УДК 549.2(477-551.242.5.055)

ПЕРША ЗНАХІДКА КУСОНГІТУ В ЕКСПЛОЗИВНИХ УТВОРЕННЯХ УКРАЇНИ

Н. Білик, І. Яценко, І. Побережська, В. Степанов

Львівський національний університет імені Івана Франка, вул. Грушевського, 4, 79005 м. Львів, Україна E-mail: natbilik@mail.ru

В експлозивних утвореннях Українського щита вперше діагностовано карбід вольфраму – кусонгіт WC в асоціації з інтерметалевими сплавами та безкисневими мінералами. Мінерал має сталево-сірий колір, непрозорий, з металічним блиском, різноманітної форми, розмір зерен – від 0,2 до 0,8 мм; утворює самостійні кристали та зростки з інтерметалідами. За результатами мікрозондового аналізу, емпірична формула кусонгіту – $W_{0,998}C_{1,003}$. Середнє значення мікротвердості – 2 166 кг/мм² (за шкалою Мооса – 9,03). Припускають, що формування кусонгіту і парагенетичних з ним сполук відбувається за мантійних умов, транспортування матеріалу на поверхню пов'язане з флюїдизатно-експлозивними процесами мантійного типу.

Ключові слова: кусонгіт, інтерметалевий сплав, алмаз, мантійні мінерали, експлозивна структура, Український щит.

Кусонгіт як мінерал карбід вольфраму WC (Кристалохімічна класифікація 1.ВА.25) затверджений Міжнародною мінералогічною асоціацією (ММА) і Комісією з нових мінералів і назв мінералів (КНМНМ) у жовтні 2007 р. Мінерал відкритий 1986 р. в алмазоносних хромітитах офіолітової асоціації Luobusha (графство Qusong, Тибет, Китай) [18] і названий за місцем знахідки – Кусонг (Тибет). Кристал мінералу зберігається в Геологічному музеї Китаю.

Зазначимо, що самородні метали Fe, Zn, Pb, Al, Cr, Ni, Sn, Os, Ir, Ru, Rh, Pd, Au, Ag, W, Cu Ti, інтерметалеві та безкисневі сполуки й аналогічні карбіди (Fe-Ni, Cr-Ni, Fe-Co, Fe-Si, Fe-Ti-Si, Ni-Fe-Cr, Ni-C, Cr-C, Ti-C, W-C, Si-C, Fe-Co, Al-Fe-La, Fe-Mn, Au-Ag, Ag-Sn, Ti-W, Cu-Zn, Si-Ca, Ti-N, Si-Ca-Cu, Ni-Fe-Ir, Rt-Fe, Pt-Fe-Pd, Fe-Ru) виявлені раніше в кількох регіонах світу. Вони вивчені та описані багатьма дослідниками [13, 14, 16, 17, 19, 20]; деякі самородні метали й карбіди, аналогічні WC, знайдені на Коряцько-му нагір'ї в Росії та в альпійських метаморфічних породах [15]. Дані про WC як про невідомий матеріал опубліковані 1997 р. С. Главатських зі співавт. [3].

У ході вивчення мінерального складу експлозивних утворень України ми зафіксували наявність інтерметалевих сплавів та безкисневих мінералів, в асоціації з якими і діагностовано кусонгіт. Вони виявлені в породах експлозивних структур на Українському щиті: Зеленогайської кільцевої структури, лампроїтової трубки Мрія (Західне Приазов'я), а також в експлозивних структурах Кіровоградсько-Смілянського поля. Їх відшукали в алмазоносних породах східного борту Білокоровицької структури (північно-західна частина Українського щита) [12].

[©] Білик Н., Яценко І., Побережська І., Степанов В., 2014

Морфологію, внутрішню будову і хімічний склад зерен вивчали за допомогою сканувального електронного мікроскопа-мікроаналізатора РЕММА-102-02. Твердість мінералу визначали на мікротвердометрі ПМТ-3, відкаліброваному за галітом (NaCl), навантаження на індентор становило 100 г.

Кусонгіт утворює нерівні, гранульовані або пластинчасті частинки розміром 0,2– 0,8 мм. Мінерал сталево-сірого кольору (рис. 1), непрозорий, з металічним блиском. Зерна кусонгіту мають різноманітну форму: трапляються ізометричні зерна (див. рис. 1, e, r), частинки призматичної (див. рис. 1, δ) та неправильної форми (див. рис. 1, a, c). Деякі зерна виявляють елементи самоогранювання (див. рис. 1, e, r).

