УДК 549(477)

БАРІЄВІ СЛЮДИ В МАГНЕЗІАЛЬНИХ СКАРНАХ ЗАВАЛІВСЬКОГО РОДОВИЩА ГРАФІТУ

К. Шакіна, Л. Скакун, Н. Білик, Б. Манчур

Львівський національний університет імені Івана Франка 79005 м. Львів, вул. Грушевського, 4 E-mail: mineral@franko.lviv.ua

У магнезіальних скарнах Завалівського родовища графіту серед різноманітних шаруватих силікатів виявлено слюди з високим вмістом ВаО (11,41–18,64 %) - суттєво магнезіальний кіношиталіт і залізистий аналог кіношиталіту, або ферокіношиталіт. На Завалівському родовищі у магнезіальних скарнах відшукано три різновікові асоціації, які приурочені до трьох етапів скарноутворення. На першому етапі відбувалося формування діопсидових скарнів на контакті доломітів з ендербітами й ін'єкціями кварц-плагіоклаз-гіперстенових пегматитів. Цьому етапу відповідає найбільш рання асоціація діопсид-кальцит-шпінель-форстерит. Другий етап - формування енстатитових скарнів, відокремлене в часі від попереднього етапу деформаціями і пов'язане з процесами чарнокітизації й утворенням біотит-гранатових сланців у зонах пластичної деформації з привнесенням Al^{3+} , Mg^{2+} , Fe^{2+} , Ba^{2+} і K^+ . Власне на цьому етапі утворилися Ва-вмісні слюди. Ферокіношиталіт виявлений у тиловій зоні магнезіальних скарнів у парагенезисі з феросилітом і кальцитом, тоді як кіношиталіт простежено в енстатитових скарнах у парагенезисі з енстатитом і доломітом. Флогопіт формувався на регресивному етапі скарноутворення у парагенезисі з хлоритом, кварцом і кальцитом. На регресивному етапі відбувалося заміщення барієвих слюд змішаношаруватими силікатами з переходом Ba²⁺ у розчин і наступним осадженням на верхніх горизонтах у вигляді романешиту і горсейкситу. Кіношиталіт і ферокіношиталіт, на відміну від флогопіту, за результатами мікрозондового аналізу, мають нижчі вмісти SiO₂, MnO, K₂O, а також не мають домішок Na₂O, TiO₂, CoO i NiO. Барій входить у структуру кіношиталіту і ферокіношиталіту за схемою гетеровалентного ізоморфізму ${}^{A}K^{+} + {}^{V}Si^{4+}$ $\leftarrow (^{A}Ba^{2+}, \overset{A}{}Ca^{2+}) + {}^{IV}Al^{3+}.$

Ключові слова: Ва-слюди, кіношиталіт, ферокіношиталіт, флогопіт, магнезіальний скарн, кальцифір, Завалівське родовище, Україна.

У групі триоктаедричних барієвих крихких слюд виділяють такі мінеральні види: кіношиталіт (kinoshitalite) $BaMg_3[Al_2Si_2O_{10}](OH)_2$; анандит (anandite) $BaFe^{2+}_3Fe^{3+}[SiO_{10}]S(OH)$; ферокіношиталіт (ferrokinoshitalite) $BaFe_3[Al_2Si_2O_{10}](OH)_2$ [12, 13].

Кіношиталіт уперше виявлений на родовищі манґану Нода-Тамагава (префектура Івату, Японія) у породах, метаморфізованих за умов амфіболітової до гранулітової фації метаморфізму. Назву мінерал отримав на честь доктора Камекі Кіношита (Kameki Kinoshita), дослідника рудних родовищ Японії. Також кіношиталіт описаний у лужних вивержених породах, метасоматичних утвореннях, мармурах, каль-

[©] Шакіна К., Скакун Л., Білик Н., Манчур Б., 2008

цифірах, скарнах і метаморфізованих родовищах мангану. Огляд місць знахідок кіношиталіту в світі наведено в працях [11, 13].

