

УДК 612.3:591.413.2

КОНЦЕПЦІЯ Са²⁺-ФУНКЦІОНАЛЬНИХ ОДИНИЦЬ У ЗАСТОСУВАННІ ДО СЕКРЕТОРНИХ КЛІТИН СЛИННИХ ЗАЛОЗ ЛИЧИНКИ CHIRONOMUS PLUMOSUS

В. В. Манько

Львівський національний університет імені Івана Франка вул. Грушевського, 4, Львів 79005, Україна e-mail: vvmanko@franko.lviv.ua

Виходячи з аналізу експериментальних даних, отриманих у ході дослідження Са²⁺-транспортувальних систем секреторних клітин слинних залоз личинки *Chironomus plumosus*, запропоновано концепцію Са²⁺-функціональних одиниць. Згідно з нею, Са²⁺-функціональна одиниця – це абстрактна модель, яка складається зі системи активного і системи пасивного транспортування Ca²⁺ та мембрани, що забезпечує компартменталізацію цих катіонів. Са²⁺-функціональні одиниці є І (системи активного і пасивного транспортування належать одній мембрані) і ІІ типу (системи активного і пасивного транспортування належать різним мембранам однієї клітини). В обох випадках Ca2+-функціональна одиниця є не статичною структурою, а динамічною системою, яка забезпечує підтримання відповідної [Са²⁺] у цитозолі та може перебувати у трьох станах. Стан спокою характеризується наявністю динамічної рівноваги між вхідним і вихідним потоками Ca²⁺. У стані активності вхідний (відносно цитозолю) потік Ca²⁺ переважає над вихідним, а у стані інактивації – навпаки, переважає вихідний потік. Чинниками, які за рахунок прямого позитивного чи зворотного негативного зв'язку забезпечують перехід Ca²⁺-транспортувальних систем між різними станами, слугують катіони Ca2+, оскільки активність більшості Са²⁺-транспортувальних систем залежить від їхньої цитозольної концентрації.

Ендоплазматична Ca²⁺-функціональна одиниця досліджуваних секреторних клітин об'єднує Ca²⁺-помпу ендоплазматичного ретикулуму, ІФ₃-чутливі та ріанодинчутливі Ca²⁺-канали. Як наслідок, 1) додавання ріанодину до середовища інкубування залоз у субмікромолярній концентрації спричиняє збільшення вмісту Ca²⁺ у їхній тканині; 2) стимуляція ІФ₃-чутливих Ca²⁺-каналів запобігає одночасній стимуляції ріанодинчутлвих Ca²⁺-каналів чи навпаки; 3) гепарин спричиняє збільшення вмісту Ca²⁺ у тканині залоз, оброблених сапоніном, але лише за наявності у середовищі ріанодину в активуючій ріанодинчутливі Ca²⁺-канали концентрації.

Са²⁺-функціональну одиницю плазматичної мембрани формують потенціалкеровані Са²⁺-канали, Na⁺-Ca²⁺-обмінник і Са²⁺-помпа плазматичної мембрани.

Це припущення базується на тому факті, що між потенціалкерованими Ca²⁺каналами та Na⁺–Ca²⁺-обмінником, з одного боку, та Na⁺–Ca²⁺-обмінником і Ca²⁺помпою плазматичної мембрани, з другого, існують тісні функціональні зв'язки навіть за умов внутрішньоклітинної перфузії. До певної міри стан цієї Ca²⁺функціональної одиниці визначається залежністю Na⁺–Ca²⁺-обміну від активності Na⁺–K⁺-помпи. Її характерною ознакою є також залежність від рівня мембранного потенціалу, а не лише від цитозольної [Ca²⁺].

Певні Са²⁺-транспортувальні системи можуть входити до кількох Са²⁺функціональних одиниць. Ендоплазматично-мітохондріальна Са²⁺-функціональна одиниця складається з каналів вивільнення Са²⁺ ендоплазматичного ретикулуму та Са²⁺-уніпортера мітохондрій, оскільки дія на вміст Са²⁺ у тканині слинних залоз ріанодину та рутенію червоного, а також ІФ₃ та рутенію червоного за умов поєднання їх у середовищі інкубації є неадитивною.

Постульовану концепцію можна розглядати як робочу гіпотезу для з'ясування ролі, яку відіграє узгодженість функціонування різних Са²⁺-транспортувальних систем у Са²⁺-сигналізації і не лише у секреторних клітинах екзокринних залоз.

Ключові слова: Са²⁺-функціональні одиниці, Na⁺–Ca²⁺-обмінник, Ca²⁺-помпа, потенціалкеровані Ca²⁺-канали, ІФ₃-чутливі Ca²⁺-канали, ріанодинчутливі Ca²⁺-канали, Ca²⁺-уніпортер, секреторні клітини, концепція.

Ca²⁺-FUNCTIONAL UNITS CONCEPTION CONCERNING TO SECRETORY CELL OF *CHIRONOMUS PLUMOSUS* LARVAE SALIVARY GLAND

V. V. Manko

Ivan Franko National University of Lviv 4, Hrushevskyi St., Lviv 79005, Ukraine

On the basis of analysis of experimental data received during investigation of Ca^{2+} -transporting systems of secretory cells of salivary glands of *Chironomus plumosus* larvae, a conception of Ca^{2+} -functional units has been proposed. According to this conception, Ca^{2+} -functional unit is an abstract model which consists of with active and passive Ca^{2+} -transporting systems and cellular membrane providing Ca^{2+} cations compartmentalisation. There are type I (active and passive transporting systems located in the same membrane) and type II (active and passive transporting systems located in different membranes of the same cell) Ca^{2+} -functional units. In both cases, Ca^{2+} -functional unit is not a static structure, but a dynamic one, that ensure proper [Ca^{2+}] support in cytosol. It may be in three states: 1) resting state the is characterised by a dynamic balance between the influx and efflux of Ca^{2+} flow; 2) active state of Ca^{2+} efflux prevailing over its influx). Factors which due to direct positive or negative feedback are supporting Ca^{2+} -transporting systems transition

between different states, are Ca²⁺ cations, since the activity of majority of Ca²⁺-transporting systems depends on cytosol concentration of Ca²⁺.

Endoplasmic Ca²⁺-functional unit of investigated secretory cells combines Ca²⁺pump of endoplasmic reticulum, InsP₃Rs and RyRs. As a result of 1) ryanodine adding to incubatory medium of glands in submicromolar concentration causes Ca²⁺ content increasing in their tissue; 2) InsP₃Rs stimulation prevents simultaneous RyRs stimulation or contrariwise; 3) heparin causes Ca²⁺ content increasing in gland tissue, treated with saponin, but only in ryanodine presence in medium in concentration activating RyRs.

Ca²⁺-functional unit of plasma mambrane are formed by voltage-operated Ca²⁺channels, Na⁺-Ca²⁺ exchanger and Ca²⁺-pump of plasma membrane. That assumption is based on the fact that between the voltage-operated Ca²⁺-channel and Na⁺-Ca²⁺ exchanger, from one side, and Na⁺-Ca²⁺ exchanger and Ca²⁺-pump of plasma membrane, from the other side, tight functional links are existing even in case of intracellular perfusion. To some extent, condition of this Ca²⁺-functional unit are defined by Na⁺-Ca²⁺ exchange dependence on Na⁺-K⁺ pump activity. Its peculiar feature is also a dependence on membrane potential level, not only on cytosolic [Ca²⁺].