Рис. 1. Морфологія зерен кусонгіту:

a – зерно неправильної форми у зростках з кварцом; δ – призматичне зерно з кірочкою гіпергенних змін на поверхні та кварцом (біле); e, r – ізометричне зерно з елементами самоогранювання; r – зерно неправильної форми з присипками карбонатів.

На поверхні зерен простежують нальоти або кірочки гіпергенних мінералів червонуватого й темно-коричневого кольору. Кусонгіт трапляється також у зростках з кварцом (див. рис. 1, a, δ), на деяких зернах виявлено присипки карбонатів. В окремих випадках він асоціює з інтерметалевим сплавом системи Cu–Zn (рис. 2).

Поверхня зерен кусонгіту неоднорідна. У полірованих шліфах вони виявляють тонкозернистий характер структури (рис. 3, 4).

Мікрокристали, що формують цю неоднорідну структуру, мають ізометричний, короткопризматичний обрис, розмір не перевищує перших мікронів (див. рис. 4, *г*). Деяким зернам притаманна зональна будова (див. рис. 4, *в*), периферійні частини затемнені, проте хімічний склад центральної та периферійної частин не відрізняється. На наш погляд, центральна частина досліджуваних зерен має щільнішу будову.

Рис. 2. Кусонгіт (2) з інтерметалідом Cu–Zn (1), Зеленогайська кільцева структура. BSE-зображення.

Рис. 3. Тонкозернистий характер структури зерна кусонгіту, трубка Мрія. BSE-зображення.

Рис. 4. Неоднорідна будова зерен кусонгіту:

а, б – Кіровоградсько-Смілянське поле, Кіровоградський блок (кусонгіт – зерна 11, 14); в – зональне зерно кусонгіту (18), Білокоровицька структура; *е* – тонкозернистий характер структури кусонгіту (збільшена ділянка зерна 18). ВSE-зображення.

У процесі вивчення хімічного складу зерен з'ясовано, що кристали складені винятково з вольфраму й вуглецю (табл. 1). Вміст вуглецю варіює від 5,8 до 6,2 мас. % із середнім значенням 5,98 мас. %. За результатами мікрозондового аналізу емпірична формула кусонгіту – W_{0.998}C_{1.003}, спрощена – WC.

Таблиця	l
---------	---

Компо-	Номер проби							
ненти	1	2	3	4	5	6	7	8
W	93,10	92,20	92,90	92,30	86,61	88,63	92,17	91,17
С	6,20	5,90	6,00	5,90	5,80	6,00	6,00	6,01
Сума	99,30	98,10	98,90	98,20	92,41	94,63	98,17	97,18
Формульні коефіцієнти								
W	0,990	1,010	1,006	1,011	0,988	0,982	1,002	0,995
С	1,010	0,990	0,994	0,989	1,012	1,018	0,998	1,005

Хімічний склад (мас. %) та формульні коефіцієнти кусонгіту

Примітки: *1–4* – Приазовський блок, трубка Мрія, проба 189 А/1; *5* – Білокоровицька структура, проба 1409/3; *6*, 7 – Кіровоградський блок, Кіровоградсько-Смілянське поле, св. 4056-83; *8* – Зеленогайська кільцева структура, св. 4096.

Вимірювання мікротвердості мінералу, який за мікрозондовим аналізом діагностовано як кусонгіт, виконували на приладі ПМТ-3. Проведено 52 заміри. Мінімальне значення мікротвердості становило 1 850 кг/мм² (за шкалою Мооса – 8,6), максимальне – 2 595 (9,5), середнє – 2 166 кг/мм² (9,03). Максимальна кількість замірів (21) потрапляє в поле з мікротвердістю 2 270 кг/мм² (9,13) (рис. 5).

Рис. 5. Гістограма розподілу мікротвердості кусонгіту із Зеленогайської кільцевої структури.

