Biol. Stud. 2009: 3(1); 79–94 • DOI:

N. O. Sybirna, T. V. Buslyk


In this review modern data on key glycoproteins of erythrocyte membranes structure has been analysed. Lectine characteristics which are widely used for study into their oligosaccharide structures are given below.

Keywords: glycoproteins, erythrocyte membranes, lectins.


Антонюк В.О. Лектини та їх сировинні джерела. Львів: ПП „Кварт”, 2005. 554 с.

Молчанова Т.П. Основы молекулярной организации белков мембраны эритроцитов и их дефекты, приводящие к гемолитическим анемиям. Гематология и трансфузиология, 1989; 7: 32–41.

Николаева Т.Л., Оловникова Н.И. Система Кидд и ее трансфузиологическое значение. Гематология и трансфузиология, 2006; 51 (1): 33–35.

Себякин Ю.Л., Евстигнеева P.M. Гликоконьюгаты, углеводные цепи гликопротеинов: структура, биосинтез и функции в тканях животных. Успехи биол. химии, 1988; 28: 213–225.

Сторожок С.А., Соловьев С.В. Структурные и функциональные особенности цитоске­лета мембраны эритроцита. Вопросы мед. химии, 1992; 2: 14–17.

Хьюз Р. Гликопротеины: Москва: Мир, 1985. 140 с.

Hadengue A.L., Del-Pino M., Simon A., Levenson J. Erythrocyte disagre­gation shear stress, sialic acid, and cellaging in humans. Hypertension, 1998; 32: 324–330.

Aminoff D. The role sialoglycoconjugates in the ageing and sequestration of red cells from circulation. Blood Cells, 1988; 14: 229–257.

Anderson R.A., Lovrien R.F. Glycophorin is linked by band 4.1 protein to the human erythrocyte membrane skeleton. Nature, 1984; 307 (16): 655–658.

Anderson R.A., Marchesі V.T. Regulation of the association of membrane skeletal protein 4.1 with glycophorin by polyphosphoinositide. Nature, 1985; 318 (21): 295–298.

Anstee D.J., Mawby W.J., Parsons S.F., Tanner M.J.A. Abnormal blood group Ss-active sialoglycoproteins in the membrane of Miltenberger class III, IV and V human erythrocytes. Biochem. J, 1979; 183: 193–203.

Anstee D.J., Hemming N.J., Tanner MJ. Functional factors in the red cell membrane: interactions between the membrane and its underlying skeleton. Immunol. Invest, 1995; 24 (1–2): 187–198.

Anstee D.J.,Cartron J.P. Toward an understanding of the red cell surface. Red cell immunohaematology towards its second century. ESTM. Tel Aviv, 1999: 12–44.

Arge P., Cartron J.P. Molecular biology of Rh antigens. Blood, 1991; 78: 551–563.

Bailly P., Cartron J.P., Wang D. et al. Herediatry stomatocytosis and Rh deficient patients exhibit distinct molecular defects. Blood, 1992; 50: 1624–1626.

Baranowski Т., Lisowska E., Morawiecki A. et al. Studies on blood group antigens M and N. III. Chemical composition of purified antigens. Arch. Immunol. Ther. Exp, 1959; 7: 15–27.

Beppu M., Hayashi Т., Hasegawa Т., Kikugawa K. Recognition of sialosaccharide chains of glycophorin on damaged erythrocytes by macrophage scavenger receptors. Biochim. Biophys. Acta, 1995; 1268 (1): 9–19.

Blanchard D., Dahr W., Hummel M. et al. Glycophorin В and С from human erythrocyte membranes. Purification and sequence analysis. J. Biol. Chem, 1987; 262 (12): 5808–5811.

Blumenfeld O.O., Huang C.H. Molecular genetics of the glycophoringene family, the antigens for MNSs blood groups: multiple generearrangements and modulation of splice site usage result in extensive diversification. Hum. Mutat, 1995; 6 (3): 199–209.

Bruce L.J., Groves J.D., Okubo Y., Thilaganathan В., Tanner MJ. Altered band 3 structure and function in glycophorin A- and B-deficient (MkMk) red blood cells. Blood, 1994; 84 (3): 916–922.

Bruce L.J., Pan R.-j., Cope D.L. et al. Altered Structure and Anion Transport Properties of Band 3 (AE1, SLC4A1) in Human Red Cells Lacking Glycophorin A. J. Biol. Chem, 2004; 279 (4): 2414–2420.

Caldwell A.B. Proteins of the turkey erythrocyte membrane. Biochemistry, 1976; 15, (12): 2711–2718.

Carton J.P., Baily P., Le van Kim C. et al. Insights into the structure and function of membrane polypeptides carrying blood group antigens. Vox Sanguinis, 1998; 74: 29–64.