Distinct Ca²⁺-transporting systems may be a part of several Ca²⁺-functional units. Endoplasmic-mitochondrial Ca²⁺-functional unit consists of Ca²⁺-release channels of endoplasmic reticulum and mitochondrial Ca²⁺-uniporter, so far as influence of ryanodine and ruthenium red, and also InsP₃ and ruthenium red under the condition of their combination in incubation medium with Ca²⁺ content of salivary glands tissue is not additive.

Postulated conception could be positioned as a working hypothesis for identification of the role of different Ca²⁺-transporting systems in coordination of Ca²⁺signalling in different cells other than secretory cells of exocrine glands.

Key words: Ca²⁺-functional unit, Na⁺-Ca²⁺ exchanger, Ca²⁺-pump, voltageoperated Ca²⁺-channels, InsP₃R, RyR, Ca²⁺-uniporter, secretory cells.

вступ

Використовуючи різні методичні підходи у плазматичній мембрані секреторних клітин слинних залоз личинки *Chironomus plumosus*, ідентифіковано потенціалкеровані Ca²⁺-канали [4, 8, 18], Na⁺–Ca²⁺-обмінник [6, 12, 17] і Ca²⁺-помпу плазматичної мембрани [9, 16]. Доведено також наявність Ca²⁺-помпи ендоплазматичного ретикулуму [13, 16], Ca²⁺-уніпортера мітохондрій [20], ІФ₃-чутливих та ріанодинчутливих Ca²⁺-каналів [1, 11, 13]. Роль первинного агоніста у слинних залозах комара-дергуна може відігравати АТФ, оскільки на плазматичній мембрані досліджуваних секреторних клітин ідентифіковані Р2Ү- і Р2Х-рецептори [14].

У ході дослідження властивостей цих Ca²⁺-транспортувальних систем з'ясувалося, що деякі їхні властивості неможливо пояснити без урахування тих складних взаємовідносин, які існують між ними. Так, встановлено, що амплітуда потенціалкерованого Ca²⁺-струму залежить від функціональної активності Na⁺– Ca²⁺-обмінника плазматичної мембрани [5]. У свою чергу, амплітуда вхідного струму Na⁺–Ca²⁺-обміну збільшується внаслідок додавання до внутрішньоклітинного розчину блокатора Ca²⁺-помпи еозину Y [15]. Існують також складні

взаємовідносини між каналами вивільнення Ca²⁺ із внутрішньоклітинних депо – ІФ₃-чутливими та ріанодинчутливими [1], а також між каналами вивільнення Ca²⁺ та Ca²⁺-уніпортером мітохондрій [2]. Це наштовхнуло нас на думку про необхідність пошуку загальних закономірностей між встановленими фактами.

МАТЕРІАЛИ І МЕТОДИ ДОСЛІДЖЕНЬ

У роботі проаналізовано експериментальні дані, отримані раніше з метою ідентифікації та встановлення властивостей ріанодинчутливих та ІФ₃-чутливих Са²⁺-каналів ендоплазматичного ретикулуму [1, 13], потенціалкерованих Са²⁺-каналів [5, 7], Na⁺–Ca²⁺-обмінника [15, 19] плазматичної мембрани та Са²⁺-уніпортера мітохондрій [2] секреторних клітин слинних залоз личинки *Chironomus plumosus*.

Властивості ріанодинчутливих і ІФ₃-чутливих Са²⁺-каналів, а також Са²⁺-уніпортера мітохондрій, досліджували, аналізуючи зміни вмісту Са²⁺ у тканині залоз після їхнього інкубування з відповідним активатором чи блокатором – ріанодином (5 або 500 нмоль/л), ІФ₃ (10 мкмоль/л), гепарином (500 мкг/мл) чи рутенієм червоним (10 мкмоль/л) [13, 20].

Струм через потенціалкеровані Са²⁺-канали досліджували з використанням методу фіксації потенціалу за умов внутрішньоклітинної перфузії [4]. Застосовуючи цей метод реєстрували і струм Na⁺–Ca²⁺-обміну – у відповідь на раптове гіперполяризувальне зміщення мембранного потенціалу плазматичної мембрани (детальніше див. [12]). У цих дослідженнях використовували блокатор Са²⁺-помп еозин Y (10 мкмоль/л) і Na⁺–K⁺-помпи уабаїн (25 мкмоль/л), а також АТФ (1 ммоль/л) і відновлений глутатіон (GSH, 1 ммоль/л). Достовірність різниці між двома статистичними групами визначали за Стьюдентом [3]. Інші умови проведення експериментальних досліджень наведені у підписах до рисунків.

РЕЗУЛЬТАТИ ДОСЛІДЖЕННЯ ТА ЇХНЄ ОБГОВОРЕННЯ

Концепція Са²⁺-функціональних одиниць

У тих випадках, коли система є досить складною, її треба, для полегшення опису процесів у ній, спростити до "ідеальної системи". Якщо йдеться про підтримання цитоплазматичної [Ca²⁺], "ідеальною системою" може бути **Са²⁺-функціональна одиниця**.

У найпростішому випадку ця абстрактна модель складається з одного Ca²⁺каналу (системи пасивного транспортування), Ca²⁺-помпи (системи активного транспортування) та мембрани, що забезпечує компартменталізацію катіонів Ca²⁺.

Власне будь-яку ділянку клітини цілком доречно абстрагувати до такої Са²⁺функціональної одиниці. За структурою їх можна поділити на два типи. *Са²⁺функціональну одиницю І типу* формують системи активного і пасивного транспортування однієї мембрани, наприклад, Са²⁺-канали і Са²⁺-помпа ендоплазматичного ретикулуму або Са²⁺-канали і Са²⁺-помпа плазматичної мембрани.

До складу Ca²⁺-функціональної одиниці II типу входять система активного і система пасивного транспортування, які належать різним мембранам однієї клітини, наприклад, Ca²⁺-канали плазматичної мембрани і Ca²⁺-помпа ендоплазматичного ретикулуму. Принципової відмінності у властивостях між Ca²⁺-функціональними одиницями двох типів немає (або нам про це нічого невідомо). Тому така класифікація є досить-таки умовною і необхідною для кращого розуміння цього поняття.

Набагато важливіше звернути увагу на те, що Ca²⁺-функціональна одиниця є не статичним утвором (структурою), а динамічною системою, яка забезпечує підтримання відповідної [Ca²⁺] у цитозолі та може перебувати у трьох станах – **спокою, активності й інактивації**. Більше того, збільшення цитозольної [Ca²⁺], яке спостерігається при переході Ca²⁺-функціональної одиниці зі стану спокою у стан активності, є обмежене в просторі та швидкоплинне і називається локальним Ca²⁺-спайком, пафом чи спарком.

У свою чергу, чинниками, які за рахунок прямого позитивного чи зворотного негативного зв'язку забезпечують перехід Ca²⁺-транспортувальних систем між різними станами, в основному слугують катіони Ca²⁺, оскільки активність більшості Ca²⁺-транспортувальних систем залежить від їхньої цитозольної концентрації.

Рівень Са²⁺ у цитозолі є результатом двох протилежно спрямованих потоків Са²⁺. **Вхідний потік** (відносно цитозолю, *P*_{in}) забезпечує надходження позаклітинного Са²⁺ через плазматичну мембрану чи його вивільнення з внутрішньоклітинних депо і реалізується функціонуванням пасивних Са²⁺-транспортувальних систем. Протилежно спрямований **вихідний потік** (*P*_{out}) забезпечує зменшення цитозольної [Са²⁺] за рахунок його активного виведення у позаклітинне середовище і/чи у внутрішньоклітинні депо.