Вміст ВаО в кіношиталіті досягає 29,12 % [11]. У більшості місць знахідок для кіношиталіту зафіксовано значні концентрації мангану (від 3–4 до 10–12 % MnO). Низькі концентрації мангану (десяті–соті частки відсотка MnO) притаманні кіношиталіту з манганових скарнів родовища Лонгман у Швеції [2], олівінових нефелінітів з острова Фернанду-ді-Норонья [9]. Для структури кіношиталіту характерна моноклінна сингонія, шарувата структура (політип 1М, просторова група c2/m). Перехід структури флогопіту в структуру кіношиталіту відбувається за співвідношення Ва:К = 1:2.

Залізистий аналог кіношиталіту, або ферокіношиталіт, уперше виявлений у високометаморфізованих смугастих залізистих формаціях, які містять масивні сульфідні рудні тіла, на родовищі Брокен Хіл (провінція Кап, Південна Африка) [12].

Кіношиталіт під назвою барієвий флогопіт на Українському щиті вперше описаний Г. Кравченко [2] у кальцифірах Куксунгурського і Маріупольського залізорудних родовищ у Західному Приазов'ї (ВаО – до 7 %) і в кальцифірах басейну р. Каратюк, лівої притоки р. Берда в Середньому Приазов'ї (ВаО – 9–15 %). Також кіношиталіт відшукано в магнезіальних скарнах в ореолі контактових роговиків Корсунь-Новомиргородського плутону [8] (ВаО – від 7,07 до 17,62 %).

Особливості магнезіальних скарнів Завалівського графітового родовища. На Завалівському родовищі графіту одним з найпоширеніших типів порід є кальцифіри, які за формаційною будовою належать до мармур-кальцифірової і кондалітової формацій [3]. Кальцифіри в межах формаційної концепції геологічної будови розглядають як метаморфічні утворення, тобто такі, що сформувалися разом з іншими типами порід у процесі регіонального метаморфізму первинно-осадових порід. У кальцифірах описано прошарки, лінзи і ділянки неправильної форми крупнокристалічної діопсидової породи. О. Ушакова (1961) в дисертаційній праці припустила метасоматичне походження діопсидової породи зі збагачених магнієм олівінових кальцифірів. С. Нечаєв і В. Сьомка вперше почали трактувати кальцифіри і діопсидові породи як тіла магнезіальних скарнів [5] у доломітових мармурах. Дослідники зазначили про зональну будову скарнових тіл – зону крупнокристалічної діопсидової породи, яка переходить у зону форстеритового кальцифіру.

На Завалівському родовищі ми виділили два типи магнезіальних скарнів: діопсидові й енстатитові.

Діопсидові скарни формують зону потужністю до декількох метрів на контакті з ендербітами й ін'єкціями кварц-плагіоклаз-гіперстенових пегматитів. Діопсидові скарни – це світло-забарвлені масивні, крупнокристалічні (розмір кристалів діопсиду досягає 30 см), слабкодеформовані породи (рис. 1,*a*). Ці породи містять також у невеликій кількості (5–10 %) кальцит і форстерит. Діопсидові скарни переходять у вузьку зону форстерит-діопсид-шпінелевого кальцифіру. Макроскопічно це яснозелені дрібно-середньозернисті смугасті породи. Смугастість зумовлена чергуванням смуг суттєво карбонатного складу і смуг, представлених переважно силікатами.

Енстатитові скарни наявні на контакті з біотит-гранатовими сланцями (див. рис. 1,6). Макроскопічно це темнобарвні, переважно сіро-зелені до темно-зелених, середньо-крупнозернисті, тонкосмугасті породи. Смугастість зумовлена чергуванням смуг, складених кальцитом, і смуг, складених доломітом і енстатитом. Для

енстатитових скарнів характерні ознаки будинажу: наявні будини крупнозернистого кальциту і тріщинуватого діопсиду, оточені облямівкою енстатиту (див. рис. 1,*s*).