Cartron J.P., Rahuel С. Human erythrocyte glycophorins: protein and gene structure analyses. Trans. Med. Rev, 1992; 6 (2): 63–92.

Chasis J.A., Jensen R., Mohandas N. Erythrocyte membrane rigidity induced by glycophorin A-ligand interaction. Evidence for a ligand- induced association between glycophorin A and skeletal proteins. J. Clin. Invest,1995; 75: 1919–1926.

Che A., Cherry RJ. Loss of rotational mobility of band 3 proteins in human erythrocyte membranes induced by antibodies to glycophorin A. Biophys. J, 1995. 68 (5): 1881–1887.

Claster S., White E., Woolworth V., Quntanilha A. Degradation of erythrocyte glycophorin results in increased membrane bound haemoglobin. Arch. Biochem. and Biophis, 1991; 285 (1): 147–152.

Colin Y. Gerbich blood groups and minor glycophorins of human erythrocytes. Transfus. Clin. Biol, 1995; 2 (4): 259–268.

Colin Y., Rahuel C., London J. Isolation of cDNA clones for human erythrocyte glycophorin С. J. Biol. Chem, 1986; 261: 229–233.

Dahr W., Beyreuther K., Kordowicz M. N-terminal amino acid sequence of sialoglycoprotein D (glycophorin C) from human erythrocyte membrane. Eur. J. Biochem, 1982; 125: 57–62.

Dahr W., Uhlenbruck G. Structural properties of the human M and N blood group system antigen receptor sites. Hoppe-Seyler’s Z. Physiol.Chem, 1978; 359: 835–843.

DeLuca G.M., Donnell M.E., Carrigan D.J., Blackall D.P. Plasmodium falciparum merozoite adhesion is mediated by sialic acid. Biochem. Biophys. Res. Commun, 1996; 225 (3): 726–732.

Dill K., Hu S., Berman E., Pavia A., Lacombe J.M. One and two-dimensional NMR studies of the N-terminal portion of glycophorin A at 11.7 tesla. J. Protein Chem, 1990; 9 (2): 129–136.

Dolan S.A., Proctor J.L., Ailing D.W. et al. Glycophorin В as an EBA-175 independent Plasmodium falciparum receptor of human erythrocytes. Моl. Biochem. Parasitol, 1994; 64: 55–63.

Dzandu J.K., Dehmercy E. Phosphorylation of glycophorin A in membranes of intact human erythrocytes. Biochem. and Biophis. Res. Commun, 1985; 127 (3): 878–884.

Fronlich O., Macey R.I., Edwards Moulds J. et al. Urea transport deficiency in Jk(a b)erythrocytes. Am. J. Physiol, 1991; 260: 778–783.

Fukuda M., Lauffenburger M., Sasaki H. et al. Structures of novel sialilated O-linked oligosaccharides isolated from human erythrocyte glycophorins. J. Biol. Chem, 1987; 262 (25): 11952–11957.

Fukuda M., Osawa T. Isolation and characterization of a glycoprotein from human group О erythrocyte membrane. J. Biol. Chem., 1973; 2248 (14): 5100–5105.

Furthmayr H., Tomita M., Marchesi V.T. Fractionation of the major sialoglycopeptides of the human red cell membrane. Biochem, Biophys. Res. Commun, 1975; 65: 113–121.

Gahmberg C.G., Hermonen J. The human red cell sialoglycoprotein, glycophorin A: biosynthesis, glycosylation and interaction with external ligands. Indian J. of Biochem. and Biophis, 1988; 25 (1–2): 133–136.

Gahmberg C.G., Myllyla G., Leikola J. et al. Absence of the major sialoglycoprotein in membrane of human En(a-) erythrocytes and increased glycosylation of band 3. J. Biol. Chem, 1976; 251 (19): 6108–61016.

Gahmberg C.G., Tolvanen M. Why mammalian cell surface proteins are glycoproteins. TIBS, 1996; 21: 308–311.

Hamaguchi H., Cleve H. Solubilization and comparative analysis of mammalian erythrocyte membrane glycoproteins. Biochem. and Biophis. Res. Commun, 1972; 47 (2): 459–464.

Hassoun H., Hanada Т., Lutchman M. et al. Complete deficiency of glycophorin A in red blood cells from mice with targeted inactivation of the band З (АЕ1) gene. Blood, 1998. 91 (6): 2146–2151.

Hemming N.J., Anstee D.J., Staricoff M.A. et al. Identification of the membrane attachment sites for protein 4.1 in the human erythrocyte. J. Biol. Chem, 1995; 270 (10): 5360–5366.