У **стані спокою** (**фізіологічного спокою**) між цими потоками існує динамічна рівновага:

$$P_{in} = P_{out},\tag{1}$$

але **завжди**, на чому слід особливо наголосити, і $P_{in} > 0$, і $P_{out} > 0$. Тому Ca²⁺функціональна одиниця є справді динамічною системою.

Дія гормону чи медіатора спричиняє збільшення вхідного потоку, рівновага порушується і Ca²⁺-функціональна одиниця переходить у **стан активності**:

$$P_{in} > P_{out}.$$
 (2)

Тим не менше, такий стан є короткотривалим (нестабільним), оскільки локальне зростання цитозольної [Ca²⁺] спричиняє збільшення вихідного потоку. Не настає також і рівновага на новому, енергетично вищому рівні, оскільки паралельно до активування цитозольним Ca²⁺ систем вихідного потоку відбувається пригнічення ним, за рахунок зворотних негативних зв'язків, систем вхідного потоку – настає **стан інактивації**:

$$P_{in} < P_{out}.$$
 (3)

Наслідком такого функціонування системи є зниження цитозольної [Ca²⁺] до стану фізіологічного спокою, коли ці катіони не можуть слугувати чинниками ні прямого позитивного, ні зворотного негативного зв'язку. Система повертається до стану динамічної рівноваги, описаної рівнянням (1).

У деяких випадках стан Ca²⁺-функціональної одиниці може визначатися не лише рівнем цитозольного Ca²⁺, але і значенням мембранного потенціалу. Зокрема, тоді, коли до складу Ca²⁺-функціональних одиниць входять Ca²⁺-траспортувальні системи плазматичної мембрани, які мають виражену потенціалозалежність – потенціалкеровані Ca²⁺-канали чи Na⁺–Ca²⁺-обмінник. За дії будь-якого стимулятора Ca²⁺-функціональна одиниця відповідає як єдине ціле. Функціонування Ca²⁺-транспортувальної системи не у складі Ca²⁺-функціональної одиниці є неефективним, тому що за таких умов не може бути забезпечена дискретність Ca²⁺-сигналу. Надходження Ca²⁺ у цитозоль чи внутрішньоклітинними каналами, чи каналами плазматичної мембрани буде супроводжуватися лише статичним збільшенням його концентрації. Аналогічно, збільшення активності Ca²⁺-помпи чи Na⁺–Ca²⁺-обмінника спричинить лише зниження цитозольної [Ca²⁺] до того рівня, наскільки дозволить це зробити їхня спорідненість до Ca²⁺. І лише за узгодженого функціонування систем пасивного й активного транспортування, об'єднаних у Ca²⁺-функціональну одиницю, можливим є генерування Ca²⁺-сигналу.

Ендоплазматична Ca²⁺-функціональна одиниця

У секреторних клітинах слинних залоз личинки комара-дергуна ІФ₃-чутливі та ріанодинчутливі Са²⁺-канали разом з Са²⁺-помпою мембрани ендоплазматичного ретикулуму формують **ендоплазматичну Са²⁺-функціональну одиницю**, яка за структурою належить до І типу (рис. 1). За відсутності агоніста спонтанне вивільнення Са²⁺ ріанодинчутливими каналами у цитозоль (*Са²⁺-індуковане вивільнення Са²⁺*) компенсується його транспортуванням помпою у люмен ендоплазматичного ретикулуму, тому фізіологічна відповідь не виникає. Встановлюється певна *динамічна рівновага* між двома **постійними** потоками Са²⁺.

Звичайно, такі принципи організації функціонування Са²⁺-транспортувальних систем передбачають витрати великої кількості енергії. Але власне завдяки цьому локальне збільшення цитозольної [Са²⁺] підтримує чутливість Са²⁺-функціональної одиниці до ІФ₃ (і, відповідно, цілої клітини до агоніста) на досить високому рівні (рис. 1, *A*). Як наслідок, навіть незначне зростання ІФ₃ у цитозолі спричиняє зміщення рівноваги у бік вивільнення Са²⁺ із депо (рис. 1, *Б*).

Однак цей процес обмежений у часі, оскільки високі [Ca²⁺] пригнічують обидва типи каналів (рис. 1, *B*), запобігаючи надмірному спустошенню депо.

Наше припущення співзвучне з гіпотезою Канцели та співавт. [26], якою постулюється наявність **осциляторної одиниці**, що складається з ріанодинчутливого та ІФ₃-чутливого Са²⁺-каналів. Власне функціонування такої осциляторної одиниці забезпечує генерацію, на думку авторів, Са²⁺-хвиль у цитоплазмі.

Гіпотеза про об'єднання Ca²⁺-транспортувальних систем певної ділянки цитоплазми у Ca²⁺-функціональну одиницю дає змогу глибше зрозуміти механізми взаємозв'язку між цими системами. Крім того, поняття *Ca²⁺-функціональна одиниця* є значно ширшим, ніж *осциляторна одиниця*, оскільки його можна застосувати до набору Ca²⁺-транспортувальних систем будь-якої ділянки цитоплазми, у тому числі і тих, діяльність яких не пов'язана з генерацією Ca²⁺-хвиль (осциляціями Ca²⁺).

Виходячи із наведених вище принципів організації ендоплазматичної Ca²⁺функціональної одиниці, можна пояснити раніше отримані нами результати, трактування яких раніше викликало деякі труднощі.

По-перше, ріанодин у високих концентраціях (500 нмоль/л; рис. 2) збільшує, діючи у стані спокою (рис. 1, *A*), вміст Ca²⁺ у тканині залоз унаслідок зміщення рівноваги в бік транспортування Ca²⁺ у люмен ендоплазматичного ретикулуму.

По-друге, додавання ріанодину до середовища інкубації у низькій концентрації (5 нмоль/л; рис. 3) спричиняє вивільнення депонованого Ca²⁺. Якщо викид

Рис. 1. Цикл активності ендоплазматичної Са²⁺-функціональної одиниці секреторних клітин слинних залоз личинки *Chironomus plumosus*:

А – стан спокою Са²⁺-функціональної одиниці, за якого підтримується висока чутливість до ІФ₃; Б – стан активності Са²⁺-функціональної одиниці, який досягається завдяки дії агоніста на ІФ₃-чутливі Са²⁺-канали і тригерній активації ріанодинчутливих Са²⁺-каналів; В – стан інактивації Са²⁺-функціональної одиниці, протягом якого рівновага зміщується в бік депонування Са²⁺ і система переходить у стан спокою;

ВуR – ріанодинчутливий Са²⁺-канал, InsP₃R – ІФ₃-чутливий Са²⁺-канал, SERCA – Са²⁺-помпа ендоплазматичного ретикулуму; $[Ca^{2+}]_{small}$, $[Ca^{2+}]_{middle}$ і $[Ca^{2+}]_{high}$ – низька, середня і висока цитозольна концентрація катіонів Са²⁺; InsP₃ – ІФ₃

Fig. 1. Activity cycle of endoplasmic Ca²⁺-functional unit of *Chironomus plumosus* larvae secretory cells of salivary glands:
A - resting state of Ca²⁺-functional unit, in which high sensitivity to InsP₃ is supporting; *E* - activated state of Ca²⁺-functional unit is achieved due to agonist effect to InsP₃Rs and trigger activation RyRs; *B* - *inactivated state* of Ca²⁺-functional unit, balance displacement in the side of Ca²⁺ deposition and as a result system pass to a resting state

Са²⁺ внаслідок цього не досягає певного критичного рівня, то це супроводжується незначною активацією ІФ₃-чутливих Са²⁺-каналів завдяки підвищенню чутливості системи до ендогенного ІФ₃, який, очевидно, продовжує спонтанно утворюватися за умов досліду. Як наслідок, за наявності ріанодину у середовищі інкубації гепарин, пригнічуючи ІФ₃-чутливі Са²⁺-канали, спричиняє збільшення вмісту Са²⁺ у тканині залоз (рис. 3, *Б*). У контрольних умовах (без ріанодину) ефект гепарину ми зареєструвати не змогли [13].