Разом з кусонгітом у всіх випадках виявлено специфічну мінералізацію (табл. 2), представлену самородними металами Si, Fe, Zn, Pb, Cr, Ni, Au, Ag, W, Cu, Ti, Sb, As, Sn, їхніми інтерметалевими сплавами, безкисневими сполуками Fe-Si, Fe-Ti-Si, Ni-Fe-Cr, Ni-C, Fe-C, Cr-C, Ti-C, W-C, Fe-Co, Al-Fe-La, W-C, Fe-Mn, Au-Ag, Ag-Sn, Ti-W, Cu-Zn, Si-Ca, Ti-N, Fe-Si, Si-Ca-Cu, Ni-Fe-Ir, Rt-Fe, Pt-Fe-Pd, Fe-Ru та безкисневими мінералами (алмаз, муасаніт, когеніт), що свідчить про різко відновне середовище формування кусонгіту. У багатьох випадках наявні також силікатно-металеві сферули та гіалокласти глибинного типу [2, 4, 5, 8]. Оскільки кусонгіт фіксують в одному і тому ж мінеральному парагенезисі незалежно від місця знахідки (див. табл. 2), то це свідчить про споріднений тип джерела формування. Специфічні флюїдизатно-експлозивні процеси забезпечують транспортування глибинної речовини у приповерхневі шари.

Таблиця 2

107

	Супутні мінеральні асоціації				
Геолого-структурна позиція	Безкисневі мінерали та сполуки	Самородні метали, інтерметалеві сплави	Глибинні мінерали кім- берліт-ламп- роїтового парагенезису	Сферули, гіалокласти [9]	
1	2	3	4	5	
Хромітити у складі офіолітової асоціації Луобуса, Тибетське плато [17]	Алмаз, муаса- ніт, Fe _{0,84} Si ₂ (luobusaite), Fe-Ti-Si, Ni-C, Fe-C, Cr-C, Ti- C, Si-Ca-Cu, Ti-N, Si-Ca, кусонгіт	Fe-Mn, Os-Ir, Ni-Fe-Cr, Fe- Co, Al-Fe-La, Fe-Mn, Au-Ag, Ag-Sn, Ti-W, Cu-Zn, Ni-Fe- Ir, Rt-Fe, Pt-Fe- Pd, Fe-Ru	Коесит, хромшпінеліди		
Вулканокластичні відклади, трубка Мрія, Приазовський блок Українського щита	Алмаз, муасаніт, кусонгіт	Pb, Sn+Pb, Pb-As, Sn-Pb- As, Cu-Zn, Au	Мантійний корунд з син- генетичними включеннями аморфної оксидної фази системи Al-Zr- Fe-Ti-TR, цир- кон, ільменіт, ставроліт	Титан-манган- залізо-силікат- ні сферули та гіалокласти, Au (сферули)	
Вулканокластичні відклади, експлозивні структури Кірово- градсько-Смілянсь- кого поля, Кірово- градський блок Українського щита	Алмаз, кусонгіт	Cu-Zn	Циркон, ільменіт	Магнетит-вюс- тит-залізні сферули, ти- тан-манґан- залізо-силі- катні сферули	
Вулканокластичні відклади, Зеленогай- ська кільцева струк- тура, Кіровоградсь- кий блок Українсько- го щита	Алмаз, кусонгіт	Fe, Cu, Cu-Zn, Fe-Cu	Альмандин, циркон, пікроільменіт, хромшпінеліди	Титан-манган- залізо-силі- катні сферули, гіалокласти з олівіном та самородним залізом	
Вулканогенно-осадо- ві породи, білокоро- вицька світа, східний борт Білокоровицької структури, північно- західна частина Українського щита	Алмаз, муасаніт, кусонгіт, FeSi	Fe, Al, Al-Cu, Cu-Zn, Fe-Ni- Cr, Ag, Cu-Ag, Au, Pb, Cu	Піроп, олівін, кіаніт, хром- шпінеліди, пікроільменіт, корунд, мона- цит	Комплекс сферул різно- манітного складу (магне- тит-вюстит- залізні, Ті-Мп- Fe-силікатні, кальцій-силі- каты та ін)	

Мінеральні асоціації з кусонгітом та супутні їм

Закінчення табл. 2

1	2	3	4	5
Продукти ексгаляцій на другому конусі Північно- го прориву Великого Тріщинного Толбачинсь- кого виверження у фума- ролі Трубка [2]	Муасаніт, когеніт	Fe, Cu, Al, Zn,Pb, Sn, Ti		

Загальновідомими й досконало вивченими типами прояву флюїдизатно-експлозивної діяльності є вибухові структури кімберліт-лампроїтового типу. Це пов'язано з їхньою комерційною цінністю як носія алмазів. Вивчення інших типів флюїдизатно-експлозивних утворень мантійного типу нині перебуває на стадії розвитку [1, 9–11]. Китайські дослідники описану мінеральну асоціацію так і називають – "мантійні мінерали" [18].

