UDC 681.518

DOI: https://doi.org/10.30970/eli.28.9

REMOTE HEALTH MONITORING SYSTEM FOR INFANTS BASED ON PSoC

A. Lukianchuk, H. Klym, T. Tkachuk, I. Rudavskyi

Lviv Polytechnic National University, 12, Bandera Str, Lviv, 79013, Ukraine.

<u>andrii.lukianchuk.mkisk.2023@lpnu.ua</u>, <u>halyna.i.klym@lpnu.ua</u>, <u>taras.i.tkachuk@lpnu.ua</u>, <u>iyan2001rud@gmail.com</u>

Infant health monitoring is crucial for early detection of potential health issues. Many existing solutions, while effective, are often costly and designed for clinical settings, making them less accessible for home use. Parents require an affordable, easy-to-use solution to monitor their infant's vital signs, such as body temperature and pulse, in real time. The rapid development of wireless communication technologies and microcontroller systems like Programmable System-on-Chip (PSoC) provides a new opportunity to create effective, low-power, and cost-efficient health monitoring systems tailored for home use. This study focuses on developing a remote infant health monitoring system that integrates wireless data transmission to enable real-time monitoring by parents.

The proposed system consists of three modules: On-Child-Device, Child-Device, and Parent-Device. The On-Child-Device, worn by the infant, measures vital signs using a thermistor and an infrared pulse sensor. The data is processed by a PSoC microcontroller and transmitted wirelessly to the Child-Device, which then forwards the information to the Parent-Device for display. The Parent-Device provides a user interface where parents can monitor real-time data, including alerts for abnormal readings. The system's hardware is built using PSoC technology, offering flexibility in integrating sensors and communication protocols. Software development was carried out using the PSoC Designer environment, which allows for real-time data acquisition, error checking, and wireless communication management.

Initial testing of the system demonstrated reliable performance in measuring and transmitting vital signs. The wireless communication between the modules showed minimal latency, with real-time data accurately displayed on the Parent-Device. The use of PSoC technology enabled efficient power consumption, allowing the system to operate continuously for extended periods without frequent battery replacements. The system's modular design also proved adaptable, allowing for potential integration of addition-al sensors in the future. Feedback from users highlighted the intuitive interface of the Parent-Device, making it accessible for non-technical users. However, challenges related to signal interference in certain environments were noted, suggesting the need for further optimization of the communication protocol.

The developed remote infant health monitoring system offers a cost-effective, energy-efficient solution for home use. By utilizing PSoC technology, the system provides reliable real-time monitoring of vital signs, ensuring that parents can quickly respond to any health abnormalities. The wireless transmission and user-friendly interface make the system practical for everyday use, filling a significant gap in current infant health monitoring technologies. Future improvements will focus on enhancing the communication robustness and integrating additional health metrics to provide a more comprehensive monitoring solution.

Keywords: Telemetric data, Parental device, Health monitoring, Temperature sensor, Pulse measurement, Programmable System on Chip

Introduction

Infant health monitoring is a critical aspect of modern healthcare, particularly in the context of early detection and intervention for various health issues. The rapid growth and development of infants during their first months of life make them particularly vulnerable to health complications, which can often arise suddenly [1]. Early symptoms, such as slight changes in temperature, heart rate, or overall behavior, can indicate underlying health concerns, necessitating continuous monitoring to ensure prompt medical attention when necessary.

While traditional healthcare settings employ sophisticated systems to monitor vital signs, these solutions are often expensive and may not be feasible for home use. Many parents seek effective and affordable alternatives that can provide peace of mind by enabling them to track their infant's health status in real time. The lack of accessible, cost-effective monitoring solutions highlights a significant gap in the market, leading to in-creased interest in developing technologies that can facilitate home health monitoring for infants [2-4].

Recent advancements in telehealth and wearable technology have paved the way for innovative solutions that allow for the remote monitoring of health parameters. The integration of sensors and wireless communication technologies into compact devices presents an opportunity to create user-friendly systems that provide essential health data directly to parents or caregivers. Such systems can empower parents to take an active role in their child's health management, reducing anxiety and enhancing their ability to respond quickly to potential issues [5].