Рис. 2. Зміна вмісту Са²⁺ у тканині слинних залоз, оброблених сапоніном, під впливом ріанодину у концентрації 500 нмоль/л [1, 13]:

[Na⁺] = 15,3 ммоль/л, [K⁺] = 129,94 ммоль/л; * – різниця порівняно з контролем достовірна з *P* < 0,05, n = 7

Fig. 2. Ca²⁺-content changes in tissue of salivary glands, treated with saponin, under the influence of ryanodin in concentration 500 nmol/l [1, 13]:

[Na⁺] = 15.3 mmol/l, [K⁺] = 129,94 mmol/l; * – difference is significant in comparison to control with P < 0.05; n = 7

- Рис. 3. Залежність функціонування ІФ₃-чутливих Са²⁺-каналів від стану ріанодинчутливих Са²⁺-каналів [1]: зміни вмісту Са²⁺ у тканині залоз, оброблених сапоніном, під впливом ІФ₃ (*A*) та гепарину (*Б*) за відсутності і наявності ріанодину у середовищі інкубації; залози інкубували у номінально безкальцієвому середовищі; [Na⁺] = 15,3 ммоль/л, [K⁺] = 129,94 ммоль/л; [ІФ₃] = 10 мкмоль/л, [гепарин] = 500 мкг/мл, [ріанодин] = 5 нмоль/л; * різниця порівняно з контролем достовірна з *P* < 0,05, ** з *P* < 0,01, ### різниця порівняно з гепаринвмісним достовірна з *P* < 0,001; n = 6
- **Fig. 3.** InsP₃R functioning dependence on RyRs state [1]: Ca²⁺-content changes in tissue of salivary glands, treated with saponin, under the influence of InsP₃ (*A*) and heparin (*b*) at absence and presence of ryanodine in the incubatory medium; glands were treated in nominal Ca²⁺ free medium; [Na⁺] = 15.3 mmol/l, [K⁺] = 129.94 mmol/l; [InsP₃] = 10 µmol/l, [heparin] = 500 µg/ml, [ryanodin] = 5 nmol/l; * – difference is significant in comparison to control with P < 0.05, ** – P < 0.01, ### – difference is significant in comparison to heparin-containing medium with P < 0.001; n = 6

□контроль ■ріанодин 500 нмоль/л

І по-третє. У випадку, коли вивільнення Ca²⁺ з депо ріанодином у часі збігається з активацією його вивільнення екзогенним ІФ₃, Ca²⁺-функціональна одиниця переходить у стан інактивації (рис. 1, *B*), що, мабуть, і спостерігалося у представленому на рис. 3, *A* експерименті.

Са²⁺-функціональна одиниця плазматичної мембрани

Метод внутрішньоклітинної перфузії дає змогу здійснювати, як вважається, повний контроль над концентраційними градієнтами іонів, що проникають через мембрану. Тим не менше, нами встановлено, що між потенціалкерованими Ca²⁺-каналами та Na⁺–Ca²⁺-обмінником плазматичної мембрани існують тісні функціональні зв'язки навіть за умов внутрішньоклітинної перфузії [5].

На рис. 4 криві 1 і 2 відображають залежність амплітуди Ca²⁺-струму від наявності натрієвого градієнта за різних значень фіксованого потенціалу і використання внутрішньоклітинного розчину без Ca²⁺-Mg²⁺-ЕГТА-буфера; криві 3 і 4 – відображають цю ж залежність за внутрішньоклітиного розчину зі стабілізованою [Ca²⁺] на рівні 10 мкмоль/л. Звертає на себе увагу, що за стабілізованого рівня цитозольного Ca²⁺ залежність амплітуди потенціалкерованого Ca²⁺-струму як від рівня фіксованого потенціалу, так і від концентраційного натрієвого градієнта є менш вираженою. Аналізуючи ці дані, ми зробили висновок, що залежність амплітуди Ca²⁺-струму від наявності натрієвого градієнта зумовлена не підвищеною проникністю Ca²⁺-каналів для одновалентних катіонів, а залежністю їхньої провідності від функціонування Na⁺–Ca²⁺-обмінника [10].

- Рис. 4. Залежність амплітуди вхідного потенціалкерованого Са²⁺-струму від натрієвого концентраційного градієнта за різних значень фіксованого потенціалу та [Са²⁺] у цитозолі [5, 7]: [Na⁺]_e = 136,9 (криві *1* і *3*) або 16 (криві *2* і *4*) ммоль/л, [Са²⁺]_e = 1,76 ммоль/л, [Na⁺]_i = 16 ммоль/л; [Ca²⁺]_i = 10 мкмоль/л (криві *3* і *4*; Са²⁺-Мg²⁺-ЕГТА-буфер) або не задавали (криві *1* і *2*); фіксований потенціал -85, -65 або -45 мВ, тестований – -25 мВ; n = 6
- **Fig. 4.** Inward voltage-dependent Ca²⁺-current dependence on sodium concentration gradient in difference values of holding potential and [Ca²⁺] in cytosol [5, 7]: [Na⁺]_e = 136.9 (curves *1* and *3*) or 16 (curves *2* and *4*) mmol/l, [Ca²⁺]_e = 1,76 mmol/l, [Na⁺]_i = 16 mmol/l; [Ca²⁺]_i = 10 µmol/l (curves *3* and *4*; Ca²⁺-Mg²⁺-EGTA-buffer) or nominal Ca²⁺ free solution (curves *1* and *2*); holding potential -85, -65 or -45 mV, tested potential - -25 mV; n = 6

Встановлено також [15], що внаслідок додавання до внутрішньоклітинного розчину блокатора Са²⁺-помпи еозину Y амплітуда вхідного струму Na⁺–Ca²⁺-обміну

дещо збільшувалася (рис. 5, *A*). Аналогічно діє й інший блокатор Ca²⁺-помпи ортованадат у концентрації 10 мкмоль/л, стимулюючий ефект якого, правда, зменшувався за концентрації 100 мкмоль/л. Відомо, що еозин Y є досить-таки специфічним інгібітором Mg²⁺, ATФ-залежних систем активного транспортування Ca²⁺ та не пригнічує Na⁺–Ca²⁺-обмінник [21]. Тим більше, він не може активувати функціонування обмінника. Тому збільшення амплітуди вхідного струму Na⁺–Ca²⁺-обміну (катіони Ca²⁺ зв'язуються з внутрішньоклітинного боку плазматичної мембрани) зумовлене пригніченням Ca²⁺-помпи плазматичної мембрани (і, відповідно, збільшення [Ca²⁺], у внутрішньоклітинному примембранному просторі).