а – зональність магнезіальних скарнів; *б* – енстатитові скарни на контакті діопсидових скарнів і кварц-плагіоклаз-гранатових сланців; *в* – будини діопсидового скарну з облямів-кою енстатитового скарну в кальцифірах.

Характерно, що в кальцифірах у зоні контакту з будинованими тілами діопсидового скарну карбонати дрібнозернисті, а з віддаленням від контакту розмір зерен карбонатів поступово збільшується, що свідчить про умови пластичної деформації цих порід.

Барієвмісні слюди в магнезіальних скарнах Завалівського родовища та їхнє співвідношення з іншими мінералами. В магнезіальних скарнах Завалівського родовища поряд зі звичайним флогопітом виявлені Ва-вмісні крихкі слюди (11,41–18,64 %) – кіношиталіт і ферокіношиталіт, які простежують у двох відмінних ситуаціях. За зовнішнім виглядом Ва-вмісні слюди подібні на флогопіт: обидві слюди утворюють луски від зеленкуватого до ясно-коричневого забарвлення розміром до декількох міліметрів.

Ферокіношиталіт трапляється у вигляді поодиноких зерен у парагенезисі з феросилітом і кальцитом у кварц-піроксенових породах у тиловій зоні магнезіальних скарнів поблизу контакту діопсидового скарну і кварц-плагіоклаз-гранатових слан-

Рис. 2. Магнезіальні скарни Завалівського родовища (BSE-зображення): *а* – кварц-піроксенова порода: індукційні межі між зернами феросиліту Fs і ферокіношиталіту; *б* – енстатитовий скарн: індукційні межі між зернами кіношиталіту Ksh, енстатиту En і доломіту Dol; *в* – форстерит-піроксен-шпіненелевий кальцифір; *г* – енстатитовий скарн: кіношиталіт, заміщений змішаношаруватими гідрослюдами.

Кіношиталіт простежують у парагенезисі з енстатитом і доломітом в енстатитових скарнах, які формують облямівку навколо будин діопсидових скарнів у кальцифірах (див. рис. 2,6). Такі ділянки ми розглядаємо як фронтальну зону розвитку енстатитових скарнів. Доломіт, енстатит і кіношиталіт формуються одночасно, про що свідчать індукційні границі між їхніми індивідами.

Парагенезиси енстатит–доломіт–кіношиталіт і феросиліт–кальцит–ферокіношиталіт є накладеними на більш ранній парагенезис прогресивного етапу скарноутворення діопсид–форстерит–шпінель–кальцит. Зерна діопсиду, форстериту і шпінелі в агрегатах, що містять Ва-слюди, деформовані, тріщинуваті, тоді як зерна енстатиту й феросиліту недеформовані (див. рис. 2,*в*).

Флогопіт утворює парагенезис з хлоритом, кальцитом, клінохлором і кварцом. Цей парагенезис передує формуванню графіту.

Надалі Ва-вмісні слюди заміщуються змішаношаруватими силікатами (див. рис. 2,*г*). Методика досліджень. Хімічний склад слюд магнезіальних скарнів досліджували на растровому електронному мікроскопі-мікроаналізаторі РЕММА–102-02 в лабораторії науково-технічного і навчального центру низькотемпературних досліджень Львівського національного університету імені Івана Франка.

Растровий електронний мікроскоп-мікроаналізатор РЕММА–102-02 складається з таких блоків і систем: електронно-оптична і вакуумна системи, відеоконтрольний пристрій, універсальний механізм переміщення об'єктів, система рентгенівського мікроаналізу (два спектрометри хвильової дисперсії, спектрометр енергетичної дисперсії і пристрій керування та вимірювань), контрольні зразки і програмне забезпечення. Прилад забезпечує отримання зображення в таких режимах: у вторинних (SE), відбитих (ТОРО, СОМРО) електронах і характеристичних рентгенівських променях.

Роздільна здатність приладу – не більше 5 нм. Діапазон зміни збільшення – 10– 300 000 разів. Діапазон зміни прискорювальних напруг – 0,2–40 кВ. Діапазон аналізованих елементів спектрометрами хвильової і енергетичної дисперсії – від ₄Ве до ₉₂U.