This paper describes the development of a remote infant health monitoring system built on a programmable system-on-chip (PSoC) platform. The proposed system integrates three interconnected modules: On-Child-Device, which is worn by the infant; the Child-Device, which processes and transmits data; and the Parent-Device, which displays real-time health information. By utilizing PSoC technology, the system is designed to be both cost-effective and efficient, enabling parents to monitor their child's vital signs, such as body temperature and pulse, from the comfort of their homes.

The objective of this research is to create a robust and reliable monitoring solution that not only tracks vital signs but also ensures that parents can receive immediate alerts in the event of any abnormalities. By ad-dressing the challenges faced in traditional monitoring methods and leveraging modern technological advancements, this system aims to provide a valuable tool for enhancing infant health management in home set-tings.

Literature review and problem statement

The increasing prevalence of chronic health conditions in infants has prompted a significant body of re-search focusing on the development of remote monitoring technologies. Numerous studies have highlighted the importance of continuous monitoring to enable early detection and timely interventions, which can dramatically improve health outcomes. For instance, a study discusses the efficacy of wearable devices in tracking vital signs in real time, emphasizing their potential to reduce hospital admissions through proactive health management [1-6].

Current health monitoring systems vary widely in their scope and complexity, ranging from basic wearable devices that measure single parameters to more sophisticated solutions that integrate multiple sensors and provide comprehensive health profiles. However, many existing systems are primarily designed for clinical environments, leading to challenges when

adapting them for home use. Studies have shown that the cost, complexity, and lack of user-friendly interfaces often discourage parents from utilizing available health monitoring solutions for their infants [7,8].

The literature also indicates that most systems focus on isolated health parameters, such as heart rate or temperature, without integrating a holistic approach to infant health monitoring. For example, while some de-vices excel in measuring temperature, they may lack capabilities to assess pulse rates or other vital signs, leading to incomplete health assessments [3]. This highlights a critical gap in the market for comprehensive solutions that can monitor multiple vital signs simultaneously.

Furthermore, the accessibility of health data is a crucial factor in empowering parents to make informed decisions regarding their child's health. The development of telehealth applications has made strides in bridging this gap, but there is still a need for affordable, easy-to-use devices that enable parents to access and interpret their child's health data without the need for extensive medical knowledge [6-9].

The problem addressed in this paper is the urgent need for an affordable, efficient, and user-friendly re-mote monitoring system that integrates multiple vital sign measurements for infants in a home environment. The proposed system aims to combine temperature and pulse monitoring capabilities with real-time data transmission to a parental device, ensuring that caregivers can respond promptly to any concerning changes in their child's health [3].

In summary, while the existing literature emphasizes the potential of remote health monitoring for infants, there remains a significant opportunity to develop integrated, cost-effective solutions that can be easily utilized by parents at home. This study seeks to fill that gap by proposing a novel system based on Programmable System-on-Chip (PSoC) technology that addresses these challenges while enhancing the overall health monitoring experience for parents and caregivers [10-12].

System overview

The primary objective of this research is to develop a comprehensive remote health monitoring sys-tem for infants that utilizes PSoC technology (Fig. 1). The proposed system aims to provide continuous monitoring of critical health parameters, ensuring that parents can effectively track their child's well-being from the comfort of their home [10,11].

The specific goals of this study include the following:

- 1. Design and Implementation of Three Modules: The system will consist of three interconnected modules:
 - On-Child-Device: This module will be worn by the infant and is responsible for measuring vital signs, such as body temperature and pulse. It will employ a lightweight and ergonomic design to ensure comfort for the infant (Fig. 2).
 - Child-Device: Positioned within close proximity to the infant, this module will process the data received from the On-Child-Device and convert it into a format suitable for transmission to the Parent-Device (Fig. 3).
 - Parent-Device: This module will provide a user-friendly interface for parents, displaying real-time data on their child's health, including alerts for any abnormalities (Fig. 4)

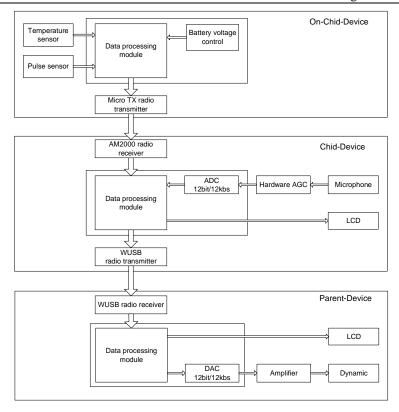


Fig. 1. The system architecture of the infant health monitoring solution, showing the interaction between On-Child-Device, Child-Device, and Parent-Device