А введення в клітину АТФ на фоні 1 ммоль/л GSH супроводжується зменшенням амплітуди вхідного струму Na⁺–Ca²⁺-обміну (рис. 5, *Б*). Причиною зменшення струму у цьому випадку є, на нашу думку, стимуляція надлишком АТФ функціонування Ca²⁺-помпи плазматичної мембрани, оскільки порушення акумулювання Ca²⁺ у мітохондріях чи вивільнення його з депо не впливало на амплітуду струму Na⁺–Ca²⁺-обміну. Цілком можливо, що це зумовлено особливостями локалізації цих Ca²⁺-транспортувальних систем чи органел, які їх містять. Стимулювання Ca²⁺помпи призводить до зменшення [Ca²⁺] у цитозолі і, відтак, до пригнічення функціонування Na⁺–Ca²⁺-обміника.

Отже, тісні функціональні зв'язки існують і між Na⁺–Ca²⁺-обмінником та Ca²⁺помпою плазматичної мембрани. Тому ми маємо підстави говорити про наявність **Са²⁺-функціональної одиниці плазматичної мембрани**. На відміну від вищеописаної ендоплазматичної Ca²⁺-функціональної одиниці, катіони Ca²⁺ у цьому

Рис. 5. Зміна амплітуди вхідного струму №⁺-Са²⁺-обміну внаслідок блокування Са²⁺-помпи еозином Y (*A*) та її стимулювання аденозинтрифосфатом за наявності у середовищі відновленого глутатіону (*Б*) [15]:

 $[Na^+]_e = 136,9$ ммоль/л, $[Ca^{2+}]_e = 1,76$ ммоль/л, $[Na^+]_i = 16$ ммоль/л; $[eoзин Y]_e = 10$ мкмоль/л; $[GSH]_i = 1$ ммоль/л; $[AT\Phi]_i = 1$ ммоль/л; фіксований потенціал -20 мВ, тестований – -60 мВ; *** і ### – зміна достовірна відповідно відносно контролю та відносно GSH з *P* < 0,001; n = 6 і 10

Fig. 5. Inward current amplitude change of Na⁺-Ca²⁺ exchange as a result of Ca²⁺-pump inhibition with eosin Y (*A*) and its stimulation with ATP in presence reduced glutathione (*B*) [15]: $[Na^+]_e = 136.9 \text{ mmol/I}, [Ca^{2+}]_e = 1.76 \text{ mmol/I}, [Na^+]_i = 16 \text{ mmol/I}; [eosin Y]_e = 10 \text{ µmol/I}; [GSH]_i = 1 \text{ mmol/I}, [AT\Phi]_i = 1 \text{ mmol/I}; holding potential -20 mV, tested potential -60 mV; *** and ### – difference is significant in comparison to control and GSH with$ *P*< 0.001; n = 6 and 10

Біологічні студії / Studia Biologica • 2008 • Том 2/№1 • С. 33-50

випадку не депонуються в обмеженому просторі, а виводяться у позаклітинне середовище. Але для розуміння значення цієї Ca²⁺-функціональної одиниці принципового значення це не має.

До певної міри стан Ca²⁺-функціональної одиниці плазматичної мембрани визначається залежністю Na⁺–Ca²⁺-обміну від активності Na⁺–K⁺-помпи: наявність у середовищі уабаїну дещо **нівелювало** ефект збільшення позаклітинної чи внутрішньоклітинної концентрації K⁺ (рис. 6), а також **підсилювало** ефект зменшення позаклітинної концентрації Na⁺ на амплітуду вхідного струму Na⁺–Ca²⁺-обміну [19].

- Рис. 6. Залежність амплітуди вхідного струму №⁺-Са²⁺-обміну від позаклітинної (*A*) і внутрішньоклітинної (*Б*) [К⁺] за наявності і відсутності уабаїну в середовищі [19]: негативні значення амплітуди вхідний напрям струму, позитивні вихідний напрям; [№⁺]_e = 120 ммоль/л, [Са²⁺]_e = 1,76 ммоль/л, [№⁺]_i = 16 ммоль/л; [К⁺]_i = 0 ммоль/л (*A*), [К⁺]_e = 5,36 ммоль/л (*Б*); [уабаїн] = 25 мкмоль/л; фіксований потенціал -20 мВ, тестований -60 мВ; за контроль прийнято амплітуду струму за відсутності К⁺ у середовищі; * зміна достовірна відносно контролю з *P* < 0,05; ** з *P* < 0,01; *** з *P* < 0,001; n = 7 і 6
- **Fig. 6.** Inward current amplitude dependence of Na⁺-Ca²⁺ exchange on extracellular (*A*) and intracellular (*B*) [K⁺] in presence and absence ouabain in medium [19]: negative amplitude values – inward current, positive – outward current; [Na⁺]_e = 120 mmol/I, $[Ca^{2+}]_e = 1.76 \text{ mmol/I}$, $[Na^+]_i = 16 \text{ mmol/I}$; $[K^+]_i = 0 \text{ mmol/I} (A)$, $[K^+]_e = 5.36 \text{ mmol/I} (B)$; [ouabain] = 25 µmol/I; holding potential -20 mV, testing potential -60 mV; current amplitude in absence of K⁺ was taken as a control; * – difference is significant in comparison to control with P < 0.05; ** – with P < 0.01; *** – with P < 0.001; n = 7 and 6

Очевидно, така організація взаємовідносин між Са²⁺-транспортувальними системами плазматичної мембрани відіграє важливу роль для генерування фізіологічного Са²⁺-сигналу у **базальному кальцієвому домені** – примембранному просторі базальної (базо-латеральної) частини секреторних клітин слинних залоз личинки *Chironomus plumosus*, відокремленому [2] від іншої частини цитоплазми надзвичайно щільним шаром мітохондрій.

Характерною ознакою Ca²⁺-функціональної одиниці плазматичної мембрани є її **залежність від рівня мембранного потенціалу**, а не лише від цитозольної [Ca²⁺]. Власне деполяризація плазматичної мембрани внаслідок активації молекулою АТФ Р2Х-рецепторів спричиняє перехід цієї Ca²⁺-функціональної одиниці у стан активності, що досягається активацією потенціалкерованих Ca²⁺-каналів. Такий висновок можна зробити, якщо, звичайно, не включати Р2Х-рецептори до складу Ca²⁺-функціональної одиниці плазматичної мембрани (у нас немає експериментальних даних, які б свідчили, що Р2Х-рецептори входять до складу цієї одиниці, хоча повністю відкидати таку можливість не можна).

Обмеження надходження Ca²⁺ у цитозоль (*інактивація Ca²⁺-функціональної одиниці*) теж реалізується не лише збільшенням цитозольної Ca²⁺, а й подальшою деполяризацією плазматичної мембрани, тобто внаслідок не лише Ca²⁺-залежної, а й потенціалозалежної інактивації Ca²⁺-каналів. Крім того, деполяризація мембрани має часове обмеження для розвитку кальцієвої відповіді ще й за рахунок активації високопорогових потенціалкерованих K⁺- і Cl⁻-каналів. Гіперполяризація мембрани, що виникає внаслідок виходу катіонів K⁺ потенціалкерованими K⁺-каналами (калієвий електрохімічний градієнт спрямований з клітини) та входу аніонів Cl⁻ потенціалкерованими Cl⁻-каналами (хлорний електрохімічний градієнт спрямований у клітину), обмежує в часі можливість Na⁺–Ca²⁺-обмінника транспортувати Ca²⁺ у клітину. Тому головне значення Na⁺–Ca²⁺-обмінника, як і Ca²⁺-помпи плазматичної мембрани, є виведення Ca²⁺ у позаклітинне середовище і, тим самим, переведення Ca²⁺-функціональної одиниці плазматичної мембрани у стан спокою.