Хімічний склад кіношиталіту і флогопіту. Хімічний склад Ва-вмісних крихких слюд і флогопіту магнезіальних скарнів Завалівського родовища наведений у табл. 1, 2. На діаграмі Mg–Fe–(Ca+Ba) (рис. 3) показано варіації складу слюд.

Під час порівняння хімічного складу флогопіту і кіношиталіту виявлено такі особливості. Для кіношиталіту порівняно з флогопітом, крім високого вмісту ВаО (11,41–18,64 ваг. %), характерні нижчі середні вмісти SiO₂ (37,53 ваг. % для кіношиталіту (КШ) і 40,91 ваг. % для флогопіту (ФЛ)), FeO (1,30 для КШ і 4,84 для ФЛ), MnO (0,03 для КШ і 0,19 для ФЛ), K₂O (6,09 для КШ і 10,16 для ФЛ), а також немає домішок Na₂O, TiO₂, CoO i NiO. Вміст MgO, Al₂O₃ і CaO у флогопіті й кіношиталіті майже однаковий. Характерною особливістю ферокіношиталіту є наявність домішки хлору.

Структурні формули флогопіту і Ва-вмісних крихких слюд розраховані за методом зарядів, за яким обчислення виконують на підставі кількості негативних зарядів, яка відповідає частці кисню в стандартній формулі мінералу (у цьому випадку – 22).

На трикутній діаграмі (Na+K)–Ca–Ba (рис. 4) показана заселеність позиції A у структурі Ва-вмісних слюд і флогопіту. У структурі флогопіту в міжпакетному просторі (позиція A) 83–100 % позиції займає K, на частку Na і Ca припадає 0–13 і 0–10 %, відповідно. У структурі Ва-вмісних слюд у позиції міжпакетного простору є Ba (33–54 %), K і Ca займають 41–62 і 2–10 % позиції, відповідно.

В октаедричній позиції у структурі кіношиталіту 84–90 % об'єму займає Mg, Al становить 7–13 % позиції, вміст Fe²⁺ не перевищує 4 %. Для структури ферокіношиталіту характерні зворотні співвідношення між Mg і Fe. Октаедрична позиція ферокіношиталіту заселена переважно двовалентним залізом (80 %), магній і алюміній становлять 12 і 7 % об'єму позиції, відповідно. У структурі флогопіту Mg займає 78–84 % октаедричної позиції, Fe²⁺ – 3–18, Al – 3–11 %.

Власне кіношиталіт з магнезіальних скарнів Завалівського родовища близький за складом до кіношиталіту з кальцифірів Приазов'я і магнезіальних скарнів Корсунь-Новомиргородського плутону. Однак кіношиталіт з цих місць має незначний вміст домішок TiO₂ і Na₂O. Ймовірно, кіношиталіт у магнезіальних скарнах Завалівського родовища не містить цих домішок, або вміст TiO₂ і Na₂O є нижче чутливості мікрозондового аналізу. Барійвмісні слюди зазнають заміщення змішаношаруватими силікатами. Цей процес відбувається поступово і виявляється в збільшенні кількості води у структурі мінералів.

Таблиця	1
---------	---

Хімічний склад і формульні коефіцієнти кіношиталіту (1-8) і ферокіношиталіту (9)
з магнезіальних скарнів Завалівського родовища