High S., Tannet M.J.A. Human erythrocyte membrane sialoglycoprotein b. The cDNA sequence suggest the absence of a cleaved N-terminal signal sequence. Biochem. J, 1987; 243: 277–280.

Hyland C.A., Cherif Zahar B., Cowley N. et al. A novel single missense mutation identified along the RH50 gene in a composite heterozygote Rhnull blood donor of the regulator type. Blood, 1998; 91: 1458 1463.

Huang C-H., Blumenfeld O.O. Molecular basis of human major blood group antigens. Blood Cell Biochemistry, Plenum Press, 1995; 6: 153–188.

Huang C-H., Reid M.E., Xie S.S., Blumenfeld O.O. Human red blood ell Wright antigens: a genetic and evolutionary perspective on glycophorin A-band 3 interaction. Blood, 1996; 87 (9): 3942–3947.

Irimura T. Tsuji t, Tagami S., Yamamoto K., Osawa T. Structure of complex type sugar chain of human glycophorin A. Biochemistry, 1981; 20: 560–566.

Knowles D.W., Chasis J.A., Evans E.A., Mohandas N. Cooperative action between band 3 and glycophorin A in human erythrocytes: immobilization of band 3 induced by antibodies to glycophorin A. Biophys. J, 1994; 66 (5): 1726–1732.

Krotkiewski H. The structure of glycophorins of animal erythrocytes. Glycoconjugate J, 1988; 5: P.35–48.

Kudo S., Fukuda M. Identification of a novel human glycophorin, glycophorin E, by isolation of genomic clones and complementary DNA clones utilizing polymerase chain reaction.J. Biol. Chem, 1990; 265: 1102–1110.

Landsteiner K., Levine P. A new agglutinable factor differentiating individual human bloods. Proc. Soc. Exp. Biol, 1927; 24: 600–602.

Le-Van-Kim C., Filler V., Cartron J.P., Colin Y. Glycophorins С and D are generated by the use of alternative translation initiation sites. Blood, 1996; 88 (6): 2364–2365.

Lisowska E. The role glycosylation in protein antigenic properties: a rewier. Cell. Mol. Life Sci, 2002; 59: 445–455.

Low P.S. Structure and function of the cytoplasmic domain of band 3: center of erythrocyte membrane-peripheral protein ineractions. Biochemica and Biophisica Acta, 1986; 846: 145–167.

Lu Y.Q., Liu I.F., Huang C.N. et al. Elliptocytosis associated with an abnormal a glycophorin. Ann. Haematol, 1992; 35 (38): 106–110.

Marchesi V.T., Tillack T.W., Jackson R.L. et al. Chemical characterization and surface orientation of the major glycoprotein of the human erythrocyte membrane. Proc. Natl. Sci. USA, 1972; 69: 1445–1449.

Neil D.A., Reid M.E. The Rh blood group system: a review. Blood, 2000; 15 (2): 375–387.

Palek J., Jarolim P. Clinical expression and laboratory detection of red blood cell membrane protein mutations. Semin.Hematol, 1993; 30: 249–283.

Parsons S.F., Jones J., Anstee D.J. et al. A novel form of congenial dyserythropoietic anemia associated with deficiency of erythroid CD44 and a unique blood group henotype. Blood, 1994; 83: 680–688.

Paul R.W., Lee P.W.K. Glycophorin is the reovirus receptor on human erythrocytes. Virology, 1987; 159 (1): 94–101.

Rearden A., Magnet A., Kudo S., Fukuda M. Glycophorin В and glycophorin E genes arose from the glycophorin A ancestral gene via two duplications during primate evolution. J. Biol. Chem, 1993; 268 (3): 2260–2267.

Redman C.M., Marsh W.L. The Kell blood group system and the McLeod phenotype. Semin.Hematol.1993; 30: 209–218.

Schwartz M.A., Brown E.J., Fazeli B. A 50 kDa integrin associated protein is required for integrin regulated calcium entry in endothelial cells. J. Biol. Chem, 1993; 268: 19931–19934.

Tell M.J. Lutheran antigens, lutheran regulatory genes and lutheran regulatory genes target. Blood Cell Biochemistry, 1995; 6: 281–297.

Tomita M., Furthmayr H., Marchesl V.T. Primary structure of human erythrocyte glycophorin A. Isolation and characterization of peptides andcomplete amino acid sequence. Biochemistry, 1978; 17: 4756–4769.

Wu A.M. Carbohydrate structuralunits in glycoproteins and polysaccarides as important ligands for Gal and GalNAc reactive lectins. J. Biomed. Sci, 2003; 10: 676–688.



  • There are currently no refbacks.

Copyright (c) 2017 Studia biologica