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We propose the use of genetic programming to reconstruct the interior boundary of a
double-connected domain, based on known Cauchy data of a harmonic function given on
the exterior boundary. The considered inverse problem is a nonlinear and ill-posed problem.
Genetic programming is a branch of genetic algorithms in which individuals are represented
as trees, and tree-speci�c crossover and mutation operators are used to generate o�spring
during the evolutionary process. We assume that the unknown inner boundary belongs to
the class of star-like boundaries and is de�ned by an unknown radial function, which is
represented by a tree individual.

To evaluate each individual's �tness, a nonlinear regularized functional is introduced.
The computation of this functional requires solving the Dirichlet-Neumann problem for the
Laplace equation. This boundary value problem is solved numerically using the method
of fundamental solutions � a meshless numerical method in which the unknown function
is approximated as a linear combination of fundamental solutions, and the collocation
method is subsequently applied to determine the unknown coe�cients. The proposed
approach is straightforward to extend to higher dimensions, making it applicable to both
two-dimensional and three-dimensional domains. For both cases, we explicitly provide the
distribution of source and collocation points.

The e�ectiveness and robustness of the method are demonstrated through several nu-
merical experiments using both exact data and data with added random noise. The under-
lying idea of the method is applicable to any boundary reconstruction problem involving
star-like boundaries, provided the fundamental solution of the governing equation is known.

Key words: genetic programming, inverse geometric problem, Laplace equation, method of
fundamental solutions, genetic algorithms.

1. Introduction

Amethod of fundamental solutions (MFS) is a meshless boundary collocation method,
a popular choice for numerical solving of the direct and inverse problems for elliptic partial
di�erential equations, in the case where the fundamental solution is known, see [2, 8, 13,
14]. The solution to the problem is sought as a linear combination of the fundamental
solutions followed by the application of the collocation method to �nd the unknown
coe�cients in the MFS-approximation.

In [4], the application of genetic programming (GP) to the problem of boundary
reconstruction is considered. The �tness function in this study is numerically computed
using the boundary integral equations method (BIEM). This is a powerful method but
requires complex calculations, especially in three dimensional domains, see e.g. [3, 6],
therefore the previous study only considers the two dimensional case. We extend the
results proposed in [4] by deriving the MFS approach and including three dimensional
domains.
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Let's consider the investigated problem in more detail. Let D ⊂ IRd, d = 2, 3 be
the double-connected domain, bounded with the two simple (without self intersections)
closed curves (or surfaces, for d = 3) Γ1 and Γ2, that belongs to C2 class. Moreover, the
boundary Γ1 lies in the interior of Γ2. Firstly, let's consider the direct boundary value
problem: �nd a bounded function u that satis�es the Laplace equation

∆u = 0 in D, (1)

and boundary Dirichlet and Neumann conditions

u = 0 on Γ1 and
∂u

∂ν
= g on Γ2, (2)

where g ∈ C1(Γ2) is a given smooth function, ν is the outward unit normal to boundaries
Γℓ, ℓ = 1, 2. The existence and uniqueness of classical or weak solutions of the problem
(1)-(2) are well established, see [16, Chapter 6] or [19, Chapter 4].

Then the inverse problem consists in �nding the form of the interior boundary Γ1 by
the additional measure on the boundary Γ2

u = f on Γ2, (3)

where f ̸= 0 is a given smooth function. Well known that there exists a unique represen-
tation of the Γ1, for more details we refer [16, Chapter 18]. To summarize, the inverse
problem (1)-(3) is to reconstruct the unknown boundary Γ1 from the given Cauchy data
(f, g) on the outer boundary Γ2, which, as is known, is a non-linear ill-posed problem,
since the solution doesn't depend continuously on the data.

The problem has important applications and is widely used in impedance tomography,
nondestructive testing, and electrostatics [7, 17]. Therefore, there are already several
works based, for example, on BIEM and Newton-type iterative regularization, see, [5,
9, 10, 16, 17], which makes it possible to obtain a su�ciently good reconstruction of the
boundary. And also there are already several works where genetic algorithm (GA) is
used, see [7, 20].