Компо-	Номер проби								
ненти	1	2	3	4	5	6	7	8	9
SiO ₂	38,05	35,02	39,03	38,25	38,31	39,18	38,5	33,91	28,61
Al_2O_3	17,84	16,84	15,07	14,91	15,59	16,21	16,12	17,37	14,90
MgO	22,74	21,93	20,88	21,67	21,61	20,69	19,58	20,00	2,53
FeO	1,35	1,48	1,13	1,41	1,55	0,82	1,42	1,26	28,03
MnO	0,05	0,02	0,06	0,09	-	-	_	0,02	-
CaO	0,31	0,45	1,19	1,15	1,43	0,55	0,31	0,70	1,12
BaO	11,71	11,41	13,45	12,53	12,83	13,33	13,66	18,64	14,87
K ₂ O	6,28	5,26	6,43	6,59	6,40	6,91	6,51	4,35	6,17
Cl ⁻	-	-	-	-	-	-	-	-	3,78
Сума	98,32	92,41	97,23	96,61	97,71	97,67	96,1	96,25	100,00
			Φα	рмульні і	коефіцієн	ги			
Si _{IV}	2,760	2,712	2,911	2,867	2,841	2,897	2,906	2,660	2,590
Al _{IV}	1,240	1,288	1,089	1,133	1,159	1,103	1,094	1,340	1,410
Σ_{IV}	4	4	4	4	4	4	4	4	4
Al_{VI}	0,285	0,248	0,236	0,184	0,204	0,310	0,341	0,265	0,170
Mg	2,459	2,531	2,322	2,421	2,389	2,281	2,204	2,339	0,340
Fe	0,082	0,096	0,070	0,088	0,096	0,051	0,090	0,083	2,120
Mn	0,003	0,001	0,004	0,006	-	-	-	0,001	—
$\Sigma_{\rm VI}$	2,829	2,876	2,632	2,699	2,689	2,642	2,635	2,688	2,630
Ca	0,024	0,037	0,095	0,092	0,114	0,044	0,025	0,059	0,110
Ba	0,333	0,346	0,393	0,368	0,373	0,386	0,404	0,573	0,530
Κ	0,581	0,520	0,612	0,630	0,605	0,652	0,627	0,435	0,710
$\Sigma_{\rm A}$	0,938	0,903	1,100	1,090	1,092	1,082	1,056	1,067	1,350
Ba/A	0,355	0,383	0,357	0,338	0,342	0,357	0,383	0,537	0,391
f^*	0,032	0,037	0,029	0,035	0,039	0,022	0,039	0,034	0,861
<i>m</i> **	0,968	0,963	0,971	0,965	0,961	0,978	0,961	0,966	0,139
Cl ⁻	-	-	-	-	-	-	—	-	0,580

*f = Fe/(Mg+Fe+Mn); **m = Mg/(Mg+Fe+Mn).

Одночасно відбувається різке зменшення вмісту барію, пов'язане з переходом Ва²⁺ (рис. 5) у розчин.

Отже, барієві крихкі слюди могли бути джерелом барію для горсейкситу [4] і романешиту [7] – низькотемпературних мінералів лінійних зон глинистих змін із кварц-гетит-манганіт-граутитовою мінералізацією на верхніх горизонтах родовища.

Характерною особливістю Ва-вмісних крихких слюд – кіношиталіту і ферокіношиталіту – на Завалівському родовищі та у світі є їхня приуроченість до високотемпературних скарнів магнезіального типу, які формуються в зонах плавлення земної кори за умов, близьких до амфіболітової фації метаморфізму.

Магнезіальні скарни Завалівського родовища є типовими інфільтраційними скарнами з характерними двома типами метасоматичних колонок.

Таблиця 2

На контакті доломітів з ендербітами й ін'єкціями кварц-плагіоклаз-гіперстенових пегматитів простежують скарнові тіла, у будові яких беруть участь дві зони: тилова – діопсидові скарни, і фронтальна – форстерит-піроксен-шпінелеві кальцифіри. Така зональність узгоджується з будовою визначеної А. Александровим [1] примітивної колонки типових магнезіальних скарнів. Формування скарнів з примітивною інфільтраційною зональністю відповідає початковому етапу розвитку метасоматозу доломітів.