Ендоплазматично-мітохондріальна Ca²⁺-функціональна одиниця

У секреторних клітинах слинних залоз личинки *Chironomus plumosus* можна виділити ще одну, *ендоплазматично-мітохондріальну Ca²⁺-функціональну одиницю*, яка складається з каналів вивільнення Ca²⁺ ендоплазматичного ретикулуму та Ca²⁺-уніпортера мітохондрій.

Базується цей висновок, перш за все, на тому, що ефекти ріанодину в активуючій ріанодинчутливі Ca²⁺-канали та рутенію червоного за умови поєднання їх у середовищі інкубації мають **неадитивний** характер (рис. 7, *A*) [2]. Слід зазначити, що ефекти цих речовин повинні бути адитивними, якщо функціонування Ca²⁺-активованих Ca²⁺-каналів ендоплазматичного ретикулуму і Ca²⁺-уніпортера мітохондрій не залежить одне від одного.

Виявлений ефект підтверджує модифікуючу дію мітохондрій на ріанодиніндуковане вивільнення Ca²⁺ з ендоплазматичного ретикулуму. Відомо також, що рутеній червоний може пригнічувати вивільнення Ca²⁺ ріанодинчутливими Ca²⁺каналами [24]. Але у встановленому нами випадку такий механізм є неможливим, оскільки тоді рутеній червоний повністю запобігав би вивільненню Ca²⁺ з ендоплазматичного ретикулуму під впливом ріанодину.

- Рис. 7. Зміни вмісту Са²⁺ у тканині слинних залоз, оброблених сапоніном, за одночасної дії ріанодину та рутенію червоного (*A*) й інозитолтрифосфату та рутенію червоного (*Б*) відповідно [2]: [Na⁺] = 15,3 ммоль/л, [K⁺] = 129,94 ммоль/л; [рутеній червоний] = 10 мкмоль/л, [ріанодин] = 5 нмоль/л; [IФ₃] = 10 мкмоль/л; * – різниця порівняно з контролем статистично достовірна з *P* < 0,05; n = 6 і 7
- Fig. 7. Changes of Ca²⁺ content in tissue of salivary glands treated with saponin, simultaneous action of ryanodine and ruthenium red (*A*) or InsP₃ and ruthenium red (*B*) respectively [2]: [Na⁺] = 15.3 mmol/l, [K⁺] = 129.94 mmol/l; [ruthenium red] = 10 μmol/l, [ryanodine] = 5 nmol/l; [InsP₃] = 10 μmol/l; * difference is significant in comparison to control with *P* < 0.05; n = 6 and 7

По-друге, за стимуляції ІФ₃-чутливих Са²⁺-каналів додаванням до середовища інкубації ІФ₃ та за одночасного пригнічення функціонування Са²⁺-уніпортера мітохондрій рутенієм червоним (рис. 7, *Б*) не спостерігалося статистично достовірних змін вмісту Са²⁺ у тканині залоз, оброблених сапоніном, порівняно з контролем (середовище, яке не містило ні рутенію червоного, ні ІФ₃). Хоча застосування ІФ₃ викликало статистично достовірне зменшення вмісту Са²⁺ у тканині залоз, оброблених сапоніном, на 43,78 ± 11,82 % (*P* = 0,042, n = 7) відносно контролю, і цей ефект неодноразово підтверджувався нами у попередніх експериментах. Таким чином, блокування рутенієм червоним процесу акумуляції Са²⁺ мітохондріями запобігає активуванню вивільнення Са²⁺ з ІФ₂-чутливого депо.

У досліджуваних клітинах Са²⁺-уніпортер перебуває, мабуть, у стані динамічної рівноваги з розміщеними поруч каналами вивільнення Са²⁺ з депо, і за відсутності стимуляції між цими структурами відбувається обмін іонами Са²⁺. Ці системи транспортування Са²⁺ і формують ендоплазматично-мітохондріальну Са²⁺-функціональну одиницю, яка належить до ІІ типу. У стані спокою внутрішньоклітинні Са²⁺-канали вивільняють певну кількість Са²⁺, які транспортуються не тільки помпою назад у люмен ендоплазматичного ретикулуму, а й уніпортером у матрикс мітохондрій, тому не відбувається генерація клітинної відповіді. Заблокувавши уніпортер мітохондрій, ми спричинили, очевидно, локальне підвищення [Са²⁺] поруч розташованого ІФ₃-чутливого депо. Відомо, що на ІФ₃-чутливому рецепторі наявні інгібіторні й активуючі сайти зв'язування Ca²⁺ [22, 25]. Відбувається, ймовірно, швидке зв'язування Ca²⁺ з інгібіторними сайтами ІФ₃-чутливих Ca²⁺ каналів. Це призводить до пригнічення, за принципом негативного зворотного зв'язку, подальшого вивільнення Ca²⁺ з депо. Тому одночасне застосування ІФ₃ та рутенію червоного не викликає зменшення вмісту Ca²⁺ у тканині залоз.

Оскільки функціонування ріанодинчутливих Са²⁺-каналів теж залежить від [Са²⁺] у цитозолі [41], то, аналогічно, за одночасної дії ріанодину та рутенію червоного зменшення вмісту Са²⁺ у тканині залоз є менш вираженим, ніж за дії одного лише ріанодину. Можна припустити також, зважаючи на взаємозв'язок між вивільненням катіонів Са²⁺ ІФ₃-чутливими та ріанодинчутливими каналами (рис. 3), що пригнічення ІФ₃-індукованого вивільнення Са²⁺ послаблює активацію його вивільнення з ріанодинчутливого депо. Для активації ріанодинчутливого депо необхідно, щоб ІФ₃-чутливі Са²⁺-канали не були ані заблокованими, ані активованими.

Про чутливість мітохондрій до вивільнення Ca²⁺ з I Φ_3 -чутливого і ріанодинчутливого депо Ca²⁺ існує достатньо даних, отриманих на різних клітинах, у тому числі секреторних: мітохондрії регулюють спряження Ca²⁺ – екзоцитоз у хромафінних клітинах [28], у пермеабілізованих клітинах слинних залоз м'ясної мухи вони здійснюють негативний контроль над частотою I Φ_3 -індукованих осциляцій Ca²⁺, визначають тривалість міжспайкового інтервалу і, таким чином, перекодовують стимул, що модулюється амплітудою вивільнення I Φ_3 , у частоту цитозольних осциляцій Ca²⁺ [40]. Взаємодія між внутрішньоклітинними каналами вивільнення Ca²⁺ та мітохондріями має відмінне значення залежно від розміщення самих мітохондрій у клітині. Таким чином мітохондрії здійснюють комплексний вплив на регулювання Ca²⁺-сигналів у секреторних клітинах.

підсумок

Загальноприйняте положення, що цитозольний рівень Са²⁺ визначається його потоками через плазматичну мембрану і мембрану ендоплазматичного ретикулуму, на сьогодні є недостатнім. Спричинило цю недостатність відкриття: а) локальних Са²⁺-хвиль [39] і б) локальних кальцієвих мікродоменів [23, 34, але див. 38], виникнення яких неможливо пояснити, виходячи із "макроцитозольної" позиції.