We suggest using GP instead. It is a GA, in the case when the individual is represented
in the form of tree. For each tree-individual we de�ne the �tness function that is used
as a selection criteria for transition to the next population. In our case, the �tness is
a least-squares penalty functional, which requires the numerical solution of the mixed
boundary value problem using MFS. Nowadays, GP is a popular optimization technique
that is mainly used to �nd analytical functions, see some researches [22,23] and references
therein.

For the outline of the work, in the section 2 we introduce GP as the main iterative
algorithm for inverse geometric problem. Computation of the �tness function using MFS
is given in the section 3. The con�guration of the algorithm and results of the some
numerical experiments are given in the section 4.

2. Application of GP

GP is a stochastic optimization technique that models the process of the evolution and
manages the population of the tree-individuals. Following [11, 21], the algorithm starts
with a randomly generated population. Next tree-speci�c genetic operators are applied
to selected individuals to create a new o�spring. The next population is created by the r-
model [12] using the o�spring, while bad candidates die. The process continues until the
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stop criteria are met. The stopping criteria include a maximum number of consecutive
iterations tmax without �tness improvement and a chosen accuracy threshold δmax > 0.

We assume that the unknown interior boundary Γ1 is a star-like curve (or star-like
surface for d = 3) and has the following parametrization

Γ1 =

{
r(s)(cos s, sin s), s ∈ [0, 2π], d = 2,

r(θ, ϕ)(sin θ cosϕ, sin θ sinϕ, cos θ), θ ∈ [0, π], ϕ ∈ [0, 2π], d = 3,
(4)

where r : IRd−1 → (0,∞) is a periodic unknown function, representing the radial distance
from the origin. By v = v(r) we denote the individual that represents the radial function
r in a tree form. For the individual we use the following �tness function

J(v(r)) = ∥u(r) − f∥2L2(Γ2)
+ α∥u(r)∥2L2(Γ2)

, (5)

where u(r) is a numerical solution of the boundary value problem (1)-(2) for the interior
curve Γ1, given by the radial function r. The penalty functional (5) is constructed
from the additional measurement (3). Since the inverse problem is ill-posed, we add
a regularization term α∥u(r)∥2L2(Γ2)

, where α > 0 is a regularization parameter. The

calculation of (5) and numerical solution of the (1)-(2), when both boundaries are known,
will be presented in the next section. The best individual is the one in which the �tness
function is smaller.

Let F be a set of prede�ned functions, and T a set of prede�ned terminals, where
Tc ⊂ T represents constant values and Tv ⊂ T represents variables. Tree nodes can be
from both F (non-terminal nodes) and T (terminal nodes) sets.

Initially, a population of popsize > 0 random individuals is generated. To generate
the random tree we use the Full-Grow algorithm, see [18]. To obtain o�spring, we use
the tournament method for the selection of parents. For the tournament selection we
use �tnesses computed by (5). New individuals are then created using crossover and
mutation operators with selected probabilities pcross% and pmut%, applied to parents.
We use the following mutation operators, see [15].

Subtree mutation: replaces a randomly chosen node (except the root) with a newly
generated subtree.

Uplift mutation: selects a subtree and treats it as a new one.

Node replace mutation: randomly replaces a node with another of the same type.

Shrink mutation: replaces a randomly selected subtree with a terminal node.

Terminal mutation: replaces a randomly chosen leaf with a new terminal.

Constant mutation: replaces a random terminal with a new random value from the
range [−1−CJ(v(r)), 1+CJ(v(r))], where C is a prede�ned constant and J(v(r))
the �tness of the current individual.

We use the following crossover operators.

One point crossover: a classic genetic operator that selects random subtrees from each
parent and swaps them.
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Uniform crossover: similar to one-point crossover, but swaps common nodes between
parents based on a coin toss probability. If the node belongs to the common region
and is a function, the entire subtree rooted at that node is inherited.

In addition to these genetic operators, geometric semantic operators, described in
[22,23], are also used.

To �lter out the solutions that do not satisfy the basic conditions, such as closed
boundary, real values, and interposition in exterior of Γ2, the penalty values are set.

At the end of the process, the best chromosome r∗ is selected as the numerical ap-
proximation of the unknown function r and interior boundary Γ1 is given by (4). In the
next section, we focus on computing individual's �tness.