IC	Номер проби							
компонент	1	2	3	4	6	7	8	
SiO ₂	43,21	43,74	40,90	39,32	38,32	37,98	42,93	
Al_2O_3	15,05	16,36	14,80	15,87	13,27	17,3	16,35	
TiO ₂	0,97	0,71	1,02	0,20		0,46	1,21	
MgO	22,24	23,87	22,83	22,92	21,39	22,17	22,63	
FeO	4,84	4,10	5,53	4,76	8,47	4,56	1,60	
MnO			0,21	0,18				
CoO			0,06			0,13		
NiO					0,18	0,02		
CaO	0,69	0,76	0,71	0,61	1,01	0,53		
Na ₂ O			1,14	1,13	0,34	0,15		
K ₂ O	10,14	9,75	10,57	11,32	6,73	12,23	10,38	
Сума	97,14	99,29	97,77	96,32	90,22	95,52	95,80	
		Форм	аульні коеф	ріцієнти				
Si _{IV}	2,991	2,942	2,866	2,804	2,909	2,735	2,983	
Al _{IV}	1,009	1,058	1,134	1,196	1,091	1,265	1,017	
$\Sigma_{\rm IV}$	4	4	4	4	4	4	4	
Al _{VI}	0,219	0,240	0,088	0,137	0,096	0,204	0,323	
Ti	0,051	0,036	0,054	0,011		0,025	0,063	
Mg	2,295	2,394	2,385	2,436	2,420	2,380	2,345	
Fe	0,280	0,231	0,324	0,284	0,538	0,275	0,093	
Mn	_	—	0,012	0,011	_	—	_	
Co	—	-	0,003	—	-	0,008	-	
Ni	—	-	—	—	0,011	0,001	-	
$\Sigma_{ m VI}$	2,845	2,901	2,866	2,879	3,065	2,893	2,824	
Ca	0,051	0,055	0,053	0,047	0,082	0,041	-	
Na	_	_	0,155	0,156	0,050	0,021	-	
Κ	0,896	0,837	0,945	1,030	0,652	1,124	0,920	
$\Sigma_{\rm A}$	0,947	0,892	1,153	1,233	0,784	1,186	0,920	
Fe/(Mg+Fe+Mn)	0,109	0,088	0,119	0,104	0,182	0,104	0,038	
Mg/(Mg+Fe+Mn						-	-	
)	0,891	0,912	0,877	0,892	0,818	0,896	0,962	

T 7' ' '	• •				
Хімічний склал	і і формульні	коефппенти	ФЛОГОПІТУ З	магнезальних	скарнів

Енстатитові скарни формувалися на другому етапі скарноутворення. Він відірваний у часі від попереднього етапом пластичних деформацій, по яких утворювались біотит-гранатові сланці.

Цей процес пов'язаний з другим етапом синкінематичного плавлення субстрату на нижніх горизонтах з утворенням чарнокітів і кварц-калішпат-біотитових пегматитів. На цьому етапі тилова зона розвитку магнезіальних скарнів перетворювалась у розплав, і надалі її заміщав розплав діопсидового скарну, унаслідок чого зростала геохімічна рухливість Mg, що його не засвоював розплав під час магматичного інфільтраційного заміщення. Це, відповідно, зумовило формування колонки з переміщеними компонентами [1], у будові якої є зони, збагачені магнієм (власне енстатитові скарни), і зони, збіднені магнієм (екзоскарнові феросиліт-плагіоклазові зони). Утворення плагіоклазу, ймовірно, відбувалось завдяки заміщенню діопсиду.

Рис. 3. Трикутна діаграма Mg–Fe– (Ca+Ba) для флогопіту (фігуративні точки, позначені квадратами) і Ва-вмісних крихких слюд (фігуративні точки, позначені білими кружками, – кіношиталіт, чорним кружком – ферокіношиталіт).

Рис. 4. Трикутна діаграма заселеності позиції *А* в структурі флогопіту і Ва-вмісних крихких слюд. Позначення ті ж, що й на рис. 3.

Рис. 5. Залежність вмісту ВаО від кількості води в структурі кіношиталіту в разі заміщення змішаношаруватими силікатами, ваг. %.