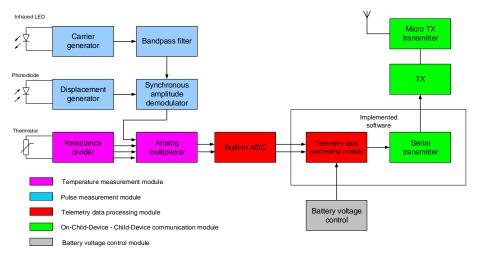


Fig. 2. Functional block diagram of the On-Child-Device module

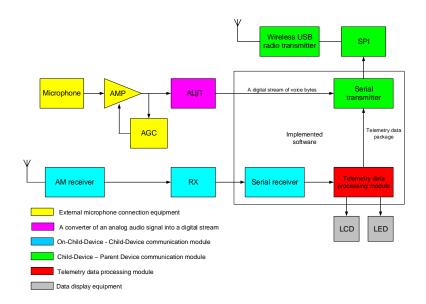


Fig. 3. Functional block diagram of the Child-Device module

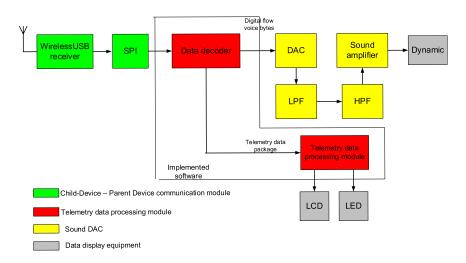


Fig. 4. Functional block diagram of the Parent-Device module

- 2. Integration of Multiple Vital Sign Measurements: The system will integrate capabilities for measuring temperature and pulse. This dual functionality aims to provide a more comprehensive understanding of the infant's health status compared to existing solutions that focus on a single parameter.
- 3. Wireless Data Transmission: The proposed system will utilize low-power wireless communication protocols to ensure efficient data transmission between the modules. This

feature will enable parents to monitor their child's health without being physically present in the same room (Fig. 5).

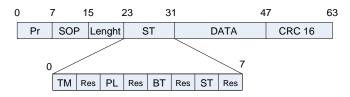


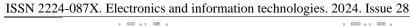
Fig. 5. The structure of the data transfer packet

- 4. User-Friendly Interface Development: The Parent-Device will feature an intuitive interface that displays health data clearly and concisely. This design consideration aims to make the system accessible to all parents, regardless of their technical expertise.
- 5. Performance Evaluation: The system's effectiveness will be tested in real-world scenarios to evaluate its performance, reliability, and usability. Feedback from parents will be collected to inform further iterations of the system design.
- 6. Potential for Future Expansion: The research will also explore opportunities for future enhancements, such as the integration of additional sensors to monitor other health parameters (e.g., oxygen saturation or activity levels) and the incorporation of machine learning algorithms to analyze data trends over time.

Developing methodology

The methodology for developing the remote health monitoring system is structured around several key components that ensure effective data collection, transmission, and user interaction. This section outlines the specific steps and techniques employed in the design and implementation of the system, emphasizing the use of PSoC technology to create an efficient and robust monitoring solution.

A) Hardware development


The hardware architecture of the monitoring system is built upon three main modules, each designed to fulfill specific functions:

On-Child-Device:

Sensor Integration: This module integrates sensors for measuring vital signs, such as a thermistor for temperature and an infrared sensor for pulse. The thermistor provides accurate temperature readings through its resistance changes, which are converted into digital signals using the integrated Analog-to-Digital Converter (ADC). Microcontroller Selection: The On-Child-Device uses a PSoC microcontroller (e.g., CY8C24223), al-lowing for real-time data processing and minimal power consumption. The PSoC's programmable architecture enables easy adaptation of the device's functionalities as needed. Wireless Communication: A low-power RF transceiver (e.g., CYRF6936) is integrated for data trans-mission to the Child-Device, facilitating seamless communication without the need for cumbersome wiring (Fig. 6).

Child-Device:

Data Processing: This module acts as an intermediary, receiving data from the On-Child-Device. It processes the incoming signals and prepares them for transmission to the Parent-Device. This involves filtering noise from the data and ensuring accuracy.