3. The MFS for calculating the fitness function

In this section, we assume that both boundaries Γℓ, ℓ = 1, 2 are known and we focus
on the �tness (5) computation. Firstly, let's consider the numerical solution of the well-
posed mixed boundary value problem (1)-(2). For two-dimensional domains, we assume
that boundary curves have following parametrization

Γℓ = {γℓ(s) = (γℓ1(s), γℓ2(s)), s ∈ [0, 2π]} , ℓ = 1, 2 (6)

and for three-dimensional domains

Γℓ = {γℓ(θ, ϕ) = (γℓ1(θ, ϕ), γℓ2(θ, ϕ), γℓ3(θ, ϕ)), θ ∈ [0, π], ϕ ∈ [0, 2π]} , ℓ = 1, 2. (7)

The solution u is approximated as a linear combination of fundamental solutions:

u(x) ≈ un(x) =

n∑
j=1

λjΦ(x,yj), x ∈ D, (8)

where n ∈ N, λj ∈ IR, j = 1, . . . , N are unknown coe�cients, Φ is a fundamental solution
of the Laplace equation and yj /∈ D̄ are chosen source points. The fundamental solution
has the following representation

Φ(x,y) =


1

2π
ln

1

|x− y|
, x ̸= y, d = 2,

1

4π

1

|x− y|
, x ̸= y, d = 3,

(9)

with |x− y| =

√√√√ d∑
i=1

(xi − yi)2, x, y ∈ IRd. According to [1], the source points chosen

according to the following rule:

yj =

{
2γ̃2j , for even j,

0.5γ̃1j , for odd j,
(10)

where

γ̃ℓj =


γℓ(tj), tj =

2π

n
j, d = 2,

γℓ(θj , ϕj), θj =
π

n− 1
j, ϕj =

2π

n
j, d = 3,
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for ℓ = 1, 2, j = 1, . . . , n. By applying the collocation method and taking into account
boundary conditions (2), we receive the following system of linear equations to determine
the unknown coe�cients λj

n∑
j=1

λjΦ(x1i,yj) = 0, i = 1, . . . , n,

n∑
j=1

λj

∂Φ(x2i,yj)

∂ν(x)
= g(xi), i = 1, . . . , n,

(11)

with collocation points xℓj = γ̃ℓj . The system (11) is over-determined 2n × n and is
solved by the least squares method.

Finally, the �tness function (5) is represented in the discrete form as:

J(v(r)) =

n∑
i=1

 n∑
j=1

λ
(r)
j Φ(x2i,yj)− f(x2i)

2

+ α

n∑
j=1

(
λ
(r)
j

)2

, (12)

where λ
(r)
j are solutions of the (11), for the given r.

4. Algorithm configuration and numerical examples

In this section, we describe the con�guration of the GP algorithm and present the
results of two numerical experiments for exact and noisy data.

The following parameters of the algorithm are used:

� n = 64;
� α = 1e− 10 for exact data, or α = 1e− 5 for noised data;
� popsize = 500;
� in the r-model selection, r is 40% of popsize (see [21]);
� maximum accuracy δmax = 10−3;
� nondecreasing-�tness number of iterations tmax = 100;
� mutation probability pmut = 0.3 and when it is applied, we use the following
mutation operators based on the probabilities:
� subtree mutation 10%;
� uplift mutation 10%;
� node replace mutation 25%;
� shrink mutation 5%;
� terminal mutation 20%;
� constant mutation 50%;
� geometric semantic mutation 40%;

� constant mutation scale Cscale = 0.01;
� crossover probability pcross = 0.7 and when it is applied, we use the following
crossover operators based on the probabilities:
� one point crossover 10%;
� uniform crossover 70%;
� geometric semantic crossover 50%;

� prede�ned functions and terminals:
� Tv = {s} (or Tv = {θ, ϕ}, for d = 3);
� Tc = [−10, ..., 10];
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Fig. 1. Exact (green line) and reconstructed (dashed blue line) curves Γ1

for di�erent noise levels, for examples 1 and 2

� F = {+,−, ∗, protectedDiv, lf},

where protectedDiv(x, y) =


x

y
, y ̸= 0,

1, y = 0,
and lf(x) =

1

1 + e(−x)
.

Having described the con�guration of the GP, let's consider the results of numerical
examples.