Кіношиталіт і ферокіношиталіт утворювалися власне на етапі формування енстатитових скарнів у дещо відмінних асоціаціях, розділених у просторі. Кіношиталіт наявний у парагенезисі з енстатитом і доломітом в енстатитових скарнах, які формують облямівку навколо будин діопсидових скарнів у кальцифірах (фронтальна зона магнезіальних скарнів). Ферокіношиталіт виявлений у парагенезисі з феросилітом і кальцитом у кварц-піроксенових породах у тиловій зоні розвитку магнезіальних скарнів. За результатами мікрозондового аналізу, формули кіношиталіту і ферокіношиталіту такі:

 $(K_{0,44-0,65}Ba_{0,33-0,57}Ca_{0,02-0,11})(Mg_{2,20-2,53}Fe_{0,05-0,09}Al_{0,18-0,34})[Al_{1,08-1,34}Si_{2,66-2,91}O_{10}](OH)_2;\\(K_{0,71}Ba_{0,11})(Fe_{2,12}Mg_{0,34}Al_{0,17})[Al_{1,41}Si_{2,59}O_{10}](Cl_{0,58}OH_{1,42}), відповідно.$

Для кіношиталіту характерні домішки Mn – 0,02–0,09 %.

Коливання хімічного складу Ва-вмісних слюд зумовлене ізоморфізмом, що відбувається за такими схемами:

$${}^{A}K^{+} + {}^{IV}Si^{4+} \leftrightarrow {}^{A}(Ba^{2+}, Ca^{2+}) + {}^{IV}Al^{3+},$$

$${}^{VI}Al^{3+} + {}^{IV}Al^{3+} \leftrightarrow {}^{VI}(Mg^{2+}, Fe^{2+}, Mn^{2+}) + {}^{IV}Si^{4-}$$

Стосовно генезису Ва-вмісних крихких слюд у літературі розглядають дві головні гіпотези. Згідно з першою гіпотезою, джерелом Ва для формування барієвих крихких слюд були первинно-осадові породи [2, 8]. За другою гіпотезою, барій привнесений глибинними флюїдами.

Однак для формування Ва-вмісних крихких слюд необхідний не лише Ва, а й значна концентрація Al у системі. Первинно-осадові породи не містили Ва і Al, що спростовує першу гіпотезу.

Процес формування енстатитових скарнів пов'язаний з дією флюїдів, які генеруються в процесі анатексису земної кори на нижніх горизонтах. Флюїди разом з Ва привносять K, Al, Fe, Cl. Флюїди цього хімічного складу зумовлюють процес чарнокітизації [6] і власне формування барієвих слюд в асоціаціях енстатитових скарнів.

Отже, барієві крихкі слюди – кіношиталіт і ферокіношиталіт – виявлені в енстатитових скарнах Завалівського родовища. Кіношиталіт наявний у парагенезисі з енстатитом і доломітом в енстатитових скарнах, які формують облямівку навколо будин діопсидових скарнів (фронтальна зона розвитку енстатитових магнезіальних скарнів). Ферокіношиталіт зафіксований у парагенезисі з феросилітом і кальцитом у кварц-піроксеновій породі в тиловій зоні розвитку магнезіальних скарнів.

Барієві слюди за зовнішнім виглядом подібні на флогопіт: формують луски від зеленкуватого до ясно-коричневого забарвлення і розміром до декількох міліметрів. За хімічним складом мають високий вміст ВаО (11,41–18,64 ваг. %) і досить низький вміст МпО (0,02–0,09 ваг. %). Головна схема ізоморфізму, реалізована в структурі барієвих слюд, така: ${}^{A}K^{+} + {}^{IV}Si^{4+} \leftrightarrow {}^{A}(Ba^{2+}, Ca^{2+}) + {}^{IV}Al^{3+}$.

Формування енстатитових скарнів пов'язане з другим етапом синкінематичного плавлення субстрату, в процесі якого й генеруються флюїди, які є джерелом Ва, Al та інших елементів (K, Fe, Cl) для формування Ва-вмісних крихких слюд.

- 4. Мельник Ю.М. Горсейксит из Завальевского графитового месторождения (Среднее Побужье) // Минерал. сб. 1974. № 28. Вып. 1. С. 69–72.
- 5. Нечась С.В., Сёмка В.А. Скарны Украины. К., 1989.
- 6. Семененко Л.П. Гранулиты и чарнокиты Украинского щита. К., 1995.