Принциповим є питання походження безкисневих сполук та їхнього зв'язку з генезисом алмазу. На нашу думку, можливе існування двох способів утворення. Перший – це безпосереднє транспортування речовини металосфери в поверхневі умови за участю імпульсних експлозивних процесів. Другий пов'язаний з можливими процесами металізації окисно-силікатних оболонок Землі внаслідок впливу глибинних високовідновних флюїдів. А. Лукін виділив їх в особливу групу "гіперглибинних" вуглеводневих утворень, що охоплюють і самородні метали, походження яких він пов'язує з рівнем поділу ядро-мантія [6]. У комплексі всі дані свідчать на користь більш глибинного рівня формування цих сполук, ніж глибина формування кімберлітів.

А. Макеєв зі співавт. [7] виявив плівки зазначених вище самородних металів та їхніх сплавів на поверхні алмазів уральського типу, а також аналогічні включення в середині кристалів. Це дало змогу стверджувати, що уральські алмази належать до окремого, глибинного некімберлітового типу. За розрахунками авторів, такі мінеральні асоціації сформовані за температури 1 600–2 500 °C. Утворення карбіду вольфраму відбувається у високотемпературному середовищі, оскільки температура його плавлення значно вища, ніж інших карбідів металів [15].

Список використаної літератури

- Алмазоносные формации и структуры юго-западной окраины Восточно-Европейской платформы. Опыт минерагении алмаза / Г. М. Яценко, Д. С. Гурский, Е. М. Сливко [и др.]. – Киев : УкрГГРИ, 2002. – 331 с.
- Бекеша С. Особливості морфології та внутрішньої будови мікросферул України / С. Бекеша, І. Яценко // Мінерал. зб. – 2010. – № 60, вип. 2. – С. 89–96.
- Главатских С. Ф. Новые данные о природном карбиде вольфрама / С. Ф. Главатских, М. Е. Генералов, Н. В. Трубкин // Докл. АН. – 1997. – Т. 352, № 2. – С. 226–229.
- Ендогенні Ті-Мп-Fе-силікатні сферули із експлозивних структур та вулканогенноосадових формацій України / І. Яценко, Г. Яценко, С. Бекеша [та ін.] // Мінерал. зб. – 2012. – № 62, вип. 1. – С. 83–101.
- 5. Леткі компоненти в ендогенних сферулах у зв'язку з проблемою флюїдизатноексплозивного рудогенезу / І. Яценко, Г. Яценко, І. Наумко [та ін.] // Мінерал. зб. – 2012. – № 62, вип. 2. – С. 189–199.

- Лукин А. Е. О включениях природного соединения кальция и углерода в минеральных образованиях, связанных с внедрением суперглубинных флюидов / А. Е. Лукин // Доп. НАН України. 2007. № 1. С. 122–130.
- Макеев А. Б. Природный синтез алмаза через металлические мембраны / А. Б. Макеев // Петрология литосферы и происхождение алмаза : Междунар. симпозиум, посвящ. 100-летию со дня рождения акад. В. С. Соболева : тез. докл. – Новосибирск, 2008. – С. 58.
- 8. Мантийное вещество эксплозивного происхождения в осадочных формациях Карпатского региона, связь с проблемами нефтегазоносности и рудоносности / И. Яценко, Н. Билык, Р. Кудеравец [и др.] // Геодинамика. – 2013. – № 2 (15). – С. 72–74.
- Рыбальченко А. Я. Теоретические основы прогнозирования и поисков коренных месторождений алмазов туффизитового типа / А. Я. Рыбальченко, Т. М. Рыбальченко, В. И. Силаев // Изв. Коми НЦ УрО РАН. – 2011. – Вып. 1 (5). – С. 54–66.
- 10. Флюидно-эксплозивные образования в осадочных комплексах / А. П. Казак, Н. Н. Копылова, Е. В. Толмачёва, К. Э. Якобсон. – СПб. : Минерал, 2008. – 42 с.
- Флюїдизатно-експлозивні та кластитові формації докембрію Українського щита / Г. М. Яценко, Є. М. Сливко, О. В. Гайовський [та ін.] // Вісн. Львів. ун-ту. Сер. геол. – 2009. – Вип. 23. – С. 47–70.
- 12. Яценко И. Г. Самородные металлы и другие безкислородные соединения эксплозивного происхождения / И. Г. Яценко, С. Н. Бекеша, Н. Т. Билык // Актуальные проблемы геологии, прогноза, поисков и оценки месторождений твердых полезных ископаемых : междунар. науч.-практ. конф. Судакские геологические чтения IV (IX) : материалы. – Судак, 2013. – С. 94–96.
- 13. Bird J. M. Josephinite: Specimens from the Earth's core? / J. M. Bird and M. S. Weathers // Earth Planet. Sci. Letters. 1975. Vol. 28. P. 51–64.
- Melville W. Josephinite, a new nickel-iron / W. Melville // Am. J. Sci. 1892. Vol. 43. – P. 509–515.
- 15. Native metals and carbides in alpine-type ultramafites of Koryak Highland / N. S. Rudashevsky, G. G. Dmitrenko, A. G. Mochalov and Y. P. Men'shikov // Acta Mineralogica Sinica. – 1983. – N 9. – P. 71–82 (in Russian).
- 16. Origin of podiform chromitites, diamonds, and associated mineral assemblage in the Luobusa ophiolite, Tibet / Bai W. J., Zhou M. F., P. T. Robinson [et al.]. Beijing : Seis-mological Publishing House, 2000 (in Chinese).
- Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: A study of solid and fluid inclusions in chromite / F. Melcher, W. Grum, G. Simon [et al.] // J. Petrol. – 1997. – Vol. 38. – P. 1419–1458.
- 18. Qusongite (WC): A new mineral / Qingsong Fang, Wenji Bai, Jingsui Yang [et al.] // Am. Mineral. 2009. Vol. 94. P. 387–390.
- 19. Shi N. C. Crystal chemistry of metallic carbides in the depth of Earth / Shi N. C., Bai W. J. and Li G. W. // Earth Science Frontiers. 2005. N 12. P. 29–35 (in Chinese).
- Ultra-high pressure minerals in the Luobusa ophiolite, Tibet and their tectonic implications / P. T. Robinson, Bai W. J., J. Malpas [et al.] // Tectonics of China. – Geol. Society of London Special Publication, 2004. – Vol. 226. – P. 247–271.