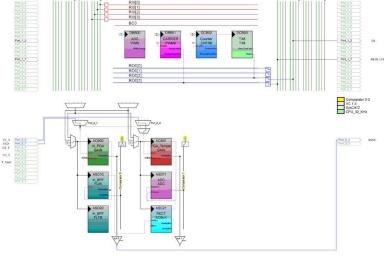


Fig. 6. Internal structure of PSoC of On-Child-Device module

<u>Communication Protocol</u>: The Child-Device employs a reliable communication protocol that utilizes Manchester encoding to enhance data integrity during wireless transmission. The encoding process helps minimize errors that could arise due to interference or signal degradation (Fig. 7).

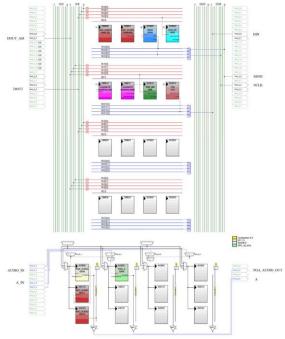


Fig. 7. Internal structure of PSoC of Child-Device module

Parent-Device:

User Interface: The Parent-Device features an LCD screen to display real-time health data clearly. The interface is designed with user experience in mind, allowing parents to easily navigate through the information presented, including temperature readings, pulse rates, and alerts.

<u>Alert System:</u> An audio alert system is integrated to notify parents of any abnormal readings or significant changes in their infant's condition. This feature ensures that parents can respond promptly to potential health issues (Fig. 8).

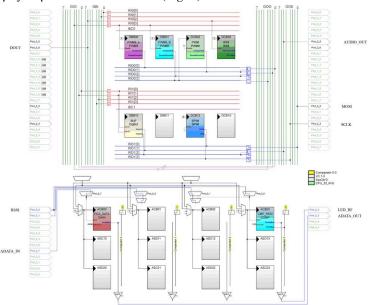


Fig. 8. Internal structure of PSoC of Parent-Device module

B. Software Development

The software component of the system plays a critical role in managing data processing, communica-tion, and user interaction:

<u>PSoC Designer Environment.</u> The system's firmware is developed using the PSoC Designer software, which provides a unified plat-form for hardware configuration and software programming. This environment facilitates easy debugging and implementation of complex algorithms.

<u>Telemetric Data Processing.</u> The software continuously collects and processes vital sign measurements from the On-Child-Device. This data is organized into packets for efficient transmission. The processing algorithms include filtering techniques to enhance the accuracy of the readings, particularly in a noisy environment.

<u>Communication Management.</u> The software includes a robust error-checking mechanism that verifies the integrity of the transmitted data. If any discrepancies are detected, the system can automatically request retransmission of the affected packets.

<u>User Interface Programming.</u> The interface for the Parent-Device is designed to be intuitive, featuring graphical representations of the infant's health data. The software enables

parents to view historical data trends and current readings, facilitating informed decision-making regarding their child's health.

C. Data Transmission and Monitoring

The system utilizes wireless technology to transmit health data from the On-Child-Device to the Parent-Device. The methodology includes:

<u>Wireless Transmission.</u> The system employs low-power RF communication to ensure efficient data transfer over the specified distance. The communication range is optimized to maintain reliable connectivity between the modules while conserving battery life.

<u>Real-Time Monitoring.</u> The Parent-Device displays real-time data, allowing parents to monitor their child's health continuously. The software is designed to refresh the displayed information regularly, providing up-to-date readings.

<u>Alert Mechanisms.</u> The system's alert features include thresholds for critical health parameters. If the temperature exceeds or falls below a predefined range, or if the pulse rate indicates distress, the Parent-Device emits audio alerts and visual cues to draw the parent's attention.

D. Performance Evaluation

To ensure the system's effectiveness, a series of performance evaluations will be conducted, including:

<u>Field Testing.</u> The system will undergo real-world testing to assess its performance in various home environments. This testing will evaluate the reliability of data transmission, the accuracy of measurements, and the usability of the interface.

<u>User Feedback</u>. Feedback from parents participating in the testing phase will be collected to identify areas for improvement. This qualitative data will inform future iterations of the system, ensuring it meets the needs of caregivers effectively.

<u>Data Analysis</u>. The collected data will be analyzed to evaluate the system's ability to detect changes in health parameters accurately. Statistical methods will be employed to assess the correlation between the measured parameters and known health outcomes, ensuring the system's efficacy in real-life scenarios.