Локальні Са²⁺-хвилі – це **обмежені у просторі** та **часі** повторювані підвищення цитозольної [Са²⁺]. Найпростіші локальні Са²⁺-сигнали є двох типів: Са²⁺спарки (sparks), які зумовлені активацією лише ріанодинових Са²⁺-каналів, наприклад, у кардіоміоцитах [27], і Са²⁺-пафи (puffs), зокрема, в ооцитах шпорцевої жаби [39], які спричинені активацією лише ІФ₃-чутливих Са²⁺ каналів. Інший приклад локального Са²⁺-сигналу характерний для апікального полюса секреторних клітин, наприклад, екзокринних клітин підшлункової залози [37]. Тут він характеризується повільнішим часом наростання амплітуди (>1 с) і значнішим поширенням, до 10 мкм [31], що відрізняє їх від "класичних" Са²⁺-пафів. За певних умов Са²⁺-хвиля, яка виникла на апікальному полюсі секреторної клітини, поширюється до базального полюса – локальний Са²⁺-сигнал перетворюється на глобальний. Але для того, щоб таке перетворення відбулося, потрібне не лише узгоджене функціонування ІФ₃-чутливих і ріанодинчутливих Са²⁺-каналів ендоплазматичного ретикулуму – Са²⁺-хвиля повинна подолати кордон із мітохондрій [35]. Встановлено також, що мітохондрії модулюють вивільнення Са²⁺ з ендоплазматичного ретикулуму, запобігаючи його позитивному зворотному впливу на ІФ₃-чутливі Са²⁺-канали [29], і така взаємодія можлива лише за рахунок близького розташування цих двох органел [38]. Показана і важлива роль периферичних примембранних мітохондрій у депокерованому вході Са²⁺ у клітину [32, 35, 36].

Отже, навіть такий поверховий огляд дає змогу зробити висновок, що генерування Ca²⁺-хвиль є неможливим без **узгодженості функціонування** різних Ca²⁺транспортувальних систем, які належать різним клітинним мембранам. Ca²⁺транспортувальні системи не дублюють одні одних, їхнє функціонування є **взаємодоповнюючим**. Крім того, функціонування різних Ca²⁺-транспортувальних систем є **взаємозалежним** за рахунок **позитивних прямих** і **негативних зворотних зв'язків** між ними. Ці зв'язки значною мірою реалізуються через зміну локальної [Ca²⁺] біля устя Ca²⁺-каналу (*локальних кальцієвих мікродоменів*), оскільки функціонування багатьох Ca²⁺-транспортувальних систем також є Ca²⁺-залежним процесом. Але загальної (уніфікованої) теорії, яка б задовільно пояснила роль **узгодженості функціонування** різних Ca²⁺-транспортувальних систем у Ca²⁺-сигналізації, на сьогодні немає. Тому як робочу гіпотезу ми пропонуємо **концепцію Ca²⁺-функціональних одиниць**.

Оскільки прямі та зворотні зв'язки між Са²⁺-транспортувальними системами є обмежені в просторі та часі, ми дійшли висновку, що у клітині формуються цілі їхні ансамблі – **Ca²⁺-функціональні одиниці**, з принципово новими властивостями і новими функціями, виконати які неможливо, якщо виходити з властивостей окремих їхніх складових частин. Обов'язковою умовою формування Са²⁺-функціональні одиниці є входження до її складу **системи пасивного** і **системи активного** транспортування Са²⁺ та мембрани, що забезпечує компартменталізацію цих катіонів. Одні і ті ж самі транспортувальні системи (і мембрани) можуть входити до складу різних Са²⁺-функціональних систем, що визначається особливостями певної клітини та доцільністю для процесів, які відбуваються у її різних частинах. Власне на цьому етапі організації Са²⁺-сигналізації виникають такі властивості, притаманні функціонуванню Са²⁺-транспортувальних систем, як нестатичність (динамічність), неадитивність, висока чутливість до агоністів, самопідсилення, самообмеження у часі тощо.

Лише виходячи із таких позицій, можна пояснити ті експериментальним чином встановлені факти, які важко було пояснити в рамках панівної парадигми. Це стосується і особливостей функціонування певної Са²⁺-транспортувальної системи, і генерації Са²⁺-хвилі загалом. Звичайно, адекватне застосування концепції для трактування особливостей Са²⁺-сигналізації (чи розвиток цієї концепції) можливе після проведення досліджень з використанням реєстрації цитозольної [Са²⁺] за допомогою Са²⁺-чутливих флуоресцентних зондів.

Цілком можливо, що із встановленням нових експериментальних даних запропонована концепція буде трансформуватися. Зокрема це стосується залежності функціонування Ca²⁺-транспортувальних систем від активності інших іонтранспортувальних систем. Особливо актуальною є проблема виявлення чинника, який забезпечує прямий і зворотний зв'язок між окремими складовими частинами Ca²⁺-функціональної одиниці, оскільки не завжди його вдається коректно ідентифікувати (досить показовим у цьому аспекті є проблема узгодженості активації потенціалкерованих і ріанодинчутливих Ca²⁺-каналів у кардіоміоцитах [30]). Таким чинником для Ca²⁺-функціональної одиниці плазматичної мембрани може бути зміна мембранного потенціалу. В інших випадках цю роль можуть виконувати, на нашу думку, Ca²⁺-сигнальні білки [див. 33].

- Бичкова С.В., Манько В.В. Ріанодиніндуковане вивільнення Са²⁺ у секреторних клітинах слинних залоз личинки Chironomus plumosus L. Вісн. Львів. ун-ту. Сер. біол, 2004; 35: 244–250.
- Бичкова С., Манько В., Клевець М., Кулачковський О. Роль мітохондрій у Са²⁺-сигналізації секреторних клітин травних залоз. Вісн. Львів. ун-ту. Сер. біол, 2007; 44: 3–14.
- 3. Деркач М.П., Гумецький Р.Я., Чабан М.Є. Курс варіаційної статистики. Київ: Вища школа, 1977. 206 с.
- 4. *Клевець М.Ю., Манько В.В.* Характеристика потенціалозалежного кальцієвого струму мембрани секреторних клітин. **Физиол. журнал**, 1992; 38(3): 70–75.
- 5. *Клевець М.Ю., Манько В.В.* Вивчення натрієвого градієнта для реєстрації струму через кальцієві потенціалозалежні канали мембрани секреторних клітин. **XIV з'їзд Українського фізіологічного товариства**: Тези доп. Київ, 1994: 10–11.
- 6. *Клевець М.Ю., Манько В.В., Федірко Н.В.* Дослідження нагромадження кальцію секреторними клітинами ізольованих слинних залоз личинки хірономуса та його значення для секреторного процесу (Львів. ун-т). Львів, 1996. 22 с. Укр. Деп. в Укр. ІНТЕІ 29.10.96, № 87 Ук 96.
- Клевець М.Ю., Манько В.В., Федірко Н.В. та ін. Кальцій і плазматична мембрана секреторних клітин екзокринних залоз. Вісн. Київ. ун-ту. Фізіологія: Проблеми регуляції фізіологічних функцій, 2000; 6: 9–13.
- Король Т., Манько В., Клевець М. Вплив блокаторів потенціалозалежних кальцієвих каналів на стимульований гіперкалієвою деполяризацією вхід Ca²⁺ у клітини екзокринних залоз та їх секреторну відповідь. Галицький лікарський вісник, 1998; 5(3): 46–48.
- Король Т.В., Манько В.В., Клевець М.Ю. Дослідження активного транспорту Ca²⁺ у секреторних клітинах слинних залоз личинки Chironomus plumosus L. Біологія тварин, 2000; 2(1): 92–97.
- 10. Манько В.В. Характеристика струмів потенціалозалежних кальцієвих каналів мембрани секреторних клітин. Автореф. дис. ... канд. біол. наук. Київ, 1995. 21 с.
- Манько В.В. Са²⁺-транспортні системи внутрішньоклітинних депо секреторних клітин малоклітинних залоз. І. Ідентифікація. Матеріали міжнародної конференції, присвяченої пам'яті професора Шостаковської Ірини Василівни (11–12 жовтня 2002 р., м. Львів). Львів, 2002: 28–33.
- 12. *Манько В.В.* Методологічні підходи до дослідження Na⁺–Ca²⁺-обміну в екзокринних секреторних клітинах. **Укр. біохім. журнал**, 2006; 78 (1): 43–62.
- 13. *Манько В.В., Бичкова С.В., Клевець М.Ю.* Ідентифікація каналів вивільнення Ca²⁺ у секреторних клітинах слинних залоз личинки комара-дергуна. **Укр. біохім. журнал**, 2004; 76(1): 65–71.
- 14. *Манько В., Великопольська О.* Ідентифікація пуринових рецепторів у секреторних клітинах слинних залоз личинки комара-дергуна. Вісн. Львів. ун-ту. Сер. біол, 2005; 40: 134–139.