4.1. Numerical examples

For all examples we use the same outer boundary Γ2, de�ned by

Γ2 =

{
1.5(cos(s), sin(s)), s ∈ [0, 2π], d = 2,

5(sin θ cosϕ, sin θ sinϕ, cos θ), θ ∈ [0, π], ϕ ∈ [0, 2π], d = 3.

To generate the boundary function f , we solve the mixed boundary value problem (1)-(2)
with g(x) = 2, x ∈ Γ2 and exact boundary Γ1, by the MFS and use double number of
n, to avoid the inverse crime. The noised data fε is generated from the exact boundary
function f by the following rule

fε = f + ε(2η − 1)∥f∥L2
,

where ε is a noise level and η is a random value in a range (0, 1).
Firstly, we consider two-dimensional domains. Exact radial functions, the best �tness

in the case of exact and noised data for two examples are provided in the table 1 and in
the �g. 1 are given exact and reconstructed boundary curves: 1.a)− 1.c) for the example
1, 1.d)− 1.f) for the example 2, for di�erent noise levels.

Next we consider three-dimensional domains. Exact radial functions, the best �tness
in the case of exact and noised data for two examples are provided in the table 2. For
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a exact Γ1 b reconstructed Γ1 for ε = 0%

c reconstructed Γ1 for ε = 2% d reconstructed Γ1 for ε = 5%

Fig. 2. Exact and reconstructed surfaces Γ1 for di�erent noise levels, for example 3

Table 1

Exact radial functions, the best �tness and number of iterations for exact and noisy
data for examples 1 and 2 (d = 2)

r(s), s ∈ [0, 2π] ε Iterations J(v(r∗))

Example 1
√

(0.5 cos s)2 + (0.25 sin s)2
0% 428 0.0002435263

2% 219 0.0031541706

5% 302 0.1199570379

Example 2

√
cos3(2s+ 1) +

5

2 + cos2 s

0% 357 0.0019720625

2% 431 0.0313415499

5% 183 0.5381723422

the �rst three-dimensional example: in the �g. 2.a) the exact surface is presented and
in the �g. 2.b)-2.d) are given reconstructed surfaces, for di�erent noise levels. Similar
results are presented in the �g. 3.a)-3.d), for another radial function, for the example 4.

As can be seen from the results of numerical examples, GP can be used as the al-
gorithm for solving the non-linear ill-posed inverse geometric problem. For exact input
data and noised data (up to 5%) the inner boundary is reconstructed, for higher noise
levels the results are distorted. Provided results con�rm the application of the proposed
method. A combination of GP with some classical regularization algorithm can be further
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Fig. 3. Exact and reconstructed surfaces Γ1 for di�erent noise levels, for example 4.

Table 2

Exact radial functions, the best �tness and number of iterations
for exact and noisy data for examples 3 and 4 (d = 3)

r(θ, ϕ), θ ∈ [0;π], ϕ ∈ [0; 2π] ε Iterations J(v(r∗))

Example 3 2 +
√
(4.25 + 3 cos(3θ))

0% 256 0.1826017664

2% 188 0.2019086523

5% 403 1.3745796331

Example 4 2

√
cos(2θ) +

√
2− sin2(2θ)