^{1.} Александров С.М. Геохимия скарно- и рудообразования в доломитах. М., 1990.

Кравченко Г.Л. О находке бариевого флогопита в карбонатных породах Приазовья // Геол. журн. 1975. Т. 35. № 3. С. 1445–1447.

Лазько Е.М., Кирилюк В.П., Сиворонов А.А., Яценко Г.М. Нижний докембрий западной части Украинского щита (возрастные комплексы и формации). Львов, 1975.

- 7. *Скакун Л., Манчур Б., Мартишин А.* Граутит із Завалівського родовища (перша знахідка в Україні) // Мінерал. зб. 2003. № 53. Вип. 1–2. С. 49–57.
- Сьомка В.О., Нечаєв С.В., Максимчук І.Г. Високобарієвий флогопіт з докембрійських скарнів Українського щита // Доп. АН УРСР. Сер. Б. 1989. № 2. С. 21–24.
- Уварова Ю.А., Соколова Е.В., Когарко Л.Н. Киноситалит необычного состава с острова Фернандо-ди-Норонья, Бразилия // Геохимия магматических пород: Тез. докл. к Всерос. семинару с участием стран СНГ, 2002.
- 10. Щербаков И. Петрология Украинского щита. Львов, 2005.
- Gnos E., Armbruster T. Kinoshitalite, BaMg₃(Al₂Si₂) O₁₀(OH,F)₂, a brittle mica from a manganese deposit in Oman: Paragenesis and crystal chemistry // American Mineralogist. 2000. Vol. 85. P. 242–250.
- Guggennheim S., Frimmel H. Ferrokinoshitalite, a new species of brittle mica from the Broken Hill Mine, South Africa: Structural and mineralogical characterization // Canadian Mineralogist. 1999. Vol. 37. P. 1445–1452.
- Tracy R.J., Beard J.S. Manganoan kinoshitalite in Mn-rich marble and skarn from Virginia // American Mineralogist. 2003. Vol. 88. P. 740 –747.

BA-RICH MICAS IN MAGNESIUM SKARNS FROM ZAVALLYA GRAPHITE DEPOSIT

K. Shakina, L. Skakun, N. Bilyk, B. Manchur

Ivan Franko National University of Lviv Hrushevskogo St. 4, UA – 79005 Lviv, Ukraine E-mail: mineral@, franko.lviv.ua

A new locality for the Ba-rich trioctahedral micas, kinoshitalite and ferrokinoshitalite, has been found in Zavallya graphite deposit. Kinoshitalite associates with enstatite and dolomite in enstatite skarns while ferrokinoshitalite – with ferrosilite and calcite in quartz-pyroxene rock in proximal zone of magnesian skarn. Phlogopite forms at retrograde stage in association with clinochlore, calcite, quartz, magnetite, pyrrhotite and graphite. Ba-rich micas with respect to phlogopite are characterized by lower contents of MnO, K₂O with no impurity of Na₂O, TiO₂, CoO and NiO. The main substitution mechanism in kinoshitalite is ${}^{A}K^{+} + {}^{IV}Si^{4+} \leftarrow ({}^{A}Ba^{2+}, {}^{A}Ca^{2+}) + {}^{IV}Al^{3+}$. Skarn formation may be divided into three stages: formation of diopside skarn in contact with enderbite and dolomite; formation of enstatite skarn connecting with the process of charnokitization and ductile deformation zones. Ba-rich micas have been formed exactly during second stage of skarn formation. At the third stage (retrograde stage) Ba-rich micas was depleted on Ba²⁺. Then Ba²⁺ precipitated from solutions in upper horizons in form of romanechite and gorceixite.

Key words: Ba-micas, kinoshitalite, ferrokinoshitalite, phlogopite, magnesian skarn, calc-silicate, Zavallya graphite deposit, Ukraine.

Стаття надійшла до редколегії 01.09.2008 Прийнята до друку 30.10.2008