E. Future Work

The methodology outlines a foundation for future enhancements, including:

- Integration of Additional Sensors: Future iterations may include sensors for monitoring oxygen saturation, respiratory rate, or activity levels, providing a more comprehensive health profile.
- Machine Learning Algorithms: The potential use of machine learning techniques to analyze trends in health data over time could further enhance the system's predictive capabilities, allowing for proactive health management.

Hardware design and circuit diagrams

This section presents the detailed hardware design of the infant health monitoring system, including the circuit diagrams for each module: On-Child-Device, Child-Device, and Parent-Device. Each module is de-signed using PSoC technology to ensure flexibility, energy efficiency, and real-time data processing. The following subsections provide a comprehensive description of the electrical schematics and their key components.

A. On-Child-Device Circuit Diagram

The On-Child-Device is responsible for measuring the infant's vital signs, including temperature and pulse, and wirelessly transmitting the data to the Child-Device. The key components of this module include: thermistor for temperature measurement, pulse sensor using infrared technology for pulse rate detection, PSoC microcontroller (CY8C24223) for processing sensor data and converting it into digital form using an integrated ADC, wireless RF transmitter for data communication. Fig. 9 below shows the detailed circuit diagram of the On-Child-Device, illustrating the connections between the thermistor, pulse sensor and microcontroller.

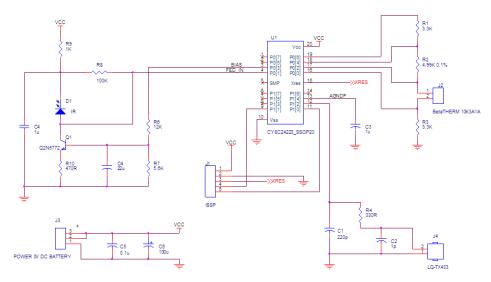


Fig. 9. Circuit diagram of the On-Child-Device

B. Child-Device Circuit Diagram

The Child-Device acts as an intermediary, receiving data from the On-Child-Device, processing it, and transmitting it to the Parent-Device. The main components include: PSoC microcontroller for handling data processing and managing wireless communication, RF transceiver to receive data from the On-Child-Device and prepare it for transmission to the Parent-Device, noise filtering circuitry to ensure that the received data is accurate and clean before transmission. Fig. 10 shows the schematic of the Child-Device, including all key components and their interactions.

C. Parent-Device Circuit Diagram

The Parent-Device is the interface between the system and the user, providing real-time information about the infant's health on a display. The main elements are: LCD screen to display temperature, pulse, and other data, audio alert system for notifying parents of abnormal health readings, PSoC microcontroller for managing the display and audio alerts, wireless receiver to obtain data from the Child-Device. Fig. 11 provides a detailed diagram of the Parent-Device, highlighting the connections between the LCD, audio system, microcontroller, and wireless receiver.

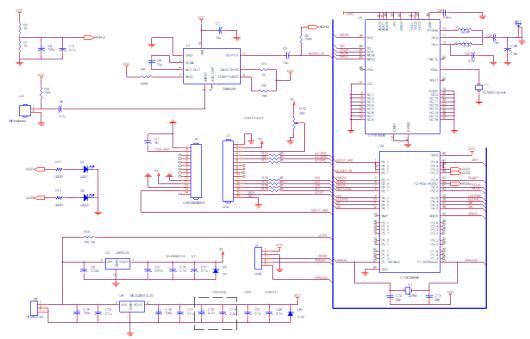


Fig. 10. Circuit diagram of the Child-Device

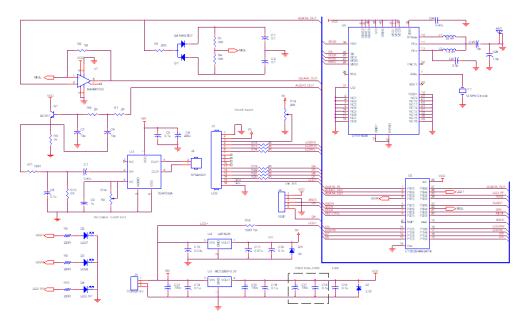


Fig. 11. Circuit diagram of the Parent-Device

Conclusion

This paper presents the development and implementation of a comprehensive remote health monitoring system for infants, utilizing PSoC technology. The system consists of three core modules – On-Child-Device, Child-Device, and Parent-Device – that work together to continuously monitor vital signs, such as body temperature and pulse, and transmit the data wirelessly to a parental monitoring device. This real-time monitoring capability allows for the early detection of potential health issues, ensuring parents can take timely action when necessary.

