 2

Exact radial functions, the best fitness and number of iterations
for exact and noisy data for examples 3 and 4 (d = 3)

r(0,¢), 0 € [0;7], ¢ € [0;27] | & | Iterations J(v(r*))
0% 256 0.1826017664
Example 3 | 2+ /(425 + 3cos(30)) | 2% | 188 | 0.2010086523
5% 403 1.3745796331
0% 294 0.1288771231
Example 4 2\/ cos(20) +1/2 —sin®(20) | 2% | 382 | 0.3286076847
5% 236 1.5561072596

explored to obtain a better accuracy.

5. CONCLUSIONS

This study presents a novel application of GP with MFS for reconstructing the in-
ner boundary of a double-connected domain from the given Cauchy data on the outer
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boundary. To solve the direct problem, the MFS method is used, which allows us to easily
extend the algorithm to the case of three-dimensional domains, compared to our previous
work [4], where the BIEM method was used (only in two-dimensional domains). In addi-
tion, the application of MFS results in reduced computational costs for two-dimensional
domains compared to BIEM.
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TEHETUYHE IIPOTPAMYBAHHA 3 METO/J0M
OYHIAMEHTAJIbBHIUX PO3B’4A3KIB 114
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TEOMETPUYHOI 3A AUl
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TIpomonyeMo BUKOPHCTAHHS T€HETUYHOTO MPOTPAMYBAHHS JJIsI PEKOHCTPYKINI BHYT-
pimubol Mexxi AB03B’s13HOT 06s1acti Ha ocHOBI BimoMux gammx Komi rapmoniunol ¢ymkmil,
3a/JaHUX Ha 30BHIMHIN Mexi. Po3risanyra obepHeHa 3a7a49a € HEMHINHOI i HEKOPEKTHOO.
T'enernyne nporpamMyBaHHS — 1€ PO3/iJl TEHETUYHUX AJTOPUTMIB, y sIKOMY iHauBigu 300pa-
2KeHi y BUIUIAA] JepeB, a cuerudivHi AJa JepeBa OlepaTopu KPOCOBEPY Ta MYTallil BUKO-
PUCTOBYIOTH Jijisi CTBOPEHHSI HAILA/KIB Il 9ac €BoJIoLiiiHOro npouecy. Ilpunyckaemo, mo
HeBiZioMa BHYTDIIIHA MeXKa HAJIEXKUTDb 10 KJIacy 3ipKonoaibHux xpusux (abo mOBEPXOHB) i
BHU3HAYAETHCS HEBIJOMOIO PaIiasbHOIO (PYHKINE, KA 300paskeHa iHIUBIJOM-TepeBOM.

JIJyisi OLiHKM TIPUCTOCOBHOCTI KOXKHOTO iHAWBIZA BBOAUTHCS HEJIHIWHWMI peryJisipuso-
BaHUU dyukionan. O6uuciaeHHsa NIHOro GyHKIIOHANa NOTpedye pO3B’S3aHHSA 3a7adi
Hipixne-He#imana gnsa piBusuuas Jlanmaca. Ils xpaiioBa 3amada 9HCEIBHO PO3B’SI3y€THCS
3a JOIOMOTrOI0 MeTony (YyHIAMEHTAJIbHUX PO3B’a3KiB — 0e3CiTKOBOTO MeTONy, B SKOMY
HeBigOMa PyHKIisT aIPOKCUMYETHCH sIK JiHilina kombinaris dyHjaMeHTaIbHIEX PO3B’I3KiB,
3 IIOCJIiJOBHUM 3aCTOCYBAHHSIM METOLY KOJOKAIT /IJIsl BU3HAYEHHS HeBigoMux KoedilieHTiB.
3anponoHoBaHuil mijXiJ, MOXKHA JIEPKO HOIIMPUTH HA BUINl BUMipu, 1m0 poburb HOro
3aCTOCOBHUM [0 IBOBHMIipHUX i 10 TpuBmMipHEHX Obsacteit. s 060x BUMAIKiB IPOMOHY-
€MO PO3IMOJIJ TOYOK JI2KEepeJia Ta KOJIOKAITIT.

EdexrupnicTs i cTifiKicTh METOAY IPOJEMOHCTPOBAHO KiTBKOMA YHCEILHUMH €KCIIEPH-
MEHTAMHU 3 BHKODHCTAHHSM TOYHHX JAHUX 1 JAHUX 3 JOZABAHHIM BHUIAJTKOBOTO IIyMY.
OcHOBHa imesi MeTO[y 3aCTOCOBHA 110 Oyiab-siKOT 3ajad4i PEeKOHCTPYKIT Mexi, 3 KJjacy
3ipKOOAIOHUX MeXK, SAKIO BimoMuil dyHIaMeHTaJIbHUAN PO3B’SI30K DIBHAHHS 3a/adi.

Knatowo06t caoea: reHeTUYHE NPOrpAMyBaHHs, ODEpHEHa IeOMEeTPHYHA 3a/a4d, DIBHAHHSA
Jlanmaca, MeToq hYHIAMEHTATbHUX PO3B’SI3KiB, TeHETUYHI AJITOPUTMU.