- Манько В.В., Клевец М.Ю., Ларина О.А. Зависимость амплитуды тока Na⁺-Ca²⁺-обмена мембраны секреторных клеток от функциональной активности Ca²⁺-насоса в условиях внутриклеточной перфузии. **II съезд биофизиков России** (23–27 августа 1999 г., Москва): Тез. докл. Москва, 1999; 2: 537–538.
- Манько В.В., Клевець М.Ю., Ларіна О.А., Стельмах С.В. Слинні залози личинки Chironomus plumosus як об'єкт для досліджень Ca²⁺-транспортних систем секреторних клітин екзокринних залоз. Биологич. вестн, 2001; 5 (1–2): 133–136.
- Манько В.В., Клевець М.Ю., Федірко Н.В. Методичні підходи для виявлення трансмембранного струму натрій-кальцієвого обміну. Нейрофизиология / Neurophysiology, 1998; 30(4/5): 275–278.
- 18. *Манько В.В., Король Т.В., Клевець М.Ю., Демків О.Т.* Дослідження Са²⁺-транспортних систем секреторних клітин екзокринних залоз з використанням хлортетрацикліну. Вісн. Харк. ун-ту, № 488. Біофіз. вісн, 2000; 6(1): 79–81.
- Манько В., Ларіна О., Клевець М. Залежність струму Na⁺-Ca²⁺-обміну плазматичної мембрани екзокринних секреторних клітин від функціонування Na⁺-K⁺-помпи. Вісн. Львів. ун-ту. Сер. біол, 2001; 27: 218–224.
- Манько В.В., Стельмах С.В. Вплив рутенію червоного на вміст Са²⁺ у тканині слинних залоз личинки Chironomus plumosus. Вісн. Львів. ун-ту. Сер. біол, 2002; 29: 171– 176.
- Слинченко Н.Н., Браткова Н.Ф., Костерин С.А., Черныш И.Г. Влияние эозина Y на каталитическую и функциональную активность Mg²⁺, ATP-зависимого кальциевого насоса плазматической мембраны гладкомышечных клеток. Биохимия, 1998; 63(6): 812–819.
- 22. *Adkins C.E., Taylor C.W.* Lateral inhibition of inositol 1,4,5-trisphosphate receptors by cytosolic Ca²⁺. **Current Biol**, 1999; 9: 1115–1118.
- Ashby M.C., Craske M., Park M.K., Gerasimenko O.V. et al. Localized Ca²⁺ uncaging reveals polarized distribution of Ca²⁺-sensitive Ca²⁺ release sites: mechanism of unidirectional Ca²⁺ waves. J. Cell. Biol, 2002; 158: 283–292.
- 24. Beutner G., Sharma V.K., Lin L. et al. The mitochondrial ryanodine receptor in rat heart: characterization of the subtype. **Biophys. J**, (Annual Meeting Abstracts), 2002; 82: 110.
- 25. *Bootman M. D., Lipp P.* Calcium signalling: ringing changes to the "bell-shaped curve". **Current Biol**, 1999; 9: R876–878.
- Cancela J.M., Gerasimenko O.V., Gerasimenko J.V. et al. Two different but converging messenger pathways to intracellular Ca²⁺ release: the roles of nicotinic acid adenine dinucleotide phosphate, cyclic ADP-ribose and inositol trisphosphate. EMBO J, 2000; 19(11): 2549–2557.
- 27. Cannell M.B., Soeller C. Sparks of interest in cardiac excitation-contraction coupling. Trends Pharmacol. Sci, 1998; 19: 16–20.
- Giovannucci D.R., Groblewski G.E., Sneyd J., Yule D.I. Targeted phosphorylation of inositol 1,4,5-trisphosphate receptors selectively inhibits localized Ca²⁺ release and shapes oscillatory Ca²⁺ signals. J. Biol. Chem, 2000; 275(43): 33704–33711.
- Hajnoczky G., Hager R., Thomas A.P. Mitochondria suppress local feedback activation of inositol 1,4,5-trisphosphate receptors by Ca²⁺. J. Biol. Chem, 1999; 274: 14157– 14162.
- Inoue M., Bridge J.H.B. Ca²⁺ sparks in rabbit ventricular myocytes evoked by action potentials. Involvement of clusters of L-type Ca²⁺ channels. Cell. Biol, 2003; 92: 532–538.
- Kidd J.F., Fogarty K.E., Tuft R.A., Thorn P. The role of Ca²⁺ feedback in shaping InsP₃evoked Ca²⁺ signals in mouse pancreatic acinar cells. J. Physiol, 1999; 520: 187–201.
- 32. *Knot H.J., Laher I., Sobie E.A. et al.* Twenty years of calcium imaging: cell physiology to dye for. **Molecular Interventions**, 2005; 5: 112–127.

- Li Q., Luo X., Muallem S. Functional mapping of Ca²⁺ signaling complexes in plasma membrane microdomains of polarized cells. J. Biol. Chem, 2004; 279(27): 27837– 27840.
- Lipscombe D., Madison D.V., Poenie M. et al. Imaging of cytosolic Ca²⁺ transients arising from Ca²⁺ stores and Ca²⁺ channels in sympathetic neurons. Neuron, 1988; 1: 355–365.
- Park M.K., Ashby M.C., Erdemli G. et al. Perinuclear, perigranular and sub-plasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport. EMBO J, 2001; 20(8): 1863–1874.
- 36. *Petersen O.H.* Localization and regulation of Ca²⁺ entry and exit pathways in exocrine gland cells. **Cell Calcium**, 2003; 33: 337–344.
- 37. *Petersen O.H., Burdakov D., Tepikin A.Y.* Polarity in intracellular calcium signaling. **BioEssays**, 1999; 21: 851–860.
- Rizzuto R., Pozzan T. Microdomains of intracellular Ca²⁺: molecular determinants and functional consequences. Physiol. Rev, 2006; 86: 369–408.
- Yao Y., Choi J., Parker I. Quantal puffs of intracellular Ca²⁺ evoked by inositol trisphosphate in Xenopus oocytes. J. Physiol, 1995; 482: 533–553.
- Zimmermann B. Control of Ins P₃-induced Ca²⁺ oscillations in permeabilized blowfly salivary gland cells: contribution of mitochondria. J. Physiol, 2000; 525(3): 707–719.
- 41. *Zucchi R., Ronca-Testoni S.* The sarcoplasmic reticulum Ca²⁺ channel/ryanodine receptor: modulation by endogenous effectors, drugs and disease states. **Pharmacol. Reviews**, 1997; 49(1): 1–52.

Одержано: 10.06.2008