The use of PSoC technology provides several key benefits, including flexibility in design, low power consumption, and the ability to integrate multiple functions into a single chip. These features make the system cost-effective and energy-efficient, suitable for continuous operation in a home environment. The system's wireless communication protocols and user-friendly interface further enhance its practicality, offering parents an intuitive and reliable means of tracking their child's health.

Through the detailed design of the hardware components and the development of robust software for data processing and transmission, this system addresses critical gaps in existing infant monitoring solutions. The modular design allows for easy customization and potential future expansions, such as the addition of new sensors for more comprehensive health monitoring or the incorporation of machine learning algorithms to predict health trends.

In summary, this project demonstrates the feasibility of creating an affordable and efficient home-based infant health monitoring system. Future research and development can focus on enhancing the system's scalability, improving data security, and integrating additional health metrics, further strengthening the system's role in infant healthcare.

REFERENCES

- [1] *Memon, S. F., Memon M., & Bhatti, S.* (2020). Wearable technology for infant health monitoring: a survey. IET Circuits, Devices & Systems, 14(2), 115-129. DOI: https://doi.org/10.1049/iet-cds.2018.5447
- [2] Nkoy, F. L., Hofmann, M. G., Stone, B. L., Poll, J., Clark, L., Fassl, B. A., & Murphy, N. A. (2019). Information needs for designing a home monitoring system for children with medical complexity. International journal of medical informatics, 122, 7-12. DOI: https://doi.org/10.1016/j.ijmedinf.2018.11.011
- [3] Goo, S., Jang, W., Kim, Y. S., Ji, S., Park, T., Park, J. D., & Lee, B. (2024). Streamlining pediatric vital sign assessment: innovations and insights. Scientific Reports, 14(1), 22542. DOI: https://doi.org/10.1038/s41598-024-73148-7
- [4] Wilson, L. S., & Maeder, A. J. (2015). Recent directions in telemedicine: review of trends in research and practice. Healthcare informatics research, 21(4), 213-222. DOI: https://doi.org/10.4258/hir.2015.21.4.213
- [5] Singh, P. (2018). Internet of things based health monitoring system: opportunities and challenges. International Journal of Advanced Research in Computer Science, 9(1), 224-228. DOI: http://dx.doi.org/10.26483/ijarcs.v9i1.5308
- [6] Tarannum, S., & Farheen, S. (2020). Wireless sensor networks for healthcare monitoring: a review. Inventive Computation Technologies 4, 669-676. DOI: https://doi.org/10.1007/978-3-030-33846-672

- [7] Olatinwo, D. D., Abu-Mahfouz, A., & Hancke, G. (2019). A survey on LPWAN technologies in WBAN for remote health-care monitoring. Sensors, 19(23), 5268. DOI: https://doi.org/10.3390/s19235268
- [8] *Mishra, A., & Mohapatro, M.* (2019). An IoT framework for bio-medical sensor data acquisition and machine learning for early detection. International Journal of Advanced Technology and Engineering Exploration, 6(54), 112-125. DOI: https://doi.org/10.19101/IJATEE.2019.650027
- [9] *Jayapandian, J., Swarrup, J. S., Sheela, O. K., & Ravi, U.* (2012). PSoC-based embedded design and quartz tuning fork for low-temperature measurement system design. Journal of laboratory automation, 17(2), 144-154. DOI: https://doi.org/10.1177/2211068211426552
- [10] *Hajar, M. S., Al-Kadri, M. O., & Kalutarage, H. K.* (2021). A survey on wireless body area networks: Architecture, security challenges and research opportunities. Computers & Security, 104, 102211. DOI: https://doi.org/10.1016/j.cose.2021.102211
- [11] *Tkachuk*, *T*. (2016). Two methods to determining the time complexity of algorithm. Modern Problems of Radio Engineering, Telecommunications and Computer Science, Proceedings of the 13th International Conference on TCSET, 452–454. IEEE. DOI: https://doi.org/10.1109/TCSET.2016.7452086
- [12] Klym, H. I., Ivanusa, A. I., Kostiv, Yu. M., Chalyy, D. O., Tkachuk, T. I., Dunets, R. B., & Vasylchyshyn, I. I. (2017). Methodology and algorithm of multicomponent analysis of positron annihilation spectra for nanostructured functional materials. Journal of Nanoand Electronic Physics, 9(3), 03024-1–03024-6. DOI: https://doi.org/10.21272/jnep.9(3).03037