Стаття: надійшла до редакції 15.08.2014 прийнята до друку 24.09.2014

THE FIRST OCCURRENCE OF QUSONGITE IN EXPLOSIVE FORMATIONS OF UKRAINE

N. Bilyk, I. Yatsenko, I. Poberezhska, V. Stepanov

Ivan Franko National University of Lviv, 4, Hrushevskyi St., 79005 Lviv, Ukraine E-mail: natbilik@mail.ru

Tungsten carbide – qusongite WC – has been first discovered in explosive formations of the Ukrainian Shield in association with intermetallic alloys and oxygen-free minerals. Qusongite is steel-gray in colour, opaque, with a metallic lustre, has different shapes, grain size is from 0,2 to 0,8 mm; it forms separate crystals and intergrowths with intermetallic compounds. According to the microprobe analysis results, the empirical formula of qusongite – $W_{0,998}C_{1,003}$. The average value of microhardness is 2 166 kg/mm² (on the Mohs scale – 9,03). Probably, qusongite and paragenetic compounds have been formed under the mantle conditions; the transportation of material to the surface has been connected with fluidized-explosive processes of mantle type.

Key words: qusongite, intermetallic alloy, diamond, mantle minerals, explosive structure, Ukrainian Shield.

ПЕРВАЯ НАХОДКА КУСОНГИТА В ЭКСПЛОЗИВНЫХ ОБРАЗОВАНИЯХ УКРАИНЫ

Н. Билык, И. Яценко, И. Побережская, В. Степанов

Львовский национальный университет имени Ивана Франко, ул. Грушевского, 4, 79005 г. Львов, Украина E-mail: natbilik@mail.ru

В эксплозивных образованиях Украинского щита впервые диагностировано карбид вольфрама – кусонгит WC в ассоциации с интерметаллическими сплавами и безкислородными минералами. Кусонгит стально-серого цвета, непрозрачный, с металлическим блеском, разнообразной формы, размер зерен – от 0,2 до 0,8 мм; образует самостоятельные кристаллы и сростки с интерметаллидами. По результатам микрозондового анализа, эмпирическая формула кусонгита – $W_{0,998}C_{1,003}$. Среднее значение микротвердости составляет 2 166 кг/мм² (по шкале Мооса – 9,03). Возможно, формирование кусонгита и парагенных с ним соединений происходило в мантийных условиях; транспортирование материала на поверхность связано с флюидизатно-эксплозивными процессами мантийного типа.

Ключевые слова: кусонгит, интерметаллический сплав, алмаз, мантийные минералы, эксплозивная структура, Украинский щит.