0% 294 0.1288771231

2% 382 0.3286076847

5% 236 1.5561072596

explored to obtain a better accuracy.
5. Conclusions

This study presents a novel application of GP with MFS for reconstructing the in-
ner boundary of a double-connected domain from the given Cauchy data on the outer
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boundary. To solve the direct problem, the MFS method is used, which allows us to easily
extend the algorithm to the case of three-dimensional domains, compared to our previous
work [4], where the BIEM method was used (only in two-dimensional domains). In addi-
tion, the application of MFS results in reduced computational costs for two-dimensional
domains compared to BIEM.
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Ïðîïîíó¹ìî âèêîðèñòàííÿ ãåíåòè÷íîãî ïðîãðàìóâàííÿ äëÿ ðåêîíñòðóêöi¨ âíóò-
ðiøíüî¨ ìåæi äâîçâ'ÿçíî¨ îáëàñòi íà îñíîâi âiäîìèõ äàíèõ Êîøi ãàðìîíi÷íî¨ ôóíêöi¨,
çàäàíèõ íà çîâíiøíié ìåæi. Ðîçãëÿíóòà îáåðíåíà çàäà÷à ¹ íåëiíiéíîþ i íåêîðåêòíîþ.
Ãåíåòè÷íå ïðîãðàìóâàííÿ � öå ðîçäië ãåíåòè÷íèõ àëãîðèòìiâ, ó ÿêîìó iíäèâiäè çîáðà-
æåíi ó âèãëÿäi äåðåâ, à ñïåöèôi÷íi äëÿ äåðåâà îïåðàòîðè êðîñîâåðó òà ìóòàöi¨ âèêî-
ðèñòîâóþòü äëÿ ñòâîðåííÿ íàùàäêiâ ïiä ÷àñ åâîëþöiéíîãî ïðîöåñó. Ïðèïóñêà¹ìî, ùî
íåâiäîìà âíóòðiøíÿ ìåæà íàëåæèòü äî êëàñó çiðêîïîäiáíèõ êðèâèõ (àáî ïîâåðõîíü) i
âèçíà÷à¹òüñÿ íåâiäîìîþ ðàäiàëüíîþ ôóíêöi¹þ, ÿêà çîáðàæåíà iíäèâiäîì-äåðåâîì.

Äëÿ îöiíêè ïðèñòîñîâíîñòi êîæíîãî iíäèâiäà ââîäèòüñÿ íåëiíiéíèé ðåãóëÿðèçî-
âàíèé ôóíêöiîíàë. Îá÷èñëåííÿ öüîãî ôóíêöiîíàëà ïîòðåáó¹ ðîçâ'ÿçàííÿ çàäà÷i
Äiðiõëå-Íåéìàíà äëÿ ðiâíÿííÿ Ëàïëàñà. Öÿ êðàéîâà çàäà÷à ÷èñåëüíî ðîçâ'ÿçó¹òüñÿ
çà äîïîìîãîþ ìåòîäó ôóíäàìåíòàëüíèõ ðîçâ'ÿçêiâ � áåçñiòêîâîãî ìåòîäó, â ÿêîìó
íåâiäîìà ôóíêöiÿ àïðîêñèìó¹òüñÿ ÿê ëiíiéíà êîìáiíàöiÿ ôóíäàìåíòàëüíèõ ðîçâ'ÿçêiâ,
ç ïîñëiäîâíèì çàñòîñóâàííÿì ìåòîäó êîëîêàöi¨ äëÿ âèçíà÷åííÿ íåâiäîìèõ êîåôiöi¹íòiâ.
Çàïðîïîíîâàíèé ïiäõiä ìîæíà ëåãêî ïîøèðèòè íà âèùi âèìiðè, ùî ðîáèòü éîãî
çàñòîñîâíèì äî äâîâèìiðíèõ i äî òðèâèìiðíèõ îáëàñòåé. Äëÿ îáîõ âèïàäêiâ ïðîïîíó-
¹ìî ðîçïîäië òî÷îê äæåðåëà òà êîëîêàöi¨.

Åôåêòèâíiñòü i ñòiéêiñòü ìåòîäó ïðîäåìîíñòðîâàíî êiëüêîìà ÷èñåëüíèìè åêñïåðè-
ìåíòàìè ç âèêîðèñòàííÿì òî÷íèõ äàíèõ i äàíèõ ç äîäàâàííÿì âèïàäêîâîãî øóìó.
Îñíîâíà iäåÿ ìåòîäó çàñòîñîâíà äî áóäü-ÿêî¨ çàäà÷i ðåêîíñòðóêöi¨ ìåæi, ç êëàñó
çiðêîïîäiáíèõ ìåæ, ÿêùî âiäîìèé ôóíäàìåíòàëüíèé ðîçâ'ÿçîê ðiâíÿííÿ çàäà÷i.

Êëþ÷îâi ñëîâà: ãåíåòè÷íå ïðîãðàìóâàííÿ, îáåðíåíà ãåîìåòðè÷íà çàäà÷à, ðiâíÿííÿ
Ëàïëàñà, ìåòîä ôóíäàìåíòàëüíèõ ðîçâ'ÿçêiâ, ãåíåòè÷íi àëãîðèòìè.