СИСТЕМА ДИСТАНЦІЙНОГО МОНІТОРИНГУ СТАНУ НЕМОВЛЯТ НА БАЗІ PS₀C

А. Лук'янчук, Т. Ткачук, Г. Клим, І. Рудавський

Національний університет «Львівська політехніка», вул. С. Бандери, 12,79013 Львів, Україна andrii.lukianchuk.mkisk.2023@lpnu.ua, halyna.i.klym@lpnu.ua, taras.i.tkachuk@lpnu.ua, ivan2001rud@gmail.com

Моніторинг здоров'я немовлят ε критичним для раннього виявлення потенційних проблем зі здоров'ям. Багато існуючих рішень, хоча й ефективні, часто ε дорогими та розробленими для використання в клінічних умовах, що робить їх менш доступними для домашнього використання. Бать-кам потрібне доступне та просте у використанні рішення для моніторингу життєво важливих показників здоров'я немовлят, таких як температура тіла та пульс, у реальному часі. Швидкий розвиток бездротових технологій зв'язку та систем на базі мікроконтролерів, таких як Programmable System-on-Chip (PSoC), відкриває нові можливості для створення ефективних, енергоощадних та доступ-них систем моніторингу здоров'я, розроблених спеціально для домашнього використання. Це дослідження зосереджується на розробці системи дистанційного моніторингу здоров'я немовлят з ін-тегрованою бездротовою передачею даних для забезпечення моніторингу в реальному часі.

Запропонована система складається з трьох модулів: On-Child-Device, Child-Device і Parent-Device. On-Child-Device, що носить немовля, вимірює життєво важливі показники за допомогою термістора та інфрачервоного датчика пульсу. Дані обробляються мікроконтролером PSoC і пере-даються бездротово на Child-Device, який далі передає інформацію на Parent-Device для відображення. Parent-Device забезпечує інтерфейс для батьків, де вони можуть відстежувати дані в реальному часі, включаючи сповіщення про аномальні показники. Апаратна частина системи побудова-на на технології PSoC, що забезпечує гнучкість у інтеграції сенсорів та протоколів зв'язку. Розробка програмного забезпечення була виконана за допомогою середовища PSoC Designer, яке дозволяє отримувати дані в реальному часі, перевіряти помилки та керувати бездротовою передачею даних.

Початкове тестування системи продемонструвало надійну роботу у вимірюванні та передачі життєво важливих показників. Бездротовий зв'язок між модулями показав мінімальну затримку, а дані в реальному часі точно відображалися на Parent-Device. Використання технології PSoC дозволило ефективно використовувати енергію, забезпечуючи тривалу роботу системи без частих замін батарей. Модульна конструкція системи також показала свою адаптивність, що дозволяє в майбутньому інтегрувати додаткові сенсори. Зворотний зв'язок від користувачів підкреслив зручність інтерфейсу Parent-Device, що робить його доступним для некваліфікованих користувачів. Проте були відзначені труднощі, пов'язані з перешкодами сигналу в певних умовах, що свідчить про необхідність подальшої оптимізації протоколу зв'язку.

Розроблена система дистанційного моніторингу здоров'я немовлят пропонує доступне та енергоефективне рішення для домашнього використання. Завдяки використанню технології PSoC, система забезпечує надійний моніторинг життєво важливих показників у реальному часі, дозволяючи батькам оперативно реагувати на будь-які відхилення у здоров'ї дитини. Бездротова передача даних та зручний інтерфейс роблять систему практичною для щоденного використання, заповнюючи значну прогалину в поточних технологіях моніторингу здоров'я немовлят. Майбутні поліпшення зосередяться на підвищенні надійності зв'язку та інтеграції додаткових показників здоров'я для надання більш комплексного моніторингу.

Ключові слова: Телеметричні дані, Пристрій для батьків, Моніторинг здоров'я, Сенсор температури, Вимірювання пульсу, Програмована система на кристалі

The article was received by the editorial office on 18.10.2024.

Accepted for publication on 01.11.